Mining seed proteome: from protein dynamics to modification profiles

Authors

  • Andrej Frolov Department of Bioorganic Chemistry, Weinberg 3, 06120 Halle/Saale DE, Leibniz Institute of Plant Biochemistry, Germany; Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Srednii prosp., 41–43, Saint Petersburg, 199004, Russian Federation https://orcid.org/0000-0003-3250-5858
  • Tatiana Mamontova Department of Bioorganic Chemistry, Weinberg 3, 06120 Halle/Saale DE, Leibniz Institute of Plant Biochemistry, Germany; Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Srednii prosp., 41–43, Saint Petersburg, 199004, Russian Federation https://orcid.org/0000-0002-9794-8089
  • Christian Ihling Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Wolfgang-Langenbeck-Strasse 4, 06120 Halle/Saale DE, Martin-Luther Universität Halle-Wittenberg, Germany
  • Elena Lukasheva Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Srednii prosp., 41–43, Saint Petersburg, 199004, Russian Federation https://orcid.org/0000-0002-0889-2395
  • Mikhail Bankin Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-6240-2246
  • Veronika Chantseva Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-3486-4232
  • Maria Vikhnina Department of Bioorganic Chemistry, Weinberg 3, 06120 Halle/Saale DE, Leibniz Institute of Plant Biochemistry, Germany; Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Srednii prosp., 41–43, Saint Petersburg, 199004, Russian Federation https://orcid.org/0000-0003-0120-3435
  • Alena Soboleva Department of Bioorganic Chemistry, Weinberg 3, 06120 Halle/Saale DE, Leibniz Institute of Plant Biochemistry, Germany; Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Srednii prosp., 41–43, Saint Petersburg, 199004, Russian Federation; Department of Сell and Metabolic Biology, Weinberg 3, 06120 Halle/Saale DE, Leibniz Institute of Plant Biochemistry, Germany https://orcid.org/0000-0002-7318-8628
  • Julia Shumilina Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Srednii prosp., 41–43, Saint Petersburg, 199004, Russian Federation https://orcid.org/0000-0002-9747-5779
  • Gregory Mavropolo-Stolyarenko Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Srednii prosp., 41–43, Saint Petersburg, 199004, Russian Federation https://orcid.org/0000-0001-8712-0272
  • Tatiana Grishina Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Srednii prosp., 41–43, Saint Petersburg, 199004, Russian Federation https://orcid.org/0000-0002-5306-2980
  • Natalia Osmolovskaya Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0001-8764-8552
  • Vladimir Zhukov All-Russia Research Institute for Agricultural Microbiology, Podbelsky chaussee 3, Pushkin, Saint Petersburg, 196608, Russian Federation https://orcid.org/0000-0002-2411-9191
  • Wolfgang Hoehenwarter Proteome Analytics Research Group, Weinberg 3, 06120 Halle/Saale DE, Leibniz Institute of Plant Biochemistry, Germany https://orcid.org/0000-0002-7669-7524
  • Andrea Sinz Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Wolfgang-Langenbeck-Strasse 4, 06120 Halle/Saale DE, Martin-Luther Universität Halle-Wittenberg, Germany https://orcid.org/0000-0003-1521-4899
  • Igor Tikhononovich All-Russia Research Institute for Agricultural Microbiology, Podbelsky chaussee 3, Pushkin, Saint Petersburg, 196608, Russian Federation; Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0001-8968-854X
  • Ludger Wessjohann Department of Bioorganic Chemistry, Weinberg 3, 06120 Halle/Saale DE, Leibniz Institute of Plant Biochemistry, Germany https://orcid.org/0000-0003-2060-8235
  • Tatiana Bilova Department of Bioorganic Chemistry, Weinberg 3, 06120 Halle/Saale DE, Leibniz Institute of Plant Biochemistry, Germany; Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-6024-3667
  • Galina Smolikova Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0001-5238-1851
  • Sergei Medvedev Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0003-1127-1343

DOI:

https://doi.org/10.21638/spbu03.2018.106

Abstract

In the modern world, crop plants represent a major source of daily consumed foods. Among them, cereals and legumes — i.e. the crops accumulating oils, carbohydrates and proteins in their seeds — dominate in European agriculture, tremendously impacting global protein consumption and biodiesel production. Therefore, the seeds of crop plants attract the special attention of biologists, biochemists, nutritional physiologists and food chemists. Seed development and germination, as well as age- and stress-related changes in their viability and nutritional properties, can be addressed by a variety of physiological and biochemical methods. In this context, the methods of functional genomics can be applied to address characteristic changes in seed metabolism, which can give access to stress-resistant genotypes. Among these methods, proteomics is one of the most effective tools, allowing mining metabolism changes on the protein level. Here we discuss the main methodological approaches of seed proteomics in the context of physiological changes related to environmental stress and ageing. We provide a comprehensive comparison of gel- and chromatographybased approaches with a special emphasis on advantages and disadvantages of both strategies in characterization of the seed proteome.

Keywords:

food safety, LC-MS, post-translational modifications, proteomics, seed quality

Downloads

Download data is not yet available.
 

