The role of plant antimicrobial peptides (AMPs) in response to biotic and abiotic environmental factors

  • Olga Kulaeva All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0003-2687-9693
  • Marina Kliukova All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0003-1119-5512
  • Alexey Afonin All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0002-8530-0226
  • Anton Sulima All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0002-2300-857X
  • Vladimir Zhukov All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0002-2411-9191
  • Igor Tikhonovich All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation; Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0001-8968-854X

Abstract

Plants are continuously exposed to various biotic and abiotic factors that may trigger cascade reactions aimed at maintaining homeostasis. One of the most important components of plant protection from biotic factors is the synthesis of antimicrobial peptides (AMPs). AMPs are a large group of peptides present in insects, animals and plants. Plant innate immunity is provided by AMPs from different families that are categorized according to sequence similarity, the number and order of amino acid residues, and the tertiary structure of the mature peptide. AMPs may also participate in plant response to abiotic stresses such as high salinity, drought, high or low temperature, and heavy metals. In nitrogen-fixing nodules of some members of the Fabaceae family, AMP-like molecules named NCR peptides promote the differentiation of the symbiotic bacteria into bacteroids. Thus, AMPs are used by plants for fine tuning their responses to biotic and abiotic factors alike.

Keywords:

plants, antimicrobial peptides, abiotic factors, biotic factors, symbiosis, stress

Downloads

Download data is not yet available.
 

References

Abbasi, F., Onodera, H., Toki, S., Tanaka, H., and Komatsu, S. 2004. OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced by cold and gibberellin in rice leaf sheath. Plant Molecular Biology 55:541–552. https://doi.org/10.1007/s11103-004-1178-y

Aerts, A. M., Bammens, L., Govaert, G., Carmona-Gutierrez, D., Madeo, F., Cammue, B. P. A., and Thevissen, K. 2011. The antifungal plant defensin HsAFP1 from Heuchera sanguinea induces apoptosis in Candida albicans. Frontiers in Microbiology 2:47. https://doi.org/10.3389/fmicb.2011.00047

Aerts, A. M., François, I. E. J. A., Cammue, B. P. A., and Thevissen, K. 2008. The mode of antifungal action of plant, insect and human defensins. Cellular and Molecular Life Sciences 65:2069–2079. https://doi.org/10.1007/s00018-008-8035-0

Aerts, A. M., François, I. E. J. A., Meert, E. M. K., Li, Q.-T., Cammue, B. P. A., and Thevissen, K. 2007. The antifungal activity of RsAFP2, a plant defensin from Raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. Journal of Molecular Microbiology and Biotechnology 13:243–247. https://doi.org/10.1159/000104753

Alonso-Ramirez, A., Rodriguez, D., Reyes, D., Jimenez, J. A., Nicolas, G., Lopez-Climent, M., Gomez-Cadenas, A., and Nicolas, C. 2009. Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiology 150:1335–1344. https://doi.org/10.1104/pp.109.139352

Alunni, B. and Gourion, B. 2016. Terminal bacteroid differentiation in the legume-rhizobium symbiosis: nodule-specific cysteine-rich peptides and beyond. New Phytologist 211:411–417. https://doi.org/10.1111/nph.14025

Alunni, B., Kevei, Z., Redondo-Nieto, M., Kondorosi, A., Mergaert, P., and Kondorosi, E. 2007. Genomic organization and evolutionary insights on GRP and NCR genes, two large nodule-specific gene families in Medicago truncatula. Molecular Plant-Microbe Interactions 20:1138–1148. https://doi.org/10.1094/MPMI-20-9-1138

Andreev, Y. A., Korostyleva, T. V., Slavokhotova, A. A., Rogozhin, E. A., Utkina, L. L., Vassilevski, A. A., Grishin, E. V., Egorov, T. A., and Odintsova, T. I. 2012. Genes encoding hevein-like defense peptides in wheat: distribution, evolution, and role in stress response. Biochimie 94:1009–1016. https://doi.org/10.1016/j.biochi.2011.12.023

