3D-clinorotation induces specific alterations in metabolite profiles of germinating Brassica napus L. seeds

  • Veronika Chantseva ​Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation; Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Srednii prosp., 41–43, Saint Petersburg, 199004, Russian Federation https://orcid.org/0000-0002-3486-4232
  • Tatiana Bilova Department of Bioorganic Chemistry, Weinberg 3, 06120 Halle/Saale DE, Leibniz Institute of Plant Biochemistry, Germany; Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-6024-3667
  • Galina Smolikova Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0001-5238-1851
  • Andrej Frolov Department of Bioorganic Chemistry, Weinberg 3, 06120 Halle/Saale DE, Leibniz Institute of Plant Biochemistry, Germany; Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Srednii prosp., 41–43, Saint Petersburg, 199004, Russian Federation https://orcid.org/0000-0003-3250-5858
  • Sergei Medvedev Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0003-1127-1343

Abstract

During the whole history of their life on Earth, higher plants evolved under the constant gravity stimulus. Therefore, plants developed efficient mechanisms of gravity perception, underlying their ability to adjust the direction of growth to the gravity vector, i.e. the phenomenon of gravitropism. In this context, alterations in the magnitude and vector of the gravity field might compromise plant growth and development. This aspect was successfully addressed in gravity fields of low intensity (microgravity). On the other hand, microgravity can be simulated on the Earth by clinorotation, i.e. rotation of the experimental plant along one or several axes. This approach is routinely used for studies of gravity-related responses of crop plants, although the effect of simulated microgravity on the most sensitive ontogenetic stages — germination and seedling development — is still not sufficiently characterized. Recently, we addressed the effects of clinorotation on the proteome of germinating oilseed rape (Brassica napus) seeds. Here we extend this study to the seedling primary metabolome and address its changes in the presence of 3D-clinorotation. GC-MS analysis revealed essential alterations in patterns of sugars and sugar phosphates (specifically glucose-6-phosphate), methionine and glycerol. Thereby, abundances of individual metabolites showed high dispersion, indicating high lability and plasticity of the seedling metabolome.

Keywords:

Brassica napus, clinorotation, 3D-clinostat, metabolomics, primary metabolites, seed germination, simulated microgravity

Downloads

Download data is not yet available.

References

Aubry-Hivet, D., Nziengui, H., Rapp, K., Oliveira, O., Paponov, I.A., Li, Y., Hauslage, J., Vagt, N., Braun, M., Ditengou, F.A., Dovzhenko, A., and Palme, K. 2014. Analysis of gene expression during parabolic flights reveals distinct early gravity responses in Arabidopsis roots. Plant Biology 16:129–141. https://doi.org/10.1111/plb.12130

Barjaktarović, Ž., Babbick, M., Nordheim, A., Lamkemeyer, T., Magel, E., and Hampp, R. 2009. Alterations in protein expression of Arabidopsis thaliana cell cultures during hyper- and simulated micro-gravity. Microgravity Science and Technology 21:191–196. https://doi.org/10.1007/s12217-008-9058-8

Barjaktarović, Ž., Nordheim, A., Lamkemeyer, T., Fladerer, C., Madlung, J., and Hampp, R. 2007. Time-course of changes in amounts of specific proteins upon exposure to hyper-g, 2-D clinorotation, and 3-D random positioning of Arabidopsis cell cultures. Journal of Experimental Botany 58:4357–4363. https://doi.org/10.1093/jxb/erm302

Benjamini, Y. and Hochberg, Y. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological) 57(1):289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

Bilova, T., Lukasheva, E., Brauch, D., Greifenhagen, U., Paudel, G., Tarakhovskaya, E., Frolova, N., Mittasch, J., Balcke, G.U., Tissier, A., Osmolovskaya, N., Vogt, T., Wessjohann, L. A., Birkemeyer, C., Milkowski, C., and Frolov, A. 2016. A snapshot of the plant glycated proteome: structural, functional and mechanistic aspects. The Journal of Biological Chemistry 291(14):7621–36. https://doi.org/10.1074/jbc.M115.678581