References

Altshul, A. M. 1962. Seed proteins and world food problems. Economy Botany 16:2–13. https://doi.org/10.1007/BF02986049

Arun, K. A. V. 2015. Gel-based proteomics in plants: time to moove on from the tradition. Frontiers of Plant Science 6:369. https://doi.org/10.3389/fpls.2015.00369

Asgar, M. A., Fazilah, A, Huda, N, Bhat, R, and Karim, A. A. 2010. Nonmeat protein alternatives as meat extenders and meat analogs. Comprehensive Reviews in Food Science and Food Safety 9:513–529. https://doi.org/10.1111/j.1541-4337.2010.00124.x

Ayala, A., Munoz, M F, and Arguelles, S. 2014. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity 2014:360–438. https://doi.org/10.1155/2014/360438

Bailly, C. and Kraner, I. 2011. Analyses of ROS and antioxidants in relation to seed longevity and germination. Methods in Molecular Biology 773:343–367. https://doi.org/10.1007/978-1-61779-231-1_20

Barkla, B. J. and Vera-Estrella, R. 2015. Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum. Frontiers in Plant Science 6:435. https://doi.org/10.3389/fpls.2015.00435

Bates, P. D., Stymne, S., and Ohlrogge, J. 2013. Biochemical pathways in seed oil synthesis. Current Opinion in Plant Biology 16:358–364. https://doi.org/10.1016/j.pbi.2013.02.015

Beckett, P. 2012. The basics of 2D DIGE. Methods in Molecular Biology 854:9–19 https://doi.org/10.1007/978-1-61779-573-2_2

Bilova, T., Greifenhagen, U., Paudel, G., Lukasheva, E., Brauch, D., Osmolovskaya, N., Tarakhovskaya, E., Balcke, G. U., Tissier, A., Vogt, T., Milkovski, C., Birkemeyer, C., Wessjohann, L. A., and Frolov, A. 2016a. Glycation of plant proteins under environmental stress―methodological approaches, potential mechanisms and biological role; pp. 295–316 in Shanker, A. (Ed.). Abiotic and biotic stress in plants ― recent advances and future perspectives. IntechOpen. ISBN 978-953-51-2250-0. https://doi.org/10.5772/61860

Bilova, T., Lukasheva, E., Brauch, D., Greifenhagen, U., Paudel, G., Tarakhovskaya, E., Frolova, N., Mittasch, J., Balcke, G. U., Tissier, A., Osmolovskaya, N., Vogt, T., Wessjohann, L. A, Birkemeyer, C., Milkowski, C., and Frolov, A. 2016b. A Snapshot of the plant glycated proteome: structural, functional, and mechanistic aspects. Journal of Biologial Chemistry 291:7621–7636. https://doi.org/10.1074/jbc.M115.678581

Binita, K., Kumar, S., Sharma, V. K., Sharma, V., and Yadav, S. 2014. Proteomic identification of Syzygium cumini seed extracts by MALDI–TOF/MS. Applied Biochemical Biotechnology 172:2091–2105. https://doi.org/10.1007/s12010-013-0660-x

Bollineni, R. C., Hoffmann, R., and Fedorova, M. 2011. Identification of protein carbonylation sites by two-dimensional liquid chromatography in combination with MALDI– and ESI–MS. Journal of Proteomics 74:2338–2350. https://doi.org/10.1016/j.jprot.2011.07.002

Bourgeois, M., Jacquin, F., Savois, V., Sommerer, N., Labas, V., Henry, C., and Burstin, J. 2009. Dissecting the proteome of pea mature seeds reveals the phenotypic plasticity of seed protein composition. Proteomics 9:254–271. https://doi.org/10.1002/pmic.200700903

Bradford, K. J., Dahal, P., Asbrouk, J. V., Kunusoth, K., Bello, P., Thompson, J., and Wu, F. 2018. The dry chain: Reducing postharvest losses and improving food safety in humid climates. Trends in Food Siene and Technology 71:84–93. https://doi.org/10.1016/j.tifs.2017.11.002

Brink-Jensen, K., Bak, S., Jorgensen, K, and Ekstrom, C T. 2013. Integrative analysis of metabolomics and transcriptomics data: a unified model framework to identify underlying system pathways. PLoS One 8:e72116 https://doi.org/10.1371/journal.pone.0072116

Canterbury, J. D., Merrihew, G. E., MacCoss, M. J., Goodlett, D. R., and Shaffer, S. A. 2014. Comparison of data acquisition strategies on quadrupole ion trap instrumentation for shotgun proteomics. Journal of Amerian Society for Mass Spectrometry 25:2048–2059. https://doi.org/10.1007/s13361-014-0981-1

Carre, P. and Pouzet, A. 2012. Rapeseed market, worldwide and in Europe oilseeds and fats. Crops and lipids 21:D102. https://doi.org/10.1051/ocl/2013054

Catherman, A. D., Skinner, O. S, and Kelleher, N. L. 2014. Top Down proteomics: facts and perspectives. Biochemical and Biophysical Research Communications 445:683–693. https://doi.org/10.1016/j.bbrc.2014.02.041

Cernay, C., Pelzer, E., and Makovski, D. 2016. A global experimental dataset for assessing grain legume production. Sientifi Data 3:160084. https://doi.org/10.1038/sdata.2016.84

Chen, D., Shen, X., and Sun, L. 2017. Capillary zone electrophoresis-mass spectrometry with microliter-scale loading capacity, 140 min separation window and high peak capacity for bottom-up proteomics. Analyst 142:2118–2127. https://doi.org/10.1039/c7an00509a

Chen, E. I., Cociorva, D., Norris, J. L., and Yates, J. R., III. 2007. Optimization of mass spectrometry-compatible surfactants for shotgun proteomics. Journal of Proteome Research 6:2529–2538. https://doi.org/10.1021/pr060682a

Chevallet, M., Luche, S., Diemer, H., Strub, J. M., Van, D. A., and Rabilloud, T. 2008. Sweet silver: a formaldehydefree silver staining using aldoses as developing agents, with enhanced compatibility with mass spectrometry. Proteomics 8:4853–4861. https://doi.org/10.1002/pmic.200800321