Asai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chiu, W.-L., Gomez-Gomez, L., Boller, T., Ausubel, F. M., and Sheen, J. 2002. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983. https://doi.org/10.1038/415977a

Berrocal-Lobo, M., Segura, A., Moreno, M., López, G., García-Olmedo, F., and Molina, A. 2002. Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiology 128:951–961. https://doi.org/10.1104/pp.010685

Bigeard, J., Colcombet, J., and Hirt, H. 2015. Signaling mechanisms in pattern-triggered immunity (PTI). Molecular Plant 8:521–539. https://doi.org/10.1016/j.molp.2014.12.022

Bohlmann, H., Clausen, S., Behnke, S., Giese, H., Hiller, C., Reimann-Philipp, U., Schrader, G., Barkholt, V., and Apel, K. 1988. Leaf-specific thionins of barley — a novel class of cell wall proteins toxic to plant-pathogenic fungi and possibly involved in the defence mechanism of plants. The EMBO Journal 7:1559–1565. https://doi.org/10.1002/j.1460-2075.1988.tb02980.x

Boonkerd, N. 1998. Symbiotic association between Frankia and actinorhizal plants, in: Malik, K. A., Mirza, M. S., and Ladha, J. K. (Eds.), Nitrogen Fixation with Non-Legumes: Proceedings of the 7th International Symposium on Nitrogen Fixation with Non-Legumes, Held 16–21 October 1996 in Faisalabad, Pakistan, Developments in Plant and Soil Sciences. Springer Netherlands, Dordrecht, pp. 327–331. https://doi.org/10.1007/978-94-011-5232-7_38

Burman, R., Strömstedt, A. A., Malmsten, M., and Göransson, U. 2011. Cyclotide-membrane interactions: defining factors of membrane binding, depletion and disruption. Biochimica et Biophysica Acta (BBA) — Biomembranes 1808:2665–2673. https://doi.org/10.1016/j.bbamem.2011.07.004

Campos, M. L., Lião, L. M., Alves, E. S. F., Migliolo, L., Dias, S. C., and Franco, O. L. 2018. A structural perspective of plant antimicrobial peptides. Biochemical Journal 475:3359–3375. https://doi.org/10.1042/BCJ20180213

Carrasco, L., Vázquez, D., Hernández-Lucas, C., Carbonero, P., and García-Olmedo, F. 1981. Thionins: plant peptides that modify membrane permeability in cultured mammalian cells. European Journal of Biochemistry 116:185–189. https://doi.org/10.1111/j.1432-1033.1981.tb05317.x

Carro, L., Pujic, P., Alloisio, N., Fournier, P., Boubakri, H., Hay, A. E., Poly, F., François, P., Hocher, V., Mergaert, P., Balmand, S., Rey, M., Heddi, A., and Normand, P. 2015. Alnus peptides modify membrane porosity and induce the release of nitrogen-rich metabolites from nitrogen-fixing Frankia. The ISME Journal 9:1723–1733. https://doi.org/10.1038/ismej.2014.257

Carvalho, A. de O. and Gomes, V. M. 2011. Plant defensins and defensin-like peptides — biological activities and biotechnological applications. Current Pharmaceutical Design 17:4270–4293. https://doi.org/10.2174/138161211798999447

Carvalho, A. de O. and Gomes, V. M. 2009. Plant defensins — prospects for the biological functions and biotechnological properties. Peptides 30:1007–1020. https://doi.org/10.1016/j.peptides.2009.01.018

