Lactate determination with ferric ions in biological liquids is restricted to high concentrations or samples with controlled composition

Authors

  • Andrei Mutin Irkutsk State University, ul. Karla Marksa, 1, Irkutsk, 664003, Russian Federation https://orcid.org/0000-0002-3092-5376
  • Anton Gurkov Irkutsk State University, ul. Karla Marksa, 1, Irkutsk, 664003, Russian Federation; Baikal Research Centre, ul. Rabochaya, 5v, Irkutsk, 664011, Russian Federation https://orcid.org/0000-0002-8390-1570
  • Polina Drozdova Irkutsk State University, ul. Karla Marksa, 1, Irkutsk, 664003, Russian Federation; Baikal Research Centre, ul. Rabochaya, 5v, Irkutsk, 664011, Russian Federation https://orcid.org/0000-0003-3955-6105
  • Alexandra Saranchina Irkutsk State University, ul. Karla Marksa, 1, Irkutsk, 664003, Russian Federation https://orcid.org/0000-0002-5756-1525
  • Elizaveta Indosova Irkutsk State University, ul. Karla Marksa, 1, Irkutsk, 664003, Russian Federation https://orcid.org/0009-0006-3493-7637
  • Ekaterina Borvinskaya Irkutsk State University, ul. Karla Marksa, 1, Irkutsk, 664003, Russian Federation https://orcid.org/0000-0003-4004-1440

DOI:

https://doi.org/10.21638/spbu03.2024.401

Abstract

Lactic acid enantiomers, both L- and D-, are markers that often need to be controlled in such areas as medicine, food industry and related microbiological research. Besides the enzymatic methods for highly selective and stereospecific lactate determination, simpler alternatives with lower selectivity have been proposed. The spectrophotometric method involving ferric, i. e. iron(III), ions forming complexes with lactate has recently become popular for measurement of lactic acid in complex biological samples, although it has never been tested for selectivity under various conditions. Here we estimated the influence of some other common metabolites on readout of the method and showed that identical concentrations of some carboxylic acids, such as pyruvate and citrate, produce very similar color reactions as lactate. Although amino acids demonstrated lower interference, their combined influence in biological fluids can also have a substantial effect on this analytical reaction. This method is often used for the study of microbiological culture media, and it returned higher lactate estimates specifically at low lactate concentrations in LB growth medium due to one of its components, yeast extract. Thus, this method for lactate measurement requires some a priori knowledge about the amounts of interfering substances in the tested biological mixtures for its correct application.

Keywords:

growth medium, FeCl3, ferric ions, lactate, lactic acidosis

Downloads

Download data is not yet available.
 

References

Abrahamson, H. B., Rezvani, A. B., and Brushmiller, J. G. 1994. Photochemical and spectroscopic studies of complexes, of iron (III) with citric acid and other carboxylic acids. Inorganica Chimica Acta 226(1-2):117–127. https://www.sciencedirect.com/science/article/abs/pii/002016939404077X

Afzaal, S., Hameed, U., Ahmad, N., Rashid, N., and Haider, M. 2019. A molecular identification and characterization of lactic acid producing bacterial strains isolated from raw and traditionally processed foods of Punjab, Pakistan. Pakistan Journal of Zoology 51:1145–1153. https://doi.org/10.17582/journal.pjz/2019.51.3.1145.1153

Amaraweera, A., Senevirathna, M., and Singhalage, I. D. 2022. Extraction of lactic acid from corn kernels by Streptococcus thermophilus fermentation. Vingnanam Journal of Science 17(1):1–7. https://doi.org/10.4038/vingnanam.v17i1.4192

Amer, B., Nebel, C., Bertram, H. C., Mortensen, G., Hermansen, K., and Dalsgaard, T. K. 2013. Novel method for quantification of individual free fatty acids in milk using an in-solution derivatisation approach and gas chromatography-mass spectrometry. International Dairy Journal 32(2):199–203. https://doi.org/10.1016/j.idairyj.2013.05.016

Aphalo, P. 2023. ggpmisc: Miscellaneous Extensions to ‘ggplot2’. R package version 0.5.4-1. https://CRAN.R-project.org/package=ggpmisc