Chmelik, J., Zidkova, J., Rehulka, P., Petry-Podgorska, I., and Bobalova, J. 2009. Influence of different proteomic protocols on degree of high-coverage identification of nonspecific lipid transfer protein 1 modified during malting. Electrophoresis 30:560–567. https://doi.org/10.1002/elps.200800530

Clauser, K. R., Baker, P., and Burlingame, A. L. 1999. Role of accurate mass measurement (+/- 10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Analytical Chemistry 71:2871–2882. https://doi.org/10.1021/ac9810516

Colville, L., Bradley, E. L., Lloyd, A. S., Pritchard, H. W., Castle, L., and Kranner, I. 2012. Volatile fingerprints of seeds of four species indicate the involvement of alcoholic fermentation, lipid peroxidation, and Maillard reactions in seed deterioration during ageing and desiccation stress. Journal of Experimental Botany 63:6519–6530. https://doi.org/10.1093/jxb/ers307

Corbineau, F. 2012. Markers of seed quality: from present to future. Seed Science Research 22:S61–S68. https://doi.org/10.1017/S0960258511000419

Don, R. 2009. ISTA Handbook on seedling evaluation. 3rd Edition. By the ISTA Germination Committee https://www.seedtest.org

Duranti, M. 2006. Grain legume proteins and nutraceutical properties. Fitoterapia 77:67–82. https://doi.org/10.1016/j.fitote.2005.11.008

Ehrlich, H., Hanke, T., Frolov, A., Langrock, T., Hoffmann, R., Fischer, C., Schwarzenbolz, U., Henle, T., Born, R., and Worch, H. 2009. Modification of collagen in vitro with respect to formation of Nepsilon-carboxymethyllysine. International Journal of Biological Macromolecules 44:51–56. https://doi.org/10.1016/j.ijbiomac.2008.10.001

FAO Cereal Supply and Demand Brief. 2017. http://www.fao.org/worldfoodsituation

Faria-Oliveira, F., Carvalho, J., Ferreira, C., Hernaez, M. L., Gil, C., and Lucas, C. 2015. Quantitative differential proteomics of yeast extracellular matrix: there is more to it than meets the eye. BMC Microbiology 15:271. https://doi.org/10.1186/s12866-015-0550-1

Fedorova, M., Frolov, A., and Hoffmann, R. 2010. Fragmentation behavior of Amadori-peptides obtained by non-enzymatic glycosylation of lysine residues with ADP-ribose in tandem mass spectrometry. Journal of Mass Spectrometry 45:664–669. https://doi.org/10.1002/jms.1758

Filho, J. M. 2015. Seed vigor testing: an overview of the past, present and future. Scientia Agricola 72:363–374. https://doi.org/10.1590/0103-9016-2015-0007

Food and Agriculture Organization of the United Nations, 2018. http://www.fao.org

Frolov, A. and Hoffmann, R. 2008. Analysis of Amadori peptides enriched by boronic acid affinity chromatography. Annals of New York Academy of Science 1126:253–256. https://doi.org/10.1196/annals.1433.060

Frolov, A. and Hoffmann, R. 2010. Identification and relative quantification of specific glycation sites in human serum albumin. Analytical and Bioanalytical Chemistry 397:2349–2356. https://doi.org/10.1007/s00216-010-3810-9

Frolov, A., Bilova, T., Paudel, G., Berger, R., Balcke, G. U., Birkemeyer, C., and Wessjohann, L. A. 2016. Early responses of mature Arabidopsis thaliana plants to reduced water potential in the agar-based polyethylene glycol infusion drought model. Journal of Plant Physiology 280:70–83. https://doi.org/10.1016/j.jplph.2016.09.013

Frolov, A., Bluher, M., and Hoffmann, R. 2014. Glycation sites of human plasma proteins are affected to different extents by hyperglycemic conditions in type 2 diabetes mellitus. Analytical and Bioanalytical Chemistry 406:5755–5763. https://doi.org/10.1007/s00216-014-8018-y

Frolov, A., Didio, A., Ihling, C., Chantzeva, V., Grishina, T., Hoehenwarter, W., Sinz, A., Smolikova, G., Bilova, T., and Medvedev, S. 2017. The effect of simulated microgravity on the Brassica napus seedling proteome. Functional Plant Biology 45(4):440–452. https://doi.org/10.1071/FP16378

Frolov, A., Hoffmann, P., and Hoffmann, R. 2006. Fragmentation behavior of glycated peptides derived from Dglucose, D-fructose and D-ribose in tandem mass spectrometry. Journal of Mass Spectrometry 41:1459–1469. https://doi.org/10.1002/jms.1117

Frolov, A., Schmidt, R., Spiller, S., Greifenhagen, U., and Hoffmann, R. 2014. Formation of arginine-derived advanced glycation end products in peptide-glucose mixtures during boiling. Journal of Agrical and Food Chemistry 62:3626–3635. https://doi.org/10.1021/jf4050183

Frolov, A., Singer, D., and Hoffmann, R. 2006. Site-specific synthesis of Amadori-modified peptides on solid phase. Journal of Peptide Science 12:389–395. https://doi.org/10.1002/psc.739

Frolov, A., Singer, D., and Hoffmann, R. 2007. Solid-phase synthesis of glucose-derived Amadori peptides. Journal of Peptide Science 13:862–867. https://doi.org/10.1002/psc.901

Fu, Y. B., Ahmed, Z., and Diederichsen, A. 2015. Towards a better monitoring of seed ageing under ex situ seed conservation. Conservative Physiology 3:cov026. https://doi.org/10.1093/conphys/cov026