Bilova, T., Paudel, G., Shilyaev, N., Schmidt, R., Brauch, D., Tarakhovskaya, E., Milrud, S., Smolikova, G, Tissier, A., Vogt, T., Sinz, A., Brandt, W., Birkemeyer, C., Wessjohann, L. A., and Frolov, A. 2017. Global proteomic analysis of advanced glycation end products in the Arabidopsis proteome provides evidence for age-related glycation hot spots. The Journal of Biological Chemistry 292(38):15758–15776. https://doi.org/10.1074/jbc.M117.794537

Borst, A. G. and van Loon, J.J.W.A. 2009. Technology and developments for the random positioning machine, RPM. Microgravity Science and Technology 21:287–292. https://doi.org/10.1007/s12217-008-9043-2

Correll, M. J., Pyle, T. P., Millar, K. D., Sun, Y., Yao, J., Edelmann, R. E., and Kiss, J. Z. 2013. Transcriptome analyses of Arabidopsis thaliana seedlings grown in space: implications for gravity-responsive genes. Planta 238:519–533. https://doi.org/10.1007/s00425-013-1909-x

De Micco, V., De, P. S., Paradiso, R., and Aronne, G. 2014. Microgravity effects on different stages of higher plant life cycle and completion of the seed-to-seed cycle. Plant Biology 16(s1):31–38. https://doi.org/10.1111/plb.12098

Dubinin, N. P. and Vaulina, E. N. 1976. The evolutionary role of gravity. Life Sciences and Space Research 14:47–55.

Frolov, A., Bilova, T., Paudel, G., Berger, R., Balcke, G. U., Birkemeyer, C., and Wessjohann, L. A. 2017. Early responses of mature Arabidopsis thaliana plants to reduced water potential in the agar-based polyethylene glycol infusion drought model. Journal of Plant Physiology 208:70–83. https://doi.org/10.1016/j.jplph.2016.09.013

Frolov, A., Didio, A., Ihling, C., Chantzeva, V., Grishina, T., Hoehenwarter, W., Sinz, A., Smolikova, G., Bilova, T., and Medvedev, S. 2018. The effect of simulated microgravity on Brassica napus seedling proteome. Functional Plant Biology 45(4):440–452. https://doi.org/10.1071/FP16378

Herranz, R., Anken, R., Boonstra, J., Braun, M., Christianen, P. C., de Geest, M., Hauslage, J., Hilbig, R., Hill, R. J., Lebert, M., Medina, F. J., Vagt, N., Ullrich, O., van Loon, J. J, and Hemmersbach, R. 2013. Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiology 13:1–17. https://doi.org/10.1089/ast.2012.0876

Hoson, T., Soga, K., Wakabayashi, K., Hashimoto, T., Karahara, I., Yano, S., Tanigaki, F., Shimazu, T., Kasahara, H., Masuda, D., and Kamisaka, S. 2014. Growth stimulation in inflorescences of an Arabidopsis tubulin mutant under microgravity conditions in space. Plant Biology 16:91–96. https://doi.org/10.1111/plb.12099

Inglis, P. W., Ciampi, A. Y., Salomao, A. N., Costa, T. S., and Azevedo, V. C. 2014. Expression of stress-related genes in zebrawood (Astronium fraxinifolium, Anacardiaceae) seedlings following germination in microgravity. Genetics and Molecular Biology 37:81–92. https://doi.org/10.1590/S1415-47572014000100014

ISTA, 2003. International Seed Testing Association, ISTA Handbook on Seedling Evaluation, 3rd ed. ISBN 3-906549-39-9

Jagtap, S. S, Awhad, R. B, Santosh, B., and Vidyasagar, P. B. 2011. Effects of clinorotation on growth and chlorophyll content of rice seeds. Microgravity Science and Technology 23:41–48. https://doi.org/10.1007/s12217-010-9222-9

