Protein glycation and drought response of pea (Pisum sativum L.) root nodule proteome: a proteomics approach

  • Julia Shumilina Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Srednii pr., 41–43, Saint Petersburg, 199004, Russian Federation; Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle, 06120, Germany https://orcid.org/0000-0002-9747-5779
  • Daria Gorbach Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Srednii pr., 41–43, Saint Petersburg, 199004, Russian Federation https://orcid.org/0000-0001-6836-5004
  • Veronika Popova Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Srednii pr., 41–43, Saint Petersburg, 199004, Russian Federation; Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-3486-4232
  • Alexander Tsarev Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Srednii pr., 41–43, Saint Petersburg, 199004, Russian Federation; Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle, 06120, Germany https://orcid.org/0000-0002-6718-2430
  • Alena Kuznetsova Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Srednii pr., 41–43, Saint Petersburg, 199004, Russian Federation; Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle, 06120, Germany https://orcid.org/0000-0003-0347-8280
  • Maria Grashina Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Srednii pr., 41–43, Saint Petersburg, 199004, Russian Federation https://orcid.org/0000-0002-9022-1549
  • Mandy Dorn Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle, 06120, Germany
  • Elena Lukasheva Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Srednii pr., 41–43, Saint Petersburg, 199004, Russian Federation https://orcid.org/0000-0002-0889-2395
  • Natalia Osmolovskaya Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0001-8764-8552
  • Ekaterina Romanovskaya Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Srednii pr., 41–43, Saint Petersburg, 199004, Russian Federation https://orcid.org/0000-0001-8912-5886
  • Vladimir Zhukov Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0002-2411-9191
  • Christian Ihling Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle, 06120, Germany
  • Tatiana Grishina Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Srednii pr., 41–43, Saint Petersburg, 199004, Russian Federation https://orcid.org/0000-0002-5306-2980
  • Tatiana Bilova Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle, 06120, Germany; Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-6024-3667
  • Andrej Frolov Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Srednii pr., 41–43, Saint Petersburg, 199004, Russian Federation; Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle, 06120, Germany https://orcid.org/0000-0003-3250-5858

Abstract

Because of ongoing climate change, drought is becoming the major factor limiting productivity of all plants, including legumes. As these protein-rich crops form symbiotic associations with rhizobial bacteria — root nodules — they readily lose their productivity under drought conditions. Understanding the underlying molecular mechanisms might give access to new strategies to preserve the productivity of legume crops under dehydration. As was shown recently, development of drought response is accompanied by alterations in the patterns of protein glycation and formation of advanced glycation end products (AGEs) that might be a part of unknown regulatory mechanisms. Therefore, here we address the effects of moderate drought on protein dynamics and AGE patterns in pea (Pisum sativum) root nodules. For this, plants inoculated with rhizobial culture were subjected to osmotic stress for one week, harvested, the total protein fraction was isolated from root nodules by phenol extraction, analyzed by bottom-up LC-MS-based proteomics, and AGE patterns were characterized. Surprisingly, despite the clear drought-related changes in phenotype and stomatal conductivity, only minimal accompanying expressional changes (14 rhizobial and 14 pea proteins, mostly involved in central metabolism and nitrogen fixation) could be observed. However, 71 pea and 97 rhizobial proteins (mostly transcription factors, ABC transporters and effector enzymes) were glycated, with carboxymethylation being the major modification type. Thereby, the numbers of glycated sites in nodule proteins dramatically decreased upon stress application. It might indicate an impact of glycation in regulation of transport, protein degradation, central, lipid and nitrogen metabolism. The data are available at Proteome Xchange (accession: PXD024042).

Keywords:

advanced glycation end products (AGEs), drought stress, glycation, pea (Pisum sativum), polyethylene glycol (PEG), proteomics, root nodules

Downloads

Download data is not yet available.
 

References

Afonin, A., Sulima, A., Zhernakov, A., and Zhukov, V. 2017. Draft genome of the strain RCAM1026 Rhizobium leguminosarum bv. viciae. Genom Data 11:85–86. https://doi.org/10.1016/j.gdata.2016.12.003

Aljahdali, N. and Carbonero, F. 2019. Impact of Maillard reaction products on nutrition and health: Current knowledge and need to understand their fate in the human digestive system. Critical Reviews in Food Science and Nutrition 59:474–487. https://doi.org/10.1080/10408398.2017.1378865