Gadgil, H. S., Bondarenko, P. V., Treuheit, M. J., and Ren, D. 2007. Screening and sequencing of glycated proteins by neutral loss scan LC/MS/MS method. Analytical Chemistry 79:5991–5999. https://doi.org/10.1021/ac070619k

Gallardo, K., Kurt, C., Thompson, R., and Ochatt, S. 2018. In vitro culture of immature M. truncatula grains under conditions prmitting embryo development comparable to that observed in vivo. Plant Science 170:1052–1058. https://doi.org/10.1016/j.plantsci.2005.12.021

Gallardo, K., Le, S. C., Vandekerckhove, J., Thompson, R. D., and Burstin, J. 2003. Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiology 133:664–682. https://doi.org/10.1104/pp.103.025254

Ghassemi-Golezani, K. and Mazloomi-Oskooyi, R. 2008. Effect of water supply on seed quality development in common bean (Phaseolus vulgarisvar). Journal of Plant Prodution 2:117–124. https://doi.org/10.22069/IJPP.2012.604

Gillet, L. C., Leitner, A., and Aebersold, R. 2016. Mass spectrometry applied to bottom-up proteomics: entering the high-throughput era for hypothesis testing. Annual Reviews of Analytical Chemistry (Palo Alto, California) 9:449–472. https://doi.org/10.1146/annurev-anchem-071015-041535

Goff, S. A. and Salmeron, J. M. 2004. Back to the future of cereals. Genomic studies of the world’s major grain crops, together with a technology called marker-assisted breeding, could yield a new green revolution. Scientific American 291:42–49.

Gong, C. Y., Li, Q., Yu, H. T., Wang, Z., and Wang, T. 2012. Proteomics insight into the biological safety of transgenic modification of rice as compared with conventional genetic breeding and spontaneous genotypic variation. Journal of Proteome Research 11:3019–3029. https://doi.org/10.1021/pr300148w

Greifenhagen, U., Frolov, A., and Hoffmann, R. 2015. Oxidative degradation of N-fructosylamine-substituted peptides in heated aqueous systems. Amino Acids 47:1065–1076. https://doi.org/10.1007/s00726-015-1940-2

Greifenhagen, U., Frolov, A., Bluher, M., and Hoffmann, R. 2016a. Plasma proteins modified by Advanced Glycation End products (AGEs) reveal site-specific susceptibilities to glycemic control in patients with Type 2 diabetes. Journal of Biological Chemistry 291:9610–9616. https://doi.org/10.1074/jbc.M115.702860

Greifenhagen, U., Frolov, A., Bluher, M., and Hoffmann, R. 2016b. Site-specific analysis of advanced glycation end products in plasma proteins of type 2 diabetes mellitus patients. Analytical and Bioanalytical Chemistry 408:5557–5566. https://doi.org/10.1007/s00216-016-9651-4

Greifenhagen, U., Nguyen, V. D., Moschner, J., Giannis, A., Frolov, A., and Hoffmann, R. 2014. Sensitive and site-specific identification of carboxymethylated and carboxyethylated peptides in tryptic digests of proteins and human plasma. Journal of Proteome Research 14:768–777. https://doi.org/10.1021/pr500799m

Gruber, P. and Hofmann, T. 2005. Chemoselective synthesis of peptides containing major advanced glycation end-products of lysine and arginine. Journal of Peptide Research 66:111–124. https://doi.org/10.1111/j.1399-3011.2005.00279.x

Guerrier, N. and Gavaletto, M. 2018. Cereal proteins. Second edition: 223–244.

Guo, G. and Li, N. 2011. Relative and accurate measurement of protein abundance using 15N stable isotope labeling in Arabidopsis (SILIA). Phytochemistry 72:1028–1039. https://doi.org/10.1016/j.phytochem.2011.01.007

Gupta, M., Bhaskar, P. B., Sriram, S., and Wang, P. H. 2017. Integration of omics approaches to understand oil/protein content during seed development in oilseed crops. Plant Cell Reports 36:637–652. https://doi.org/10.1007/s00299-016-2064-1

Gupta, R., Min, C. W., Kim, S. W., Wang, Y., Agrawal, G. K., Rakwal, R., Kim, S. G., Lee, B. W., Ko, J. M., Baek, I. Y., Bae, D. W., and Kim, S. T. 2015. Comparative investigation of seed coats of brown- versus yellow-colored soybean seeds using an integrated proteomics and metabolomics approach. Proteomics 15:1706–1716. https://doi.org/10.1002/pmic.201400453

Gygi, S. P., Corthals, G L, Zhang, Y, Rochon, Y, and Aebersold, R. 2000. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Processings of North Atlantic Academy of Science, USA 97:9390–9395. https://doi.org/10.1073/pnas.160270797

Hampton, J. H. and TeKrony, D. 1995. ISTA. Handbook of Vigor Test Methods. By the ISTA Germination Committee https://www.seedtest.org

Han, C., Yin, X., He, D., and Yang, P. 2013. Analysis of proteome profile in germinating soybean seed, and its comparison with rice showing the styles of reserves mobilization in different crops. PLoS One 8:e56947. https://doi.org/10.1371/journal.pone.0056947

Heyer, R., Schallert, K., Zoun, R., Becher, B., Saake, G., and Benndorf, D. 2017. Challenges and perspectives of metaproteomic data analysis. Journal of Biotechnology 261:24–36. https://doi.org/10.1016/j.jbiotec.2017.06.1201

Heyns, K. and Noack, H. 1962. Die Umsetzung von D-Fructose mit L-Lysine und L-Arginin und deren Beziehung zu nichtenzymatischen Bräunungsreaktionen. Chemische Berichte 95:720–727. https://doi.org/10.1002/cber.19620950323