Araiza-Rosales, E., González-Arreola, A., Pámanes-Carrasco, G., Murillo-Ortiz, M., Jiménez-Ocampo, R., Herrera-Torres, E., Arai-za-Rosales, E., González-Arreola, A., Pámanes-Carrasco, G., Murillo-Ortiz, M., Jiménez-Ocampo, R., and Herrera-Torres, E. 2021. Fermentative quality and methane production in corn stubble silage with fermented and unfermented nopal cactus. Abanico Veterinario 11:1–13. https://doi.org/10.21929/abavet2021.24

Arreola, A. G., Ortiz, M. M., Carrasco, G. P., Saucedo, F. R., and Torres, E. H. 2019. Prickly pear cladodes. Journal of Animal and Plant Sciences 40(1):6544–6553.

Barker, S. B. and Summerson, W. H. 1941. The colorimetric determination of lactic acid in biological material. Journal of Biological Chemistry 138(2):535–554. https://doi.org/10.1016/S0021-9258(18)51379-X

Besharati, M., Palangi, V., Niazifar, M., and Nemati, Z. 2020. Comparison study of flaxseed, cinnamon and lemon seed essential oils additives on quality and fermentation characteristics of lucerne silage. Acta Agriculturae Slovenica 115(2):455–462. https://doi.org/10.14720/aas.2020.115.2.1483

Bijle, M. N., Ekambaram, M., Lo, E. C. M., and Yiu, C. K. Y. 2020. Antibacterial and mechanical properties of arginine-containing glass ionomer cements. Dental Materials 36(9):1226–1240. https://doi.org/10.1016/j.dental.2020.05.012

Biryukova, E. N., Arinbasarova, A. Yu., and Medentsev, A. G. 2022. L-Lactate oxidase systems of microorganisms. Microbiology 91(2):124–132. https://doi.org/10.1134/S0026261722020035

Borshchevskaya, L. N., Gordeeva, T. L., Kalinina, A. N., and Sineokii, S. P. 2016. Spectrophotometric determination of lactic acid. Journal of Analytical Chemistry 71(8):755–758. https://doi.org/10.1134/S1061934816080037

Castellón-Zelaya, M. F. and González-Martínez, S. 2021. Silage of the organic fraction of municipal solid waste to improve methane production. Water Science and Technology 83(10):2536–2548. https://doi.org/10.2166/wst.2021.148

Chang, H. M., Foo, H. L., Loh, T. C., Lim, E. T. C., and Abdul Mutalib, N. E. 2021. Comparative studies of inhibitory and antioxidant activities, and organic acids compositions of postbiotics produced by probiotic Lactiplantibacillus plantarum strains isolated from Malaysian foods. Frontiers in Veterinary Science 7. https://doi.org/10.3389/fvets.2020.602280

Chasoy, G. R., Chairez, I., and Durán-Páramo, E. 2020. Carbon/nitrogen ratio and initial pH effects on the optimization of lactic acid production by Lactobacillus casei subsp. casei NRRL-441. Carbon 27(10):37–59.

Chavarria, V., Ortiz-Islas, E., Salazar, A., Pérez-de La Cruz, V., Espinosa-Bonilla, A., Figueroa, R., Ortíz-Plata, A., Sotelo, J., Sánchez-García, F. J., and Pineda, B. 2022. Lactate-loaded nanoparticles induce glioma cytotoxicity and increase the survival of rats bearing malignant glioma brain tumor. Pharmaceutics 14(2):327. https://doi.org/10.3390/pharmaceutics14020327

Chawla, S. K. and Goyal, D. 2022. Optimization of pre-treatment using RSM on wheat straw and production of lactic acid using thermotolerant, inhibitor tolerant and xylose utilizing Bacillus sonorenesis strain DGS15. https://doi.org/10.21203/rs.3.rs-1204425/v1

Di Sotto, A., Di Giacomo, S., Amatore, D., Locatelli, M., Vitalone, A., Toniolo, C., Rotino, G. L., Lo Scalzo, R., Palamara, A. T., Marcocci, M. E., and Nencioni, L. 2018. A polyphenol rich extract from Solanum melongena L. DR2 peel exhibits antioxidant properties and anti-herpes simplex virus type 1 activity in vitro. Molecules 23(8):2066. https://doi.org/10.3390/molecules23082066

Dragulescu, A. and Arendt, C. 2020. xlsx: Read, Write, Format Excel 2007 and Excel 97/2000/XP/2003 Files. R package version 0.6.5, https://CRAN.R-project.org/package=xlsx.