Bilova, T., Greifenhagen, U., Paudel, G., Lukasheva, E., Brauch, D., Osmolovskaya, N., Tarakhovskaya, E., Balcke, G. U., Tissier, A., Vogt, T., Milkowski, C., Birkemeyer, C., Wessjohann, L., and Frolov, A. 2016a. Glycation of plant proteins under environmental stress — methodological approaches, potential mechanisms and biological role. Abiotic and Biotic Stress in Plants Recent Advances and Future Perspectives 12:295–316. https://doi.org/10.5772/61860

Bilova, T., Lukasheva, E., Brauch, D., Greifenhagen, U., Paudel, G., Tarakhovskaya, E., Frolova, N., Mittasch, J., Balcke, G. U., Tissier, A., Osmolovskaya, N., Vogt, T., Wessjohann, L. A., Birkemeyer, C., Milkowski, C., and Frolov, A. 2016b. A Snapshot of the plant glycated proteome: structural, functional and mechanistic aspects. Journal of Biological Chemistry 291:7621–7636. https://doi.org/10.1074/jbc.M115.678581

Castillejo, M-A., Iglesias-Garcia, R., Wienkoop, S., and Rubiales, D. 2016. Label-free quantitative proteomic analysis of tolerance to drought in Pisum sativum. Proteomics 16:2776–2787. https://doi.org/10.1002/pmic.201600156

Chantseva, V., Bilova, T., Smolikova, G., Frolov, A., and Medvedev, S. 2019. 3D-clinorotation induces specific alterations in metabolite profiles of germinating Brassica napus L. seeds. Biological Communications 64(1):55–74 https://doi.org/10.21638/spbu03.2019.107

Chaplin, A. K., Chernukhin, I., and Bechtold, U. 2019. Profiling of advanced glycation end products uncovers abiotic stress-specific target proteins in Arabidopsis. Journal of Experimental Botany 70:653–670. https://doi.org/10.1093/jxb/ery389

Finkelstein, R. 2013. Abscisic acid synthesis and response. Arabidopsis Book 11:e0166. https://doi.org/10.1199/tab.0166

Frolov, A., Bilova, T., Paudel, G., Berger, R., Balcke, G. U., Birkemeyer, C., and Wessjohann, L. A. 2017. Early responses of mature Arabidopsis thaliana plants to reduced water potential in the agar-based polyethylene glycol infusion drought model. Journal of Plant Physiology 208:70–83. https://doi.org/10.1016/j.jplph.2016.09.013

Frolov, A., Mamontova, T., Ihling, C., Lukasheva, E., Bankin, M., Chantseva, V., Vikhnina, M., Soboleva, A., Shumilina, J., Mavropolo-Stolyarenko, G., Grishina, T., Osmolovskaya, N., Zhukov, V., Hoehenwarter, W., Sinz, A., Tikhononovich, I., Wessjohann, L., Bilova, T., Smolikova, G., and Medvedev, S. 2018. Mining seed proteome: from protein dynamics to modification profiles. Biological Communications 63(1):43–58. https://doi.org/10.21638/spbu03.2018.106

Furlan, A. L., Bianucci, E., Castro, S., and Dietz, K.-J. 2017. Metabolic features involved in drought stress tolerance mechanisms in peanut nodules and their contribution to biological nitrogen fixation. Plant Science 263:12–22. https://doi.org/10.1016/j.plantsci.2017.06.009

Gonzalez, E. M., Wienkoop, S., Staudinger, C., Lyon, D., and Gil-Quintana, E. 2020. Medicago truncatula: local response of the root nodule proteome to drought stress. The Model Legume Medicago truncatula 1096–1101. https://doi.org/10.1002/9781119409144.ch142

Greifenhagen, U., Frolov, A., Buher, M., and Hoffmann, R. 2016. Site-specific analysis of advanced glycation end products in plasma proteins of type 2 diabetes mellitus patients. Analytical and Bioanalytical Chemistry 408:5557–5566. https://doi.org/10.1007/s00216-016-9651-4

Kreplak, J., Madoui, M.-A., Cápal, P., Novák, P., Labadie, K., Aubert, G., Bayer, P.E., Gali, K.K., Syme, R.A., Main, D., Klein, A., Bérard, A., Vrbová, I., Fournier, C., d’Agata, L., Belser, C., Berrabah, W., Toegelová, H., Milec, Z., Vrána, J., Lee, H., Kougbeadjo, A., Térézol, M., Huneau, C., Turo, C.J., Mohellibi, N., Neumann, P., Falque, M., Gallardo, K., McGee, R., Tar’an, B., Bendahmane, A., Aury, J.-M., Batley, J., Paslier, M.-C.L., Ellis, N., Warkentin, T.D., Coyne, C.J., Salse, J., Edwards, D., Lichtenzveig, J., Macas, J., Doležel, J., Wincker, P., and Burstin, J. 2019. A reference genome for pea provides insight into legume genome evolution. Nature Genetics 51:1411–1422. https://doi.org/10.1038/s41588-019-0480-1