Czernic, P., Gully, D., Cartieaux, F., Moulin, L., Guefrachi, I., Patrel, D., Pierre, O., Fardoux, J., Chaintreuil, C., Nguyen, P., Gressent, F., Silva, C. D., Poulain, J., Wincker, P., Rofidal, V., Hem, S., Barrière, Q., Arrighi, J.-F., Mergaert, P., and Giraud, E. 2015. Convergent evolution of endosymbiont differentiation in dalbergioid and inverted repeat-lacking clade legumes mediated by nodule-specific cysteine-rich peptides. Plant Physiology 169:1254–1265. https://doi.org/10.1104/pp.15.00584

Daneshmand, F., Zare-Zardini, H., and Ebrahimi, L. 2013. Investigation of the antimicrobial activities of Snakin-Z, a new cationic peptide derived from Zizyphus jujuba fruits. Natural Product Research 27:2292–2296. https://doi.org/10.1080/14786419.2013.827192

De Caleya, R. F., Gonzalez-Pascual, B., García-Olmedo, F., and Carbonero, P. 1972. Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro. Applied and Environmental Microbiology 23:998–1000. https://doi.org/10.1128/AEM.23.5.998-1000.1972

De Coninck, B., Cammue, B. P. A., and Thevissen, K. 2013. Modes of antifungal action and in planta functions of plant defensins and defensin-like peptides. Fungal Biology Reviews 26:109–120. https://doi.org/10.1016/j.fbr.2012.10.002

De Vos, M., Van Oosten, V. R., Van Poecke, R. M. P., Van Pelt, J. A., Pozo, M. J., Mueller, M. J., Buchala, A. J., Métraux, J.-P., Van Loon, L. C., Dicke, M., and Pieterse, C. M. J. 2005. Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Molecular Plant-Microbe Interactions 18:923–937. https://doi.org/10.1094/MPMI-18-0923

Demina, I. V., Persson, T., Santos, P., Plaszczyca, M., and Pawlowski, K. 2013. Comparison of the nodule vs. root transcriptome of the actinorhizal plant Datisca glomerata: actinorhizal nodules contain a specific class of defensins. PLoS ONE 8(8):e72442. https://doi.org/10.1371/journal.pone.0072442

Diaz, I., Carmona, M. J., and García-Olmedo, F. 1992. Effects of thionins on beta-glucuronidase in vitro and in plant protoplasts. FEBS Letters 296:279–282. https://doi.org/10.1016/0014-5793(92)80304-y

Do, H. M., Lee, S. C., Jung, H. W., Sohn, K. H., and Hwang, B. K. 2004. Differential expression and in situ localization of a pepper defensin (CADEF1) gene in response to pathogen infection, abiotic elicitors and environmental stresses in Capsicum annuum. Plant Science 166:1297–1305. https://doi.org/10.1016/j.plantsci.2004.01.008

Farkas, A., Maróti, G., Dürgő, H., Györgypál, Z., Lima, R. M., Medzihradszky, K. F., Kereszt, A., Mergaert, P., and Kondorosi, É. 2014. Medicago truncatula symbiotic peptide NCR247 contributes to bacteroid differentiation through multiple mechanisms. Proceedings of the National Academy of Sciences USA 111:5183–5188. https://doi.org/10.1073/pnas.1404169111

Farkas, A., Maróti, G., Kereszt, A., and Kondorosi, É. 2017. Comparative analysis of the bacterial membrane disruption effect of two natural plant antimicrobial peptides. Frontiers in Microbiology 8:51. https://doi.org/10.3389/fmicb.2017.00051

Farkas, A., Pap, B., Kondorosi, É., and Maróti, G. 2018. Antimicrobial activity of NCR plant peptides strongly depends on the test assays. Frontiers in Microbiology 9:2600. https://doi.org/10.3389/fmicb.2018.02600

Fujimura, M., Minami, Y., Watanabe, K., and Tadera, K. 2003. Purification, characterization, and sequencing of a novel type of antimicrobial peptides, Fa-AMP1 and Fa-AMP2, from seeds of buckwheat (Fagopyrum esculentum Moench.). Bioscience, Biotechnology, and Biochemistry 67:1636–1642. https://doi.org/10.1271/bbb.67.1636