Hodge, J. E. 1955. The Amadori rearrangement. Advances of Carbohydrate Chemistry 10:169–205. https://doi.org/10.1016/S0096-5332(08)60392-6

Horvat, S. and Jakas, A. 2004. Peptide and amino acid glycation: new insights into the Maillard reaction. Journal of Peptide Science 10:119–137. https://doi.org/10.1002/psc.519

Hummel, M., Wigger, T., and Brockmeyer, J. 2015. Characterization of mustard 2S albumin allergens by bottom-up, middle-down, and top-down proteomics: a consensus set of isoforms of Sin a 1. Journal of Proteome Research 14:1547–1556. https://doi.org/10.1021/pr5012262

I. C. E. Committees, 2015. World agricultural supply and demand estimates. https://www.usda.gov

Isaacson, T., Damasceno, C. M., Saravanan, R. S., He, Y., Catala, C., Saladie, M., and Rose, J. K. 2006. Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nature Protocols 1:769–774. https://doi.org/10.1038/nprot.2006.102

Jagadeeshaprasad, M. G., Batkulwar, K. B., Meshram, N. N., Tiwari, S., Korwar, A. M., Unnikrishnan, A. G., and Kulkarni, M. J. 2016. Targeted quantification of N-1-(carboxymethyl) valine and N-1-(carboxyethyl) valine peptides of beta-hemoglobin for better diagnostics in diabetes. Clinical Proteomics 13:7. https://doi.org/10.1186/s12014-016-9108-y

Jamwal, R., Barlock, B. J., Adusumalli, S., Ogasawara, K., Simons, B. L., and Akhlaghi, F. 2017. Multiplex and labelfree relative quantification approach for studying protein abundance of drug metabolizing enzymes in human liver microsomes using SWATH-MS. Journal of Proteome Researh 16:4134–4143. https://doi.org/10.1021/acs.jproteome.7b00505

Jensen, K. N., Jessen, F., and Jorgensen, B. M. 2008. Multivariate data analysis of two-dimensional gel electrophoresis protein patterns from few samples. Journal of Proteome Research 7:1288–1296. https://doi.org/10.1021/pr700800s

Jimenez-Lopez, J. C., Foley, R. C., Brear, E., Clarke, V. C., Lima-Cabello, E., Florido, J. F., Singh, K. B., Alche, J. D., and Smith, P. M. C. 2018. Characterization of narrow-leaf lupin (Lupinus angustifolius L.) recombinant major allergen IgE-binding proteins and the natural beta-conglutin counterparts in sweet lupin seed species. Food Chemistry 244:60–70. https://doi.org/10.1016/j.foodchem.2017.10.015

Kalli, A., Smith, G. T., Sweredoski, M. J., and Hess, S. 2013. Evaluation and optimization of mass spectrometric settings during data-dependent acquisition mode: focus on LTQOrbitrap mass analyzers. Journal of Proteome Research 12:3071–3086. https://doi.org/10.1021/pr3011588

Kaspar-Schoenefeld, S., Merx, K., Jozefowicz, A. M., Hartmann, A., Seiffert, U., Weschke, W., Matros, A., and Mock, H. P. 2016. Label-free proteome profiling reveals developmental-dependent patterns in young barley grains. Journal of Proteomics 143:106–121. https://doi.org/10.1016/j.jprot.2016.04.007

Kim, Y. J., Wang, Y., Gupta, R., Kim, S. W., Min, C. W., Kim, Y. C., Park, K. H., Agrawal, G. K., Rakwal, R., Choung, M. G., Kang, K. Y., and Kim, S. T. 2015. Protamine sulfate precipitation method depletes abundant plant seed-storage proteins: A case study on legume plants. Proteomics 15:1760–1764. https://doi.org/10.1002/pmic.201400488

Kocher, T., Pichler, P, Swart, R, and Mechtler, K. 2012. Analysis of protein mixtures from whole-cell extracts by single-run nanoLC-MS/MS using ultralong gradients. Nature Protocols 7:882–890. https://doi.org/10.1038/nprot.2012.036

Kocsy, G. 2015. Die or survive? Redox changes as seed viability markers. Plant Cell Environment 38:1008–1010. https://doi.org/10.1111/pce.12515

Krokhin, O. V., Ens, W., and Standing, K. G. 2005. MALDI QqTOF MS combined with off-line HPLC for characterization of protein primary structure and post-translational modifications. Journal of Biomolecular Technology 16:429–440.

Lafiandra, D., Masi, S., Sissons, M., Dornez, E., Delour, J. A., Ourtin, M., and Aboni, M. F. 2012. Kernel components of technological value. Second edition:85–124.

Landry, E. J., Fuchs, S. J., and Hu, J. 2016. Carbohydrate composition of mature and immature faba bean seeds. Journal of Food Component Analysis 50:55–60. https://doi.org/10.1016/j.jfca.2016.05.010

Larance, M. and Lamond, A. I. 2015. Multidimensional proteomics for cell biology. Nature Review in Molecular Cell Biology 16:269–280. https://doi.org/10.1038/nrm3970

Li, Q. F., Xiong, M., Xu, P., Huang, L. C., Zhang, C. Q., and Liu, Q. Q. 2016. Dissection of brassinosteroid-regulated proteins in rice embryos during germination by quantitative proteomics. Scientific Reports 6:34583. https://doi.org/10.1038/srep34583

Liu, J., Hua, W., Yang, H., Guo, T., Sun, X., Wang, X., Liu, G., and Wang, H. 2014. Effects of specific organs on seed oil accumulation in Brassica napus L. Plant Science 227:60–68. https://doi.org/10.1016/j.plantsci.2014.06.017