Erkaya, S., Arslan, N. P., Orak, T., Esim, N., and Taskin, M. 2020. Evaluation of tyrosol and farnesol as inducer in pigment production by Monascus purpureus ATCC16365. Journal of Basic Microbiology 60(8):669–678. https://doi.org/10.1002/jobm.202000037

Ewaschuk, J. B., Naylor, J. M., and Zello, G. A. 2005. D-Lactate in human and ruminant metabolism. The Journal of Nutrition 135(7):1619–1625. https://doi.org/10.1093/jn/135.7.1619

Ewaschuk, J. B., Zello, G. A., Naylor, J. M., and Brocks, D. R. 2002. Metabolic acidosis: separation methods and biological relevance of organic acids and lactic acid enantiomers. Journal of Chromatography B 781(1–2):39–56. https://doi.org/10.1016/S1570-0232(02)00500-7

Fentie, E. G., Jeong, M., Emire, S. A., Demsash, H. D., Kim, M. C., Lim, K., and Shin, J.-H. 2022. Development of mixed starter culture for the fermentation of Ethiopian honey wine, Tej. Scientific Reports 12(1):13431. https://doi.org/10.1038/s41598-022-17594-1

Foroutan, A., Guo, A. C., Vazquez-Fresno, R., Lipfert, M., Zhang, L., Zheng, J., Badran, H., Budinski, Z., Mandal, R., Ametaj, B. N., and Wishart, D. S. 2019. Chemical composition of commercial cow’s milk. Journal of Agricultural and Food Chemistry 67(17):4897–4914. https://doi.org/10.1021/acs.jafc.9b00204

Gandhi, P. R. 2021. Enriching Lactobacilli from fermented pulse dal flour-analyzing its efficacy in utilizing carbohydrates and production of α-galactosidase enzyme during pigeon pea fermentation. Journal of Pure and Applied Microbiology 15(4):2003–2018. https://doi.org/10.22207/JPAM.15.4.22

Guo, Z., Wang, X., Wang, H., Hu, B., Lei, Z., Kobayashi, M., Adachi, Y., Shimizu, K., and Zhang, Z. 2019. Effects of nanobubble water on the growth of Lactobacillus acidophilus 1028 and its lactic acid production. RSC Advances 9(53):30760–30767. https://doi.org/10.1039/C9RA05868K

Hamm, R., Shul, C., and Grant, D. 1951. Citrate complexes with iron(II) and iron(III). Journal of the American Chemical Society 76:2111–2114. https://doi.org/10.1021/ja01637a021

Hazell, T. and Johnson, I. T. 1987. Effects of food processing and fruit juices on in-vitro estimated iron availability from cereals, vegetables and fruits. Journal of the Science of Food and Agriculture 38(1):73–82. https://doi.org/10.1002/jsfa.2740380112

Hohorst, H.-J. 1965. L-(+)-lactate: determination with lactic dehydrogenase and DPN; pp. 266–277 in: Methods of enzymatic analysis. Elsevier.

Islam, S., Mumtaz, T., and Hossen, F. 2020. Anaerobic digestion of kitchen waste generated from Atomic Energy Research Establishment (AERE) cafeteria for lactic acid production. Asian-Australasian Journal of Bioscience and Biotechnology 5(3):88–99. https://doi.org/10.3329/aajbb.v5i3.53871

Ismailov, A. A., Timchenko, L. D., Bondareva, N. I., Avanesyan, S. S., and Amlieva, A. Z. 2020. Effect of ozone on antagonistic activity of Lactobacilli. Journal of Global Pharma Technology 12(2):761–767.