Gangadhar, B. H., Sajeesh, K., Venkatesh, J., Baskar, V., Abhinandan, K., Yu, J. W., Prasad, R., and Mishra, R. K. 2016. Enhanced tolerance of transgenic potato plants over-expressing non-specific lipid transfer protein-1 (StnsLTP1) against multiple abiotic stresses. Frontiers in Plant Science 7:1228. https://doi.org/10.3389/fpls.2016.01228

García, B. L., Segundo, B. S., and Coca, M. 2012. Antimicrobial peptides as a promising alternative for plant disease protection. Small Wonders: Peptides for Disease Control 263–294. https://doi.org/10.1021/bk-2012-1095.ch013

Gaudet, D. A., Laroche, A., Frick, M., Huel, R., and Puchalski, B. 2003. Cold induced expression of plant defensin and lipid transfer protein transcripts in winter wheat. Physiologia Plantarum 117:195–205. https://doi.org/10.1034/j.1399-3054.2003.00041.x

Guefrachi, I., Nagymihaly, M., Pislariu, C. I., Van de Velde, W., Ratet, P., Mars, M., Udvardi, M. K., Kondorosi, E., Mergaert, P., and Alunni, B. 2014. Extreme specificity of NCR gene expression in Medicago truncatula. BMC Genomics 15:712. https://doi.org/10.1186/1471-2164-15-712

Guo, L., Yang, H., Zhang, X., and Yang, S. 2013. Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress in Arabidopsis. Journal of Experimental Botany 64:1755–1767. https://doi.org/10.1093/jxb/ert040

Gustafson, K. R., Sowder, R. C., Henderson, L. E., Parsons, I. C., Kashman, Y., Cardellina, J. H., McMahon, J. B., Buckheit, R. W., Pannell, L. K., and Boyd, M. R. 1994. Circulins A and B. Novel human immunodeficiency virus (HIV)-inhibitory macrocyclic peptides from the tropical tree Chassalia parvifolia. Journal of the American Chemical Society 116:9337–9338. https://doi.org/10.1021/ja00099a064

Hanks, J. N., Snyder, A. K., Graham, M. A., Shah, R. K., Blaylock, L. A., Harrison, M. J., and Shah, D. M. 2005. Defensin gene family in Medicago truncatula: structure, expression and induction by signal molecules. Plant Molecular Biology 58:385–399. https://doi.org/10.1007/s11103-005-5567-7

Herbel, V., Schäfer, H., and Wink, M. 2015. Recombinant production of Snakin-2 (an antimicrobial peptide from tomato) in E. coli and analysis of its bioactivity. Molecules 20:14889–14901. https://doi.org/10.3390/molecules200814889

Herbel, V. and Wink, M. 2016. Mode of action and membrane specificity of the antimicrobial peptide snakin-2. PeerJ 4:e1987. https://doi.org/10.7717/peerj.1987

Huang, G.-J., Lai, H.-C., Chang, Y.-S., Sheu, M.-J., Lu, T.-L., Huang, S.-S., and Lin, Y.-H. 2008. Antimicrobial, dehydroascorbate reductase, and monodehydroascorbate reductase activities of defensin from sweet potato [Ipomoea batatas (L.) Lam.‘tainong 57’] storage roots. Journal of Agricultural and Food Chemistry 56:2989–2995. https://doi.org/10.1021/jf072994j

Hughes, A. L. 2008. Defensins: Evolution, in: ELS. American Cancer Society. https://doi.org/10.1002/9780470015902.a0006136.pub2

Hughes, A. L. 1999. Evolutionary diversification of the mammalian defensins. Cellular and Molecular Life Sciences 56:94–103. https://doi.org/10.1007/s000180050010

Ireland, D. C., Wang, C. K. L., Wilson, J. A., Gustafson, K. R., and Craik, D. J. 2008. Cyclotides as natural anti-HIV agents. Biopolymers 90:51–60. https://doi.org/10.1002/bip.20886