Lombardo, V. A., Osorio, S., Borsani, J., Lauxmann, M. A., Bustamante, C. A., Budde, C. O., Andreo, C. S., Lara, M. V., Fernie, A. R., and Drincovich, M. F. 2011. Metabolic profiling during peach fruit development and ripening reveals the metabolic networks that underpin each developmental stage. Plant Physiology 157:1696–1710. https://doi.org/10.1104/pp.111.186064

Majovsky, P., Naumann, C., Lee, C. W., Lassowskat, I., Trujillo, M., Dissmeyer, N., and Hoehenwarter, W. 2014. Targeted proteomics analysis of protein degradation in plant signaling on an LTQ-Orbitrap mass spectrometer. Journal of Proteome Research 13:4246–4258. https://doi.org/10.1021/pr500164j

Marengo, E., Robotti, E., Antonucci, F., Cecconi, D., Campostrini, N., and Righetti, P. G. 2005. Numerical approaches for quantitative analysis of two-dimensional maps: a review of commercial software and home-made systems. Proteomics 5:654–666. https://doi.org/10.1002/pmic.200401015

May, P., Christian, N., Ebenhoh, O., Weckwerth, W., and Walther, D. 2011. Integration of proteomic and metabolomic profiling as well as metabolic modeling for the functional analysis of metabolic networks. Methods of Moleular Biology 694:341–363. https://doi.org/10.1007/978-1-60761-977-2_21

McDonald, M. B. 1998. Seed quality assessment. Seed Science Research 8:265–275. https://doi.org/10.1017/S0960258500004165

Messina, M. J. 1999. Legumes and soybeans: overview of their nutritional profiles and health effects. American Journal of Clinical Nutrition 70:439–450. https://doi.org/10.1093/ajcn/70.3.439s

Milic, I., Hoffmann, R., and Fedorova, M. 2013. Simultaneous detection of low and high molecular weight carbonylated compounds derived from lipid peroxidation by electrospray ionization-tandem mass spectrometry. Analytical Chemistry 85:156–162. https://doi.org/10.1021/ac302356z

Milkovska-Stamenova, S. and Hoffmann, R. 2016. Identification and quantification of bovine protein lactosylation sites in different milk products. Jounal of Proteomics 134:112–126. https://doi.org/10.1016/j.jprot.2015.07.021

Miller, J. K., Herman, E. M., Jahn, M., and Bradford, K. J. 2010. Strategic research, education and policy goals for seed science and crop improvement. Plant Science 179:645–652. https://doi.org/10.1016/j.plantsci.2010.08.006

Min, C. W., Lee, S. H., Cheon, Y. E., Han, W. Y., Ko, J. M., Kang, H. W., Kim, Y. C., Agrawal, G. K., Rakwal, R., Gupta, R., and Kim, S. T. 2017. In-depth proteomic analysis of Glycine max seeds during controlled deterioration treatment reveals a shift in seed metabolism. Journal of Proteomics 169:125–135. https://doi.org/10.1016/j.jprot.2017.06.022

Mochida, K. and Shinozaki, K. 2011. Advances in omics and bioinformatics tools for systems analyses of plant functions. Plant Cell Physiology 52:2017–2038. https://doi.org/10.1093/pcp/pcr153

Mortz, E., O’Connor, P. B., Roepstorff, P., Kelleher, N. L., Wood, T. D., McLafferty, F. W., and Mann, M. 1996. Sequence tag identification of intact proteins by matching tanden mass spectral data against sequence data bases. Processings of Northatlantic Academy of Science, USA 93:8264-8267. https://doi.org/10.1073/pnas.93.16.8264

Murad, M. M. and Rech, E. L. 2012. NanoUPL-MSE proteomic data assessment of soybean seeds using the Uniprot database. BMC Biotehnology 12:82. https://doi.org/10.1186/1472-6750-12-82

Murthy, U. M., Kumar, P. P, and Sun, W. Q. 2003. Mechanisms of seed ageing under different storage conditions for Vigna radiata (L.) Wilczek: lipid peroxidation, sugar hydrolysis, Maillard reactions and their relationship to glass state transition. Journal of Experimental Botany 54:1057–1067. https://doi.org/10.1093/jxb/erg092

Nagel, M., Kranner, I., Neumann, K., Rolletschek, H., Seal, C. E., Colville, L., Fernandez-Marin, B., and Borner, A. 2015. Genome-wide association mapping and biochemical markers reveal that seed ageing and longevity are intricately affected by genetic background and developmental and environmental conditions in barley. Plant Cell Environment 38:1011–1022. https://doi.org/10.1111/pce.12474

Nedumaran, S., Abinaya, P., Jyosthnaa, P., Shraavya, B., Parthasarathy, R., and Bantilan, C. 2015. Grain legumes production, consumption and trade trends in developing countries. Working paper series No 60. ICRISAT Research program, markets, institutions and polities. http://oar.icrisat.org/id/eprint/8991

Neuhoff, V., Arold, N., Taube, D., and Ehrhardt, W. 1988. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255–262. https://doi.org/10.1002/elps.1150090603

Palma, J. M., Corpas, F. J., and del Rio, L. A. 2011. Proteomics s an approach to the understanding of the molecular physiology of fruit development and ripening. Journal of Proteomics 74:1230–1243. https://doi.org/10.1016/j.jprot.2011.04.010

Paudel, G., Bilova, T., Schmidt, R., Greifenhagen, U., Berger, R., Tarakhovskaya, E., Stöckhardt, S., Balcke, G. U., Humbek, K., Brandt, W., Sinz, A., Vogt, T., Birkemeyer, C., Wessjohann, L., and Frolov, A. 2016. Osmotic stress is accompanied by protein glycation in Arabidopsis thaliana. Journal of Experimental Botany 67:6283–6295. https://doi.org/10.1093/jxb/erw395