Jeong, K., Kim, S., and Bandeira, N. 2012. False discovery rates in spectral identification. BMC Bioinformatics 13(Suppl 16):S2. https://doi.org/10.1186/1471-2105-13-S16-S2

Kolesnikov, Y. S., Kretynin, S. V., Volotovsky, I. D., Kordyum, E. L., Ruell, E., and Kravetset, V. S. 2016. Molecular mechanisms of gravity perception and signal transduction in plants. Protoplasma 253:987. https://doi.org/10.1007/s00709-015-0859-5

Kordyum, E. L. 1997. Biology of plant cells in microgravity and under clinostating. International Review of Cytology 171:1–78. https://doi.org/10.1016/S0074-7696(08)62585-1

Kordyum, E. L. 2014. Plant cell gravisensitivity and adaptation to microgravity. Plant Biology 1:79–90. https://doi.org/10.1111/plb.12047

Kranner, I., Minibayeva, F. V., Beckett, R. P., and Seal, C. E. 2010. What is stress? Concepts, definitions and applications in seed science. New Phytologist 188:655–673. https://doi.org/10.1111/j.1469-8137.2010.03461.x

Krishnamurthy, A., Ferl, R. J., and Paul, A.-L. 2018. Comparing RNA-Seq and microarray gene expression data in two zones of the Arabidopsis root apex relevant to spaceflight. Applications in Plant Sciences 6(11):e1197. https://doi.org/10.1002/aps3.1197

Kumar, A.S. and Bachhawat, A. K. 2012. Pyroglutamic acid: throwing light on a lightly studied metabolite. Current Science 102(2):288–297.

Malinova, I., Kunz, H.-H., Alseekh, S., Herbst, K., Fernie, A. R., Gierth, M., and Fettke, J. 2014. Reduction of the cytosolic phosphoglucomutase in Arabidopsis reveals impact on plant growth, seed and root development, and carbohydrate partitioning. PLoS ONE 9(11):e112468. https://doi.org/10.1371/journal.pone.0112468

Manzano, A.I., Matía, I., González-Camacho, F., Carnero-Díaz, E., Van Loon, J. J. W. A, Dijkstra, C., Larkin, O., Anthony, P., Davey, M.R., Marco, R., and Medina, F.J. 2009 Germination of Arabidopsis seed in space and in simulated microgravity: alterations in root cell growth and proliferation. Microgravity Science and Technology 21(4):293–297. https://doi.org/10.1007/s12217-008-9099-z

Matía, I., González-Camacho, F., Herranz, R., Kiss, J. Z., Gasset, G., van Loon, J.J. W. A., Marco, R., and Medina, F. J. 2010. Plant cell proliferation and growth are altered by microgravity conditions in spaceflight. Journal of Plant Physiology 167(3):184–193. https://doi.org/10.1016/j.jplph.2009.08.012

Matía, I., van Loon, J. J. W. A., Carnero-Díaz, E., Marco, R., and Medina, F. J. 2009. Seed germination and seedling growth under simulated microgravity causes alterations in plant cell proliferation and ribosome bio-genesis. Microgravity Science and Technology 21:169–174 https://doi.org/10.1007/s12217-008-9069-5

Mazars, C., Briere, C., Grat, S., Pichereaux, C., Rossignol, M., Pereda-Loth, V., Eche, B., Boucheron-Dubuisson, E., Le, D. I., Medina, F. J., Graziana, A., and Carnero-Diaz, E. 2014. Microgravity induces changes in microsome-associated proteins of Arabidopsis seedlings grown on board the international space station. Plant Signaling & Behavior 9:e29637. https://doi.org/10.4161/psb.29637

Medina, F.J. and Herranz, R. 2010. Microgravity environment uncouples cell growth and cell proliferation in root meristematic cells: the mediator role of auxin. Plant Signaling & Behavior 5(2):176–179. https://doi.org/10.4161/psb.5.2.10966