Kacperska, A. 2004. Sensor types in signal transduction pathways in plant cells responding to abiotic stressors: do they depend on stress intensity? Physiologia Plantarum 122:159–168. https://doi.org/10.1111/j.0031-9317.2004.00388.x

Karpun, N. N., Yanushevskaya, E. B., and Mikhailova, Ye. V. 2015. Formation of plants nonspecific induced immunity at the biogenous stress (review). Sel’skokhozyaistvennaya Biologiya [Agricultural Biology] 50:540–549. https://doi.org/10.15389/agrobiology.2015.5.540eng

Kereszt, A., Mergaert, P., Montiel, J., Endre, G., and Kondorosi, É. 2018. Impact of plant peptides on symbiotic nodule development and functioning. Frontiers in Plant Science 9:1026. https://doi.org/10.3389/fpls.2018.01026

Khan, S.-A., Li, M.-Z., Wang, S.-M., and Yin, H.-J. 2018. Revisiting the role of plant transcription factors in the battle against abiotic stress. International Journal of Molecular Sciences 19:1634. https://doi.org/10.3390/ijms19061634

Ko, C.-B., Woo, Y.-M., Lee, D. J., Lee, M.-C., and Kim, C. S. 2007. Enhanced tolerance to heat stress in transgenic plants expressing the GASA4 gene. Plant Physiology and Biochemistry 45:722–728. https://doi.org/10.1016/j.plaphy.2007.07.010

Koike, M., Okamoto, T., Tsuda, S., and Imai, R. 2002. A novel plant defensin-like gene of winter wheat is specifically induced during cold acclimation. Biochemical and Biophysical Research Communications 298:46–53. https://doi.org/10.1016/S0006-291X(02)02391-4

Koo, J. C., Lee, B., Young, M. E., Koo, S. C., Cooper, J. A., Baek, D., Lim, C. O., Lee, S. Y., Yun, D.-J., and Cho, M. J. 2004. Pn-AMP1, a plant defense protein, induces actin depolarization in yeasts. Plant and Cell Physiology 45:1669–1680. https://doi.org/10.1093/pcp/pch189

Koo, J. C., Lee, S. Y., Chun, H. J., Cheong, Y. H., Choi, J. S., Kawabata, S., Miyagi, M., Tsunasawa, S., Ha, K. S., Bae, D. W., Han, C. D., Lee, B. L., and Cho, M. J. 1998. Two hevein homologs isolated from the seed of Pharbitis nil L. exhibit potent antifungal activity. Biochimica et Biophysica Acta (BBA) — Protein Structure and Molecular Enzymology 1382:80–90. https://doi.org/10.1016/s0167-4838(97)00148-9

Kramer, K. J., Klassen, L. W., Jones, B. L., Speirs, R. D., and Kammer, A. E. 1979. Toxicity of purothionin and its homologues to the tobacco hornworm, Manduca sexta (L.) (Lepidoptera: Sphingidae). Toxicology and Applied Pharmacology 48:179–183. https://doi.org/10.1016/S0041-008X(79)80020-4

Kumar, M., Yusuf, M. A., Yadav, P., Narayan, S., and Kumar, M. 2019. Overexpression of chickpea defensin gene confers tolerance to water-deficit stress in Arabidopsis thaliana. Frontiers in Plant Science 10:290. https://doi.org/10.3389/fpls.2019.00290

Lay, F. T., Schirra, H. J., Scanlon, M. J., Anderson, M. A., and Craik, D. J. 2003. The three-dimensional solution structure of NaD1, a new floral defensin from Nicotiana alata and its application to a homology model of the crop defense protein alfAFP. Journal of Molecular Biology 325:175–188. https://doi.org/10.1016/S0022-2836(02)01103-8