Jamnik, P., Mahnič, N., Mrak, A., Pogačnik, L., Jeršek, B., Niccolai, A., Masten Rutar, J., Ogrinc, N., Dušak, L., and Ferjančič, B. 2022. Fermented biomass of Arthrospira platensis as a potential food ingredient. Antioxidants 11(2):216. https://doi.org/10.3390/antiox11020216

Kaewpila, C., Khota, W., Gunun, P., Kesorn, P., and Cherdthong, A. 2020. Strategic addition of different additives to improve silage fermentation, aerobic stability and in vitro digestibility of napier grasses at late maturity stage. Agriculture 10(7):262. https://doi.org/10.3390/agriculture10070262

Karnaouri, A., Asimakopoulou, G., Kalogiannis, K. G., Lappas, A. A., and Topakas, E. 2021. Efficient production of nutraceuticals and lactic acid from lignocellulosic biomass by combining organosolv fractionation with enzymatic/fermentative routes. Bioresource Technology 341:125846. https://doi.org/10.1016/j.biortech.2021.125846

Karnaouri, A., Asimakopoulou, G., Kalogiannis, K. G., Lappas, A., and Topakas, E. 2020. Efficient d-lactic acid production by Lactobacillus delbrueckii subsp. bulgaricus through conversion of organosolv pretreated lignocellulosic biomass. Biomass and Bioenergy 140:105672. https://doi.org/10.1016/j.biombioe.2020.105672

Kassambara, A. 2023. _ggpubr: ‘ggplot2’ Based Publication Ready Plots_. R package version 0.6.0. https://CRAN.R-project.org/package=ggpubr

Khumukcham, S. S., Penugurti, V., Soni, A., Uppala, V., Hari, K., Jolly, M. K., Dwivedi, A., Salam P. K., A., Padala, C., Mukta, S., Bhopal, T., and Manavathi, B. 2022. A reciprocal feedback loop between HIF-1α and HPIP controls phenotypic plasticity in breast cancer cells. Cancer Letters 526:12–28. https://doi.org/10.1016/j.canlet.2021.11.002

Klein, M. S., Buttchereit, N., Miemczyk, S. P., Immervoll, A. K., Louis, C., Wiedemann, S., Junge, W., Thaller, G., Oefner, P. J., and Gronwald, W. 2012. NMR metabolomic analysis of dairy cows reveals milk glycerophosphocholine to phosphocholine ratio as prognostic biomarker for risk of ketosis. Journal of Proteome Research 11(2):1373–1381. https://doi.org/10.1021/pr201017n

Kowlgi, N. G. and Chhabra, L. 2015. D-Lactic acidosis: An underrecognized complication of short bowel syndrome. Gastroenterology Research and Practice 2015:1–8. https://doi.org/10.1155/2015/476215

Kraut, J. A. and Madias, N. E. 2014. Lactic acidosis. New England Journal of Medicine 371(24):2309–2319. https://doi.org/10.1056/NEJMra1309483

Krishnaswamy, V. K. D., Alugoju, P., and Periyasamy, L. 2020. Effect of short-term oral supplementation of crocin on age-related oxidative stress, cholinergic, and mitochondrial dysfunction in rat cerebral cortex. Life Sciences 263:118545. https://doi.org/10.1016/j.lfs.2020.118545

Kuswandi, B., Irsyad, L. H., and Puspaningtyas, A. R. 2023. Cloth-based microfluidic devices integrated onto the patch as wearable colorimetric sensors for simultaneous sweat analysis. BioImpacts 13(4):347–353. https://doi.org/10.34172/bi.2023.24195

López-Salas, D., Oney-Montalvo, J. E., Ramírez-Rivera, E., Ramírez-Sucre, M. O., and Rodríguez-Buenfil, I. M. 2022. Fermentation of habanero pepper by two lactic acid bacteria and its effect on the production of volatile compounds. Fermentation 8(5):219. https://doi.org/10.3390/fermentation8050219

Lovato, G., Augusto, I. M. G., Ferraz Júnior, A. D. N., Albanez, R., Ratusznei, S. M., Etchebehere, C., Zaiat, M., and Rodrigues, J. A. D. 2021. Reactor start-up strategy as key for high and stable hydrogen production from cheese whey thermophilic dark fermentation. International Journal of Hydrogen Energy 46(54):27364–27379. https://doi.org/10.1016/j.ijhydene.2021.06.010

Mato Mofo, E. P., Essop, M. F., and Owira, P. M. O. 2020. Citrus fruit-derived flavonoid naringenin and the expression of hepatic organic cation transporter 1 protein in diabetic rats treated with metformin. Basic and Clinical Pharmacology and Toxicology 127(3):211–220. https://doi.org/10.1111/bcpt.13407