Larrainzar, E., Wienkoop, S., Weckwerth, W., Ladrera, R., Arrese-Igor, C., and González, E.M. 2007. Medicago truncatula root nodule proteome analysis reveals differential plant and bacteroid responses to drought stress. Plant Physiology 144:1495–1507. https://doi.org/10.1104/pp.107.101618

Leonova, T., Popova, V., Tsarev, A., Henning, C., Antonova, K., Rogovskaya, N., Vikhnina, M., Baldensperger, T., Soboleva, A., Dinastia, E., Dorn, M., Shiroglasova, O., Grishina, T., Balcke, G. U., Ihling, C., Smolikova, G., Medvedev, S., Zhukov, V. A., Babakov, V., Tikhonovich, I. A., Glomb, M. A., Bilova, T., and Frolov, A. 2020. Does protein glycation impact on the drought-related changes in metabolism and nutritional properties of mature pea (Pisum sativum L.) seeds? International Journal of Molecular Sciences 21(2):567. https://doi.org/10.3390/ijms21020567

Lushchak, V. I. 2011. Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicology 101:13–30. https://doi.org/10.1016/j.aquatox.2010.10.006

Mamontova, T., Lukasheva, E., Mavropolo-Stolyarenko, G., Proksch, C., Bilova, T., Kim, A., Babakov, V., Grishina, T., Hoehenwarter, W., Medvedev, S., Smolikova, G., and Frolov, A. 2018. Proteome map of pea (Pisum sativum L.) embryos containing different amounts of residual chlorophylls. International Journal of Molecular Sciences 19(12):E4066. https://doi.org/10.3390/ijms19124066

Matamoros, M. A., Kim, A., Peñuelas, M., Ihling, C., Griesser, E., Hoffmann, R., Fedorova, M., Frolov, A., and Becana, M. 2018. Protein carbonylation and glycation in legume nodules. Plant Physiology 177:1510–1528. https://doi.org/10.1104/pp.18.00533

Moheimani, F., Morgan, P. E., Reyk, D. M., and Davies, M. J. 2010. Deleterious effects of reactive aldehydes and glycated proteins on macrophage proteasomal function: Possible links between diabetes and atherosclerosis. BBA Molecular Basis of Disease 1802:561–571. https://doi.org/10.1016/j.bbadis.2010.02.007

Munne-Bosch, S., Jubany-Mari, T., and Alegre, L. 2001. Drought-induced senescence is characterized by a loss of antioxidant defences in chloroplasts. Plant, Cell ans Environment 24:1319–1327. https://doi.org/10.1046/j.1365-3040.2001.00794.x

Osmolovskaya, N., Shumilina, J., Kim, A., Didio, A., Grishina, T., Bilova, T., Keltsieva, O. A., Zhukov, V., Tikhonovich, I., Tarakhovskaya, E., Frolov, A., and Wessjohann, L. A. 2018. Methodology of drought stress research: experimental setup and physiological characterization. International Journal of Molecular Sciences 19(12):4089. https://doi.org/10.3390/ijms19124089

Paudel, G., Bilova, T., Schmidt, R., Greifenhagen, U., Berger, R., Tarakhovskaya, E., Stöckhardt, S., Balcke, G. U., Humbeck, K., Brandt, W., Sinz, A., Vogt, T., Birkemeyer, C., Wessjohann, L., and Frolov, A. 2016. Osmotic stress is accompanied by protein glycation in Arabidopsis thaliana. Journal of Experimental Botany 67:6283–6295. https://doi.org/10.1093/jxb/erw395

Pickup, J. C. 2004. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care 27:813–823. https://doi.org/10.2337/diacare.27.3.813

Rabbani, N., Al-Motawa, M., and Thornalley, P. J. 2020. Protein glycation in plants-an under-researched field with much still to discover. International Journal of Molecular Sciences 21(11):3942. https://doi.org/10.3390/ijms21113942