Medvedev, S. S. 2012. Mechanisms and physiological role of polarity in plants. Russian Journal of Plant Physiology 59:502–514. https://doi.org/10.1134/S1021443712040085

Medvedev, S. S. 2018. Principles of calcium signal generation and transduction in plant cells. Russian Journal of Plant Physiology 65:771–783. https://doi:10.1134/S1021443718060109

Milkovska-Stamenova, S., Schmidt, R., Frolov, A., and Birkemeyer, C. 2015. GC-MS method for the quantitation of carbohydrate intermediates in glycation systems. Journal of Agricultural and Food Chemistry 63:5911–5919. https://doi.org/10.1021/jf505757m

Moffatt, B. A. and Weretilnyk, E. A. 2002. Sustaining S-adenosyl-l-methionine-dependent methyltransferase activity in plant cells. Physiologia Plantarum 113(4):435–442. https://doi.org/10.1034/j.1399-3054.2001.1130401.x

Moneo-Sánchez, M., Izquierdo, L., Martín, I., Hernández-Nistal, J., Albornos, L., Dopico, B., and Labrador, E. 2018. Knockout mutants of Arabidopsis thaliana β-galactosidase. Modifications in the cell wall saccharides and enzymatic activities. Biologia Plantarum 62:80–88. https://doi.org/10.1007/s10535-017-0739-2

Morita, M. T.2010. Directional gravity sensing in gravitropism. Annual Review of Plant Biology 61:705–720. https://doi.org/10.1146/annurev.arplant.043008.092042

Nee, G., Xiang, Y., and Soppe, W. J. J. 2017. The release of dormancy, a wake-up call for seeds to germinate. Current Opinion in Plant Biology 35:8–14. https://doi.org/10.1016/j.pbi.2016.09.002

Paudel, G., Bilova, T., Schmidt, R., Greifenhagen, U., Berger, R., Tarakhovskaya, E., Stöckhardt, S., Balcke, G. U., Humbeck, K., Brandt, W., Sinz, A., Vogt, T., Birkemeyer, C., Wessjohann, L., and Frolov, A. 2016. Changes in Arabidopsis thaliana advanced glycated proteome induced by the polyethylene glycol-related osmotic stress. Journal of Experimental Botany 67(22):6283–6295. https://doi.org/10.1093/jxb/erw395

Paul, A. L., Zupanska, A. K., Ostrow, D. T., Zhang, Y., Sun, Y., Li, J. L., Shanker, S., Farmerie, W. G., Amalfitano, C. E., and Ferl, R. J. 2012. Spaceflight transcriptomes: unique responses to a novel environment. Astrobiology 12:40–56. https://doi.org/10.1089/ast.2011.0696

Paul, A. L., Zupanska, A. K., Schultz, E. R., and Ferl, R. J. 2013. Organ-specific remodeling of the Arabidopsis transcriptome in response to spaceflight. BMC Plant Biology 13:112. https://doi.org/10.1186/1471-2229-13-112

Paul, A. L., Wheeler, R. M., Levine, H. G., and Ferl, R. J. 2013. Fundamental plant biology enabled by the space shuttle. American Journal of Botany 100:226–234. https://doi.org/10.3732/ajb.1200338

Popova, A. and Ivanenko, G. 2010. Structural and cytochemical aspects of Brassica rapa L. embryogenesis under clinorotation. Cytology and Genetics 44(2):88–94. https://doi.org/10.3103/S0095452710020039

Popova, A., Musgrave, M., and Kuang, A. 2009. The development of embryos in Brassica rapa L. in microgravity. Cytology and Genetics 43(2):89–93. https://doi.org/10.3103/S0095452709020030

Pozhvanov, G. A., Klimenko, N. S., Bilova, T. E., Medvedev, S. S., and Shavarda, A. L. 2017. Ethylene-dependent adjustment of metabolite profiles in Arabidopsis thaliana seedlings during gravitropic response. Russian Journal of Plant Physiology 64(6):906–918. https://doi.org/10.7868/S0015330317050098