Mocanu, G.-D., Nistor, O.-V., Constantin, O. E., Andronoiu, D. G., Barbu, V. V., and Botez, E. 2022. The Effect of sodium total substitution on the quality characteristics of green pickled tomatoes (Solanum lycopersicum L.). Molecules 27(5):1609. https://doi.org/10.3390/molecules27051609

Msuya, N., Minja, R., Katima, J., Masanja, E., and Temu, A. 2018. Separation and purification of lactic acid from sisal wastes. American Journal of Chemistry 8(1):13–18. https://doi.org/10.5923/j.chemistry.20180801.03

Nath, S., Kubendiran, H., Mukherjee, A., and Kundu, R. 2023. Iron oxide-silver-curcumin nanocomposite acts against HPV16 positive cervical cancer cell SiHa by triggering crosstalk between autophagy and apoptosis primarily via breach in cellular redox equilibrium. Process Biochemistry 130:174–190. https://doi.org/10.1016/j.procbio.2023.04.011

Ngouénam, J. R., Momo Kenfack, C. H., Foko Kouam, E. M., Kaktcham, P. M., Maharjan, R., and Ngoufack, F. Z. 2021. Lactic acid production ability of Lactobacillus sp. from four tropical fruits using their by-products as carbon source. Heliyon 7(5):e07079. https://doi.org/10.1016/j.heliyon.2021.e07079

Nguyen, V. T. H., Tung, Q. N., Lien, B. T., Trang, N. H., The, N. V., Loi, N. T. T., Ha, C. H., and Tien, P. Q. 2022. Efficacy of biosynthesizing folate, riboflavin and typical probiotic traits reveal the potential use of Lactobacillus plantarum LCN13 as a feed additive for swine farming. Academia Journal of Biology 44(1):73–82. https://doi.org/10.15625/2615-9023/16628

Nishijima, T., Nishina, M., and Fujiwara, K. 1997. Measurement of lactate levels in serum and bile using proton nuclear magnetic resonance in patients with hepatobiliary diseases: its utility in detection of malignancies. Japanese Journal of Clinical Oncology 27(1):13–17. https://doi.org/10.1093/jjco/27.1.13

O’Callaghan, T. F., Vázquez-Fresno, R., Serra-Cayuela, A., Dong, E., Mandal, R., Hennessy, D., McAuliffe, S., Dillon, P., Wishart, D. S., Stanton, C., and Ross, R. P. 2018. Pasture feeding changes the bovine rumen and milk metabolome. Metabolites 8(2):27. https://doi.org/10.3390/metabo8020027

Omole, O. O., Brocks, D. R., Nappert, G., Naylor, J. M., and Zello, G. A. 1999. High-performance liquid chromatographic assay of (±)-lactic acid and its enantiomers in calf serum. Journal of Chromatography B: Biomedical Sciences and Applications 727(1–2):23–29. https://doi.org/10.1016/S0378-4347(99)00072-9

Ong, B. N., Lam, T. D., Le, T. L., Nguyen, T. C., Tran Thi, B. H., and Phan, T. M. 2020. Isolation, identification and evaluation of Lactic acid synthesis of bacteria in traditional fermented products in Vietnam. IOP Conference Series: Materials Science and Engineering 991(1):012059. https://doi.org/10.1088/1757-899X/991/1/012059

Pedersen, T. 2023. patchwork: The Composer of Plots. R package version 1.1.3. https://CRAN.R-project.org/package=patchwork

Pohanka, M. 2020. D-Lactic acid as a metabolite: Toxicology, diagnosis, and detection. BioMed Research International 2020:1–9. https://doi.org/10.1155/2020/3419034

Psychogios, N., Hau, D. D., Peng, J., Guo, A. C., Mandal, R., Bouatra, S., Sinelnikov, I., Krishnamurthy, R., Eisner, R., Gautam, B., Young, N., Xia, J., Knox, C., Dong, E., Huang, P., Hollander, Z., Pedersen, T. L., Smith, S. R., Bamforth, F., Greiner, R., McManus, B., Newman, J. W., Goodfriend, T., and Wishart, D. S. 2011. The human serum metabolome. PLoS ONE 6(2):e16957. https://doi.org/10.1371/journal.pone.0016957