Lee, O. R., Kim, Y.-J., Devi Balusamy, S. R., Kim, M.-K., Sathiyamoorthy, S., and Yang, D.-C. 2011. Ginseng γ-thionin is localized to cell wall-bound extracellular spaces and responsive to biotic and abiotic stresses. Physiological and Molecular Plant Pathology 76:82–89. https://doi.org/10.1016/j.pmpp.2011.05.004

Lei, L., Chen, L., Shi, X., Li, Yixing, Wang, J., Chen, D., Xie, F., and Li, Y. 2014. A nodule-specific lipid transfer protein AsE246 participates in transport of plant-synthesized lipids to symbiosome membrane and is essential for nodule organogenesis in Chinese Milk vetch. Plant Physiology 164:1045–1058. https://doi.org/10.1104/pp.113.232637

Li, S.-S., Gullbo, J., Lindholm, P., Larsson, R., Thunberg, E., Samuelsson, G., Bohlin, L., Claeson, P., 2002. Ligatoxin B, a new cytotoxic protein with a novel helix-turn-helix DNA-binding domain from the mistletoe Phoradendron liga. Biochemical Journal 366:405–413. https://doi.org/10.1042/BJ20020221

Liu, J., Maldonado-Mendoza, I., Lopez-Meyer, M., Cheung, F., Town, C. D., and Harrison, M. J. 2007. Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. The Plant Journal 50:529–544. https://doi.org/10.1111/j.1365-313X.2007.03069.x

Lobo, D. S., Pereira, I. B., Fragel-Madeira, L., Medeiros, L. N., Cabral, L. M., Faria, J., Bellio, M., Campos, R. C., Linden, R., and Kurtenbach, E. 2007. Antifungal Pisum sativum defensin 1 interacts with Neurospora crassa cyclin F related to the cell cycle. Biochemistry 46:987–996. https://doi.org/10.1021/bi061441j

Luo, J.-S., Gu, T., Yang, Y., and Zhang, Z. 2019. A non-secreted plant defensin AtPDF2.6 conferred cadmium tolerance via its chelation in Arabidopsis. Plant Molecular Biology 100:561–569. https://doi.org/10.1007/s11103-019-00878-y

Luo, J.-S., Huang, J., Zeng, D.-L., Peng, J.-S., Zhang, G.-B., Ma, H.-L., Guan, Y., Yi, H.-Y., Fu, Y.-L., Han, B., Lin, H.-X., Qian, Q., and Gong, J.-M. 2018. A defensin-like protein drives cadmium efflux and allocation in rice. Nature Communications 9:645. https://doi.org/10.1038/s41467-018-03088-0

Magadum, S., Banerjee, U., Murugan, P., Gangapur, D., and Ravikesavan, R. 2013. Gene duplication as a major force in evolution. Journal of Genetics 92:155–161. https://doi.org/10.1007/s12041-013-0212-8

Maróti, G., Downie, J. A., and Kondorosi, É. 2015. Plant cysteine-rich peptides that inhibit pathogen growth and control rhizobial differentiation in legume nodules. Current Opinion in Plant Biology 26:57–63. https://doi.org/10.1016/j.pbi.2015.05.031

Maróti, G. and Kondorosi, E. 2014. Nitrogen-fixing Rhizobium-legume symbiosis: are polyploidy and host peptide-governed symbiont differentiation general principles of endosymbiosis? Frontiers in Microbiology 5:326. https://doi.org/10.3389/fmicb.2014.00326

Maruyama, D., Sugiyama, T., Endo, T., and Nishikawa, S.-I. 2014. Multiple BiP genes of Arabidopsis thaliana are required for male gametogenesis and pollen competitiveness. Plant and Cell Physiology 55:801–810. https://doi.org/10.1093/pcp/pcu018