Sato, E. M., Hijazi, H., Bennett, M. J., Vissenberg, K., and Swarup, R. 2015. New insights into root gravitropic signaling. Journal of Experimental Botany 66(8):2155–2165. https://doi.org/10.1093/jxb/eru515

Sychev, V. N., Levinskikh, M. A., Gostimsky, S. A., Bingham, G. E., and Podolsky, I. G. 2007. Spaceflight effects on consecutive generations of peas grown on board the Russian segment of the International Space Station. Acta Astronautica 60:426–432. https://doi.org/10.1016/j.actaastro.2006.09.009

Tairbekov, M. G. 1997. Gravitazionnaya biologia kletki (teoria i experiment) [Gravitational biology of the cell (the theory and experiment)]. Moscow: Institute of Med.-Bio. Problems 124 pp.

Thieme, C. J., Rojas-Triana, M., Stecyk, E., Schudoma, C., Zhang, W., Yang, L., Miñambres, M., Walther, D., Schulze, W. X., Paz-Ares, J., Scheible, W. R., and Kragler, F. 2015. Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nature Plants 1(4):15025. https://doi.org/10.1038/nplants.2015.25

van Loon, J. J. W. A. 2007. Some history and use of the random positioning machine, RPM, in gravity related research. Advances in Space Research 39:1161–1165. https://doi.org/10.1016/j.asr.2007.02.016

Vandenbrink, J.P. and Kiss, J.Z. 2016. Space, the final frontier: A critical review of recent experiments performed in microgravity. Plant Science 243:115–119. https://doi.org/10.1016/j.plantsci.2015.11.004

Wang, H., Li, X., Krause, L., Görög, M., Schüler, O., Hauslage, J., Hemmersbach, R., Kircher, S., Lasok, H., Haser, T., Rapp, K., Schmidt, J., Yu, X., Pasternak, T., Aubry-Hivet, D., Tietz, O., Dovzhenko, A., Palme, K., and Ditengou, F. A. 2016. 2-D clinostat for simulated microgravity experiments with Arabidopsis seedlings. Microgravity Science and Technology 28(1):59–66. https://doi.org/10.1007/s12217-015-9478-1

Watt, M. S. and Bloomberg, M. 2012. Key features of the seed germination response to high temperatures. New Phytologist 196:332–336. https://doi.org/10.1111/j.1469-8137.2012.04280.x

Wie, N., Tan, C., Qi, B., Zhang, Y., Xu, G., and Zheng, H. 2010. Changes in gravitational forces induce the modification of Arabidopsis thaliana silique pedicel positioning. Journal of Experimental Botany 61:3875–3884. https://doi.org/10.1093/jxb/erq200

Wolverton, C. and Kiss, J. Z. 2009. Gravitational and space biology. An update on plant space biology. Gravitational and Space Biology 22(2):1–20.

Wyatt, S. E. and Kiss, J. Z. 2013. Plant tropisms: from Darwin to the International Space Station. American Journal of Botany 100(1):1–3. https://doi.org/10.3732/ajb.1200591

Zheng, H. Q., Han, F., and Le, J. 2015. Higher plants in space: microgravity perception, response, and adaptation. Microgravity Science and Technology 27(6):377–386. https://doi.org/10.1007/s12217-015-9428-y

Zupanska, A. K., Denison, F. C., Ferl, R. J., and Paul, A. L. 2013. Spaceflight engages heat shock protein and other molecular chaperone genes in tissue culture cells of Arabidopsis thaliana. American Journal of Botany 100(1):235–248. https://doi.org/10.3732/ajb.1200343

Published
2019-05-24
How to Cite
Chantseva, V., Bilova, T., Smolikova, G., Frolov, A., & Medvedev, S. (2019). 3D-clinorotation induces specific alterations in metabolite profiles of germinating <em>Brassica napus</em&gt; L. seeds. Biological Communications, 64(1), 55–74. https://doi.org/10.21638/spbu03.2019.107
Section
Full communication

Most read articles by the same author(s)