Pundir, C. S., Narwal, V., and Batra, B. 2016. Determination of lactic acid with special emphasis on biosensing methods: A review. Biosensors and Bioelectronics 86:777–790. https://doi.org/10.1016/j.bios.2016.07.07

R Core Team. 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.R-project.org/

Rabinowitz, J. D. and Enerbäck, S. 2020. Lactate: the ugly duckling of energy metabolism. Nature Metabolism 2(7):566–571. https://doi.org/10.1038/s42255-020-0243-4

Ranjbar, M., Bolandi, M., and Mohammadi Nafchi, A. 2021. Effect of manganese sulfate and vitamin B12 on the properties of physicochemical, textural, sensory and bacterial growth of set yogurt. Journal of Food Measurement and Characterization 15:1190–1200. https://doi.org/10.1007/s11694-020-00720-w

Rassaei, L., Olthuis, W., Tsujimura, S., Sudhölter, E. J. R., and van den Berg, A. 2014. Lactate biosensors: current status and outlook. Analytical and Bioanalytical Chemistry 406(1):123–137. https://doi.org/10.1007/s00216-013-7307-1

Rosenstein, P. G., Tennent-Brown, B. S., and Hughes, D. 2018. Clinical use of plasma lactate concentration. Part 1: Physiology, pathophysiology, and measurement: Clinical use of plasma lactate concentration part 1. Journal of Veterinary Emergency and Critical Care 28(2):85–105. https://doi.org/10.1111/vec.12708

Salovaara, S., Sandberg, A.-S., and Andlid, T. 2002. Organic acids influence iron uptake in the human epithelial cell line caco-2. Journal of Agricultural and Food Chemistry 50(21):6233–6238. https://doi.org/10.1021/jf0203040

Salovaara, S., Sandberg, A.-S., and Andlid, T. 2003. Combined impact of pH and organic acids on iron uptake by caco-2 cells. Journal of Agricultural and Food Chemistry 51(26):7820–7824. https://doi.org/10.1021/jf030177n

Sarwono, K. A., Rohmatussolihat, R., Watman, M., Ratnakomala, S., Astuti, W. D., Fidriyanto, R., Ridwan, R., Widyastuti, Y., Sarwono, K. A., Rohmatussolihat, R., Watman, M., Ratnakomala, S., Astuti, W. D., Fidriyanto, R., Ridwan, R., and Widyastuti, Y. 2022. Characteristics of fresh rice straw silage quality prepared with addition of lactic acid bacteria and crude cellulase. AIMS Agriculture and Food 7(3):481–499. https://doi.org/10.3934/agrfood.2022030

Schlimme, E., Martin, D., and Meisel, H. 2000. Nucleosides and nucleotides: Natural bioactive substances in milk and colostrum. British Journal of Nutrition 84(S1):59–68. https://doi.org/10.1017/S0007114500002269

Schmitt, R. E., Molitor, H. R., and Wu, T. 2012. Voltammetric method for the determination of lactic acid using a carbon paste electrode modified with cobalt phthalocyanine. International Journal of Electrochemical Science 7(11):10835–10841. https://doi.org/10.1016/S1452-3981(23)16906-9

Shtumpf, L. Yu., Kolesnik, O. V., Stepanova, L. V., Kolenchukova, O. A., Fedotova, A. S., Kolomeytsev, A. V., Makarov, A. V., and Kratasyuk, V. A. 2021. Bioluminescent sport horse saliva test: Prospects for use. Agricultural Biology 56(6):1199–1208. https://doi.org/10.15389/agrobiology.2021.6.1199eng

Sokolova, I. M., Frederich, M., Bagwe, R., Lannig, G., and Sukhotin, A. A. 2012. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Marine Environmental Research 79:1–15. https://doi.org/10.1016/j.marenvres.2012.04.003

Sudhakar, M. P. and Dharani, G. 2022. Evaluation of seaweed for the production of lactic acid by fermentation using Lactobacillus plantarum. Bioresource Technology Reports 17:100890. https://doi.org/10.1016/j.biteb.2021.100890