Pereira Lima, J. J., Buitink, J., Lalanne, D., Rossi, R. F., Pelletier, S., da Silva, E. A. A., and Leprince, O. 2017. Molecular characterization of the acquisition of longevity during seed maturation in soybean. PLoS One 12:e0180282. https://doi.org/10.1371/journal.pone.0180282

Rabilloud, T. and Lelong, C. 2011. Two-dimensional gel electrophoresis in proteomics: a tutorial. Journal of Proteomics 74:1829–1841. https://doi.org/10.1016/j.jprot.2011.05.040

Rabilloud, T., Chevallet, M., Luche, S., and Lelong, C. 2010. Two-dimensional gel electrophoresis in proteomics: past, present and future. Journal of Proteomics 73:2064–2077. https://doi.org/10.1016/j.jprot.2010.05.016

Rajjou, L., Lovigny, Y., Groot, S. P., Belghazi, M., Job, C., and Job, D. 2008. Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiology 148:620–641. https://doi.org/10.1104/pp.108.123141

Rathi, D., Gayen, D., Gayali, S., Chakraborty, S., and Chakraborty, N. 2016. Legume proteomics: progress, prospects, and challenges. Proteomics 16:310–327. https://doi.org/10.1002/pmic.201500257

Sano, N., Rajjou, L., North, H. M., Debeaujon, I., Marion-Poll, A., and Seo, M. 2016. Staying alive: Molecular aspects of seed longevity. Plant Cell Physiology 57:660–674. https://doi.org/10.1093/pcp/pcv186

Scheltema, R. A., Hauschild, J. P., Lange, O., Hornburg, D., Denisov, E., Damoc, E., Kuehn, A., Makarov, A., and Mann, M. 2014. The Q Exactive HF, a Benchtop mass spectrometer with a pre-filter, high-performance quadrupole and an ultra-high-field Orbitrap analyzer. Molecular and Cellular Proteomics 13:3698–3708. https://doi.org/10.1074/mcp.M114.043489

Schmidt, R., Böhme, D., Singer, D., and Frolov, A. 2015. Specific tandem mass spectrometric detection of AGE-modified arginine residues in peptides. Journal of Mass Spectrometry 50:613–624. https://doi.org/10.1002/jms.3569

Smolikova, G. N. 2014. Application of the method of accelerated aging to evaluate the stress tolerance of seeds. Biological Communications (2):82–93.

Smolikova, G. N. and Medvedev, S S. 2016. Photosynthesis in the seeds of Chloroembryophytes. Russian Journal Plant Physiology 63:1–12. https://doi.org/10.1134/S1021443715060163

Smolikova, G. N., Shavarda, A. L., Alekseichuk, I. V., Chantzeva, V. V., and Medvedev, S. S. 2016. The metabolomic approach to the assessment of cultivar specificity of Brassica napus. Russian Journal Genetic: Applied Research 6:78-83. https://doi.org/10.1134/S2079059716010147

Smolikova, G., Dolgikh, E., Vikhnina, M., Frolov, A., and Medvedev, S. 2017a. Genetic and hormonal regulation of chlorophyll degradation during maturation of seeds with green embryos. International Journal of Molecular Science 18:E1993. https://doi.org/10.3390/ijms18091993

Smolikova, G., Kreslavski, V., Shiroglazova, O., Frolov, A., and Medvedev, S. 2017b. Photochemical activity changes accompanying the embriogenesis of pea (Pisum sativum) with yellow and green cotyledons. Functional Plant Biology 45(2):228–235. https://doi.org/10.1071/FP16379

Soboleva, A., Modzei, M., Didio, A., Plociennik, H., Kijewska, H., Grishina, T., Karonova, T., Bilova, T., Stefanov, V., Stefanovicz, P., and Frolov, A. 2017. Quantification of prospective type 2 diabetes mellitus biomarkers by stable isotope dilution with bi-labeled standard glycated peptides. Analytical Methods 9:409–418. https://doi.org/10.1039/C6AY02483A

Soboleva, A., Schmidt, R., Vikhnina, M., Grishina, T., and Frolov, A. 2017. Maillard proteomics: Opening new pages. International Journal of Molecular Science 18: E2677. https://doi.org/10.3390/ijms18122677

Spiller, S., Frolov, A., and Hoffmann, R. 2017. Quantification of specific glycation sites in human serum albumin as prospective type 2 diabetes mellitus biomarkers. Protein and Peptide Letters 24:887–896 https://doi.org/10.2174/0929866524666170202124120

Spiller, S., Li, Y., Bluher, M., Welch, L., and Hoffmann, R. 2017. Glycated lysine-141 in haptoglobin improves the diagnostic accuracy for type 2 diabetes mellitus in combination with glycated hemoglobin HbA1c and fasting plasma glucose. Clinial Proteomics 14:10. https://doi.org/10.1186/s12014-017-9145-1

Strelec, I., Ugarcic-Hardi, Z, and Hlevnjak, M. 2008. Accumulation of Amadori and Maillard products in wheat seeds aged under different storage conditions. Croatica Chemica Acta 81:131–137. https://hrcak.srce.hr/23436

Suma, A., Sreenivasan, K., Singh, A. K., and Radhamani, J. 2013. Role of relative humidity in processing and storage of seeds and assessment of variability in storage behaviour in Brassica spp. and Eruca sativa. Scientific World Journal 2013:504141. https://doi.org/10.1155/2013/504141