Shumilina, J., Kusnetsova, A., Tsarev, A., Janse van Rensburg, H. C., Medvedev, S., Demidchik, V., Van den Ende, W., and Frolov, A. 2019. Glycation of plant proteins: regulatory roles and interplay with sugar signalling? International Journal of Molecular Sciences 20(9):2366. https://doi.org/10.3390/ijms20092366

Smolikova, G., Gorbach, D., Lukasheva, E., Mavropolo-Stolyarenko, G., Bilova, T., Soboleva, A., Tsarev, A., Romanovskaya, E., Podolskaya, E., Zhukov, V., Tikhonovich, I., Medvedev, S., Hoehenwarter, W., and Frolov, A. 2020. Bringing new methods to the seed proteomics platform: challenges and perspectives. International Journal of Molecular Sciences 21(23):9162. https://doi.org/10.3390/ijms21239162

Soboleva, A., Modzel, M., Didio, A., Plociennik, H., Kijewska, M., Grischina, T., Karonova, T., Bilova, T., Stefanov, V., Stefanowicz, P., and Frolov, A. 2017a. Quantification of prospective type 2 diabetes mellitus biomarkers by stable isotope dilution with bi-labeled standard glycated peptides. Analytical Methods 9:409–418. https://doi.org/10.1039/C6AY02483A

Soboleva, A., Schmidt, R., Vikhnina, M., Grishina, T., and Frolov, A. 2017b. Maillard proteomics: opening new pages. International Journal of Molecular Sciences 18(12):2677. https://doi.org/10.3390/ijms18122677

Spiller, T., Schick, M., Schnyder, U., Bryant, R., Nickerson, A., and Morina, N. 2017. Symptoms of posttraumatic stress disorder in a clinical sample of refugees: A network analysis. European Journal of Psychotraumatology 8:1318032. https://doi.org/10.1080/20008198.2017.1318032

Szklarczyk, D., Morris, J., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., Santos, A., Doncheva, N., Roth, A., Bork, P., Jensen, L., and Mering, C. 2017. The STRING Database in 2017: Quality-Controlled Protein-Protein Association Networks, Made Broadly Accessible. Nucleic Acids Research 45(D1):D362–D368. https://doi.org/10.1093/nar/gkw937

Szoke, E. and Gerich, J. E. 2005. Role of impaired insulin secretion and insulin resistance in the pathogenesis of type 2 diabetes mellitus. Comprehensive Therapy 31:106–112. https://doi.org/10.1007/s12019-005-0005-y

Turetschek, R., Staudinger, C., and Wienkoop, S. 2020. Rhizobial symbiosis influences response to early salt and drought stress of the Medicago truncatula root proteome. The Model Legume Medicago truncatula 253–260. https://doi.org/10.1002/9781119409144.ch31

Uchiki, T., Weikel, K. A., Jiao, W., Shang, F., Caceres, A., Pawlak, D., Handa, J. T., Brownlee, M., Nagaraj, R., and Taylor, A. 2012. Glycation-altered proteolysis as a pathobiologic mechanism that links dietary glycemic index, aging, and age-related disease (in nondiabetics). Aging Cell 11:1–13. https://doi.org/10.1111/j.1474-9726.2011.00752.x

Ummenhofer, C. C. and Meehl, G. A. 2017. Extreme weather and climate events with ecological relevance: a review. Philosophical Transactions of the Royal Society B: Biological Sciences 372(1723):20160135. https://doi.org/10.1098/rstb.2016.0135

Uribarri, J., Cai, W., Sandu, O., Peppa, M., Goldberg, T., and Vlassara, H. 2005. Diet-derived advanced glycation end products are major contributors to the body’s AGE pool and induce inflammation in healthy subjects. Annals of the New York Academy of Sciences 1043:461–466. https://doi.org/10.1196/annals.1333.052

Verslues, P. E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J., and Zhu, J.-K. 2006. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant Journal 45:523–539. https://doi.org/10.1111/j.1365-313X.2005.02593.x

Published
2021-11-12
How to Cite
Shumilina, J., Gorbach, D., Popova, V., Tsarev, A., Kuznetsova, A., Grashina, M., Dorn, M., Lukasheva, E., Osmolovskaya, N., Romanovskaya, E., Zhukov, V., Ihling, C., Grishina, T., Bilova, T., & Frolov, A. (2021). Protein glycation and drought response of pea (<em>Pisum sativum</em&gt; L.) root nodule proteome: a proteomics approach. Biological Communications, 66(3), 210–224. https://doi.org/10.21638/spbu03.2021.303
Section
Full communications

Most read articles by the same author(s)