Tak, J. Y., Jang, W. J., Lee, J. M., Suraiya, S., and Kong, I.-S. 2019. Expression in Lactococcus lactis of a β-1,3-1,4-glucanase gene from Bacillus sp. SJ-10 isolated from fermented fish. Protein Expression and Purification 162:18–23. https://doi.org/10.1016/j.pep.2019.05.006

Tan, J. S., Abbasiliasi, S., Lee, C. K., and Phapugrangkul, P. 2020. Chitin extraction from shrimp wastes by single step fermentation with Lactobacillus acidophilus FTDC3871 using response surface methodology. Journal of Food Processing and Preservation 44(11):e14895. https://doi.org/10.1111/jfpp.14895

Taser, B., Ozkan, H., Adiguzel, A., Orak, T., Baltaci, M. O., and Taskin, M. 2021. Preparation of chitosan from waste shrimp shells fermented with Pae-nibacillus jamilae BAT1. International Journal of Biological Macromolecules 183:1191–1199. https://doi.org/10.1016/j.ijbiomac.2021.05.062

Tefara, S. F., Begna Jiru, E., and Bairu, A. 2022. Optimization of fermentation condition for production of lactic acid from khat (“Catha edulis”) waste by using immobilized Lactobacillus plantarum. Biomass Conversion and Biorefinery 14(2):6637–6647 https://doi.org/10.1007/s13399-022-02797-3

Thi Minh Thu, T., Thi Thanh Vinh, D., Anh Dung, N., and Hoang Khue Tu, N. 2021. Effect of Lactic Acid produced by Lactic acid bacteria on Prodigiosin production from Streptomyces coelicolor. Research Journal of Pharmacy and Technology 14(4):1953–1956. https://doi.org/10.52711/0974-360X.2021.00345

Urbanek. S, 2022. jpeg: Read and write JPEG images. R package version 0.1-10. https://CRAN.R-project.org/package=jpeg

Uwamahoro, H. P., Li, F., Timilsina, A., Liu, B., Wang, X., and Tian, Y. 2022. An assessment of the lactic acid-producing potential of bacterial strains isolated from food waste. Microbiology Research 13(2):278–291. https://doi.org/10.3390/microbiolres13020022

Vereshchagina, K., Kondrateva, E., Mutin, A., Jakob, L., Bedulina, D., Shchapova, E., Madyarova, E., Axenov-Gribanov, D., Luckenbach, T., Pörtner, H.-O., Lucassen, M., and Timofeyev, M. 2021. Low annual temperature likely prevents the Holarctic amphipod Gammarus lacustris from invading Lake Baikal. Scientific Reports 11(1):10532. https://doi.org/10.1038/s41598-021-89581-x

Vignesh Kumar, B., Muthumari, B., Kavitha, M., John Praveen Kumar, J. K., Thavamurugan, S., Arun, A., and Jothi Basu, M. 2022. Studies on optimiza-tion of sustainable lactic Acid production by Bacillus amyloliquefaciens from sugarcane molasses through microbial fermentation. Sustainability 14(12):7400. https://doi.org/10.3390/su14127400

Vijayakumar, K. and MuhilVannan, S. 2021. 3, 5-Di-tert-butylphenol combat against Streptococcus mutans by impeding acidogenicity, acidurance and biofilm formation. World Journal of Microbiology and Biotechnology 37(12):202. https://doi.org/10.1007/s11274-021-03165-5

Wickham, H. 2016. ggplot2: Elegant graphics for data analysis. Springer. https://doi.org/10.1007/978-3-319-24277-4

Wickham, H., Vaughan, D., and Girlich, M. 2023. tidyr: Tidy Messy Data. R package version 1.3.0. https://CRAN.R-project.org/package=tidyr

Wilke, C. 2020. cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’. R package version 1.1.1. https://CRAN.R-project.org/package=cowplot

Downloads

Published

2024-12-31

How to Cite

Mutin, A., Gurkov, A., Drozdova, P., Saranchina, A., Indosova, E., & Borvinskaya, E. (2024). Lactate determination with ferric ions in biological liquids is restricted to high concentrations or samples with controlled composition. Biological Communications, 69(4), 203–213. https://doi.org/10.21638/spbu03.2024.401

Issue

Section

Full communications

Categories