Takac, T., Samajova, O., and Samaj, J. 2017. Integrating cell biology and proteomic approaches in plants. Jounal of Proteomics 169:165–175. https://doi.org/10.1016/j.jprot.2017.04.020

Tan, B. C., Lim, Y. S., and Lau, S. E. 2017. Proteomics in commercial crops: an overview. Journal of Proteomics 169:176–188. https://doi.org/10.1016/j.jprot.2017.05.018

Taylor, P. J. 2005. Matrix effects: the Achilles heel of quantitative high-performance liquid chromatographyelectrospray-tandem mass spectrometry. Clinical Biochemistry 38:328–334. https://doi.org/10.1016/j.clinbiochem.2004.11.007

Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M. Y., Geiger, T., Mann, M., and Cox, J. 2016. The Perseus computational platform for comprehensive analysis of (prote) omics data. Nature Methods 13:731–740. https://doi.org/10.1038/nmeth.3901

Unlu, M., Morgan, M. E., and Minden, J. S. 1997. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077. https://doi.org/10.1002/elps.1150181133

Vissers, J. P., Chervet, J. P., and Salzmann, J. P. 1996. Sodium dodecyl sulphate removal from tryptic digest samples for on-line capillary liquid chromatography/electrospray mass spectrometry. Journal of Mass Spectrometry 31:1021–1027. https://doi.org/10.1002/(SICI)1096-9888(199609)31:9<1021::AID-JMS384>3.0.CO;2-G

Vistoli, G., De, M. D., Cipak, A., Zarkovic, N., Carini, M., and Aldini, G. 2013. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radical Research 47 Suppl 1:3–27. https://doi.org/10.3109/10715762.2013.815348

Waas, M., Bhattacharya, S., Chuppa, S., Wu, X., Jensen, D. R., Omasits, U., Wollscheid, B., Volkman, B. F., Noon, K. R., and Gundry, R. L. 2014. Combine and conquer: surfactants, solvents, and chaotropes for robust mass spectrometry based analyses of membrane proteins. Analytical Chemistry 86:1551–1559. https://doi.org/10.1021/ac403185a

Walters, C., Ballesteros, D., and Vertucci, V. 2010. Structural mechanics of seed deterioration: Standing the test of time. Plant Science 179:565–573. https://doi.org/10.1016/j.plantsci.2010.06.016

Wang, L., Fu, J., Li, M., Fragner, L., Weckwerth, W., and Yang, P. 2016. Metabolomic and proteomic profiles reveal the dynamics of primary metabolism during seed development of lotus (Nelumbo nucifera). Frontiers in Plant Science 7:750 https://doi.org/10.3389/fpls.2016.00750

Weisser, H., Nahnsen, S., Grossmann, J., Nilse, L., Quandt, A., Brauer, H., Sturm, M., Kenar, E., Kohlbacher, O., Aebersold, R., and Malmstrom, L. 2013. An automated pipeline for high-throughput label-free quantitative proteomics. Journal of Proteome Research 12:1628–1644. https://doi.org/10.1021/pr300992u

Wettlaufer, S. H. and Leopold, A. C. 1991. Relevance of Amadori and Maillard products to seed deterioration. Plant Physiology 97:165–169. https://doi.org/10.1104/pp.97.1.165

Wilm, M. 2009. Quantitative proteomics in biological research. Proteomics 9:4590–4605. https://doi.org/10.1002/pmic.200900299

Wolff, S. P. and Dean, R. T. 1987. Glucose autoxidation and protein modification. The potential role of ‘autoxidative glycosylation’ in diabetes. Biochemical Journal 245:243–250. https://doi.org/10.1042/bj2450243

Yao, X. 2011. Derivatization or not: a choice in quantitative proteomics. Analytical Chemistry 83:4427–4439. https://doi.org/10.1021/ac200925p

Yoshida, H., Tomiyama, Y., Yoshida, N., Shibata, K., and Mizushina, Y. 2010. Regiospecific profiles of fatty acids in triacylglycerols and phospholipids from adzuki beans (Vigna angularis). Nutrients 2:49–59. https://doi.org/10.3390/nu20100049

Zhang, Q., Frolov, A., Tang, N., Hoffmann, R., van de Goor, T., Metz, T. O., and Smith, R. D. 2007. Application of electron transfer dissociation mass spectrometry in analyses of non-enzymatically glycated peptides. Rapid Communications in Mass Spectrometry 21:661–666. https://doi.org/10.1002/rcm.2884

Zhang, Y., Fonslow, B. R., Shan, B., Baek, M. C., and Yates, J. R., III. 2013. Protein analysis by shotgun/bottom-up proteomics. Chemical Reviews 113:2343–2394. https://doi.org/10.1021/cr3003533

Zhou, G., Li, H., DeCamps, D., Chen, S., Shu, H., Gong, Y., Flaig, M., Gillespie, J. W., Hu, N., Taylor, P. R., Emmert-Buk, M. R., Liotta, L. A., Petrioin, E. F., and Zhao, Y. 2002. 2D differential in-gel eletrophoresis for the identifiation of esophageal scans cell caner-speific protein markers. Molecular Cell Proteomics 1:117–123. https://doi.org/10.1074/mcp.M100015-MCP200

Downloads

Published

2018-06-08

How to Cite

Frolov, A., Mamontova, T., Ihling, C., Lukasheva, E., Bankin, M., Chantseva, V., … Medvedev, S. (2018). Mining seed proteome: from protein dynamics to modification profiles. Biological Communications, 63(1), 43–58. https://doi.org/10.21638/spbu03.2018.106

Issue

Section

Review communications

Categories

Most read articles by the same author(s)

1 2 > >>