Mergaert, P., Nikovics, K., Kelemen, Z., Maunoury, N., Vaubert, D., Kondorosi, A., and Kondorosi, E. 2003. A novel family in Medicago truncatula consisting of more than 300 nodule-specific genes coding for small, secreted polypeptides with conserved cysteine motifs. Plant Physiology 132:161–173. https://doi.org/10.1104/pp.102.018192

Mergaert, P., Uchiumi, T., Alunni, B., Evanno, G., Cheron, A., Catrice, O., Mausset, A.-E., Barloy-Hubler, F., Galibert, F., Kondorosi, A., and Kondorosi, E. 2006. Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis. Proceedings of the National Academy of Sciences USA 103:5230–5235. https://doi.org/10.1073/pnas.0600912103

Miller, R. N. G., Costa Alves, G. S., and Van Sluys, M.-A. 2017. Plant immunity: unravelling the complexity of plant responses to biotic stresses. Annals of Botany 119:681–687. https://doi.org/10.1093/aob/mcw284

Mirouze, M., Sels, J., Richard, O., Czernic, P., Loubet, S., Jacquier, A., François, I. E. J. A., Cammue, B. P. A., Lebrun, M., Berthomieu, P., and Marquès, L. 2006. A putative novel role for plant defensins: a defensin from the zinc hyper-accumulating plant, Arabidopsis halleri, confers zinc tolerance. The Plant Journal 47:329–342. https://doi.org/10.1111/j.1365-313X.2006.02788.x

Mith, O., Benhamdi, A., Castillo, T., Bergé, M., MacDiarmid, C. W., Steffen, J., Eide, D. J., Perrier, V., Subileau, M., Gosti, F., Berthomieu, P., and Marquès, L. 2015. The antifungal plant defensin AhPDF1.1b is a beneficial factor involved in adaptive response to zinc overload when it is expressed in yeast cells. MicrobiologyOpen 4:409–422. https://doi.org/10.1002/mbo3.248

Molina, A., Segura, A., and García-Olmedo, F. 1993. Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens. FEBS Letters 316:119–122. https://doi.org/10.1016/0014-5793(93)81198-9

Molina, C., Rotter, B., Horres, R., Udupa, S. M., Besser, B., Bellarmino, L., Baum, M., Matsumura, H., Terauchi, R., Kahl, G., and Winter, P. 2008. SuperSAGE: the drought stress-responsive transcriptome of chickpea roots. BMC Genomics 9:553. https://doi.org/10.1186/1471-2164-9-553

Montiel, J., Szűcs, A., Boboescu, I. Z., Gherman, V. D., Kondorosi, É., and Kereszt, A. 2015. Terminal bacteroid differentiation is associated with variable morphological changes in legume species belonging to the inverted repeat-lacking clade. Molecular Plant-Microbe Interactions 29:210–219. https://doi.org/10.1094/MPMI-09-15-0213-R

Mygind, P. H., Fischer, R. L., Schnorr, K. M., Hansen, M. T., Sönksen, C. P., Ludvigsen, S., Raventós, D., Buskov, S., Christensen, B., De Maria, L., Taboureau, O., Yaver, D., Elvig-Jørgensen, S. G., Sørensen, M. V., Christensen, B. E., Kjaerulff, S., Frimodt-Moller, N., Lehrer, R. I., Zasloff, M., and Kristensen, H.-H. 2005. Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437:975–980. https://doi.org/10.1038/nature04051

Nagy, K., Mikuláss, K. R., Végh, A. G., Kereszt, A., Kondorosi, É., Váró, G., and Szegletes, Z. 2015. Interaction of cysteine-rich cationic antimicrobial peptides with intact bacteria and model membranes. General Physiology and Biophysics 34:135–144. https://doi.org/10.4149/gpb_2015002

Nahirñak, V., Almasia, N. I., Hopp, H. E., and Vazquez-Rovere, C. 2012. Snakin/GASA proteins: Involvement in hormone crosstalk and redox homeostasis. Plant Signaling & Behavior 7:1004–1008. https://doi.org/10.4161/psb.20813

Nahirñak, V., Rivarola, M., Almasia, N. I., Barón, M. P. B., Hopp, H. E., Vile, D., Paniego, N., and Rovere, C. V. 2019. Snakin-1 affects reactive oxygen species and ascorbic acid levels and hormone balance in potato. PLoS ONE 14:e0214165. https://doi.org/10.1371/journal.pone.0214165

Nakashima, K., Shinwari, Z. K., Sakuma, Y., Seki, M., Miura, S., Shinozaki, K., and Yamaguchi-Shinozaki, K. 2000. Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration and high-salinity-responsive gene expression. Plant Molecular Biology 42:657–665. https://doi.org/10.1023/a:1006321900483

Nishiyama, R., Le, D. T., Watanabe, Y., Matsui, A., Tanaka, M., Seki, M., Yamaguchi-Shinozaki, K., Shinozaki, K., and Tran, L.-S. P. 2012. Transcriptome analyses of a salt-tolerant cytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency. PLoS ONE 7:e32124. https://doi.org/10.1371/journal.pone.0032124

Nolde, S. B., Vassilevski, A. A., Rogozhin, E. A., Barinov, N. A., Balashova, T. A., Samsonova, O. V., Baranov, Y. V., Feofanov, A. V., Egorov, T. A., Arseniev, A. S., and Grishin, E. V. 2011. Disulfide-stabilized helical hairpin structure and activity of a novel antifungal peptide EcAMP1 from seeds of barnyard grass (Echinochloa crus-galli). The Journal of Biological Chemistry 286:25145–25153. https://doi.org/10.1074/jbc.M110.200378

Nongpiur, R., Soni, P., Karan, R., Singla-Pareek, S. L., and Pareek, A. 2012. Histidine kinases in plants. Plant Signaling & Behavior 7:1230–1237. https://doi.org/10.4161/psb.21516

Oard, S. V. 2011. Deciphering a mechanism of membrane permeabilization by α-hordothionin peptide. Biochimica et Biophysica Acta (BBA) — Biomembranes 1808:1737–1745. https://doi.org/10.1016/j.bbamem.2011.02.003

Oldroyd, G. E. D. 2013. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nature Reviews Microbiology 11:252–263. https://doi.org/10.1038/nrmicro2990

Oliveira-Lima, M., Benko-Iseppon, A. M., Neto, J. R. C. F., Rodriguez-Decuadro, S., Kido, E. A., Crovella, S., and Pandolfi, V. 2017. Snakin: structure, roles and applications of a plant antimicrobial peptide. Current Protein & Peptide Science 18:368–374. https://doi.org/10.2174/1389203717666160619183140

Onaga, G. and Wydra, K. 2016. Advances in plant tolerance to biotic stresses. IntechOpen Plant Genomics. https://doi.org/10.5772/64351

Oomen, R. J., Séveno-Carpentier, E., Ricodeau, N., Bournaud, C., Conéjéro, G., Paris, N., Berthomieu, P., and Marquès, L. 2011. Plant defensin AhPDF1.1 is not secreted in leaves but it accumulates in intracellular compartments. New Phytologist 192:140–150. https://doi.org/10.1111/j.1469-8137.2011.03792.x

Ördögh, L., Vörös, A., Nagy, I., Kondorosi, É., and Kereszt, A. 2014. Symbiotic plant peptides eliminate Candida albicans both in vitro and in an epithelial infection model and inhibit the proliferation of immortalized human cells. BioMed Research International. https://doi.org/10.1155/2014/320796

Pathogen Associated Molecular Pattern — an overview. ScienceDirect Topics [WWW Document], https://www.sciencedirect.com/topics/medicine-and-dentistry/pathogen-associated-molecular-pattern

Pathogenesis-Related Protein — an overview. ScienceDirect Topics [WWW Document], https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/pathogenesis-related-protein

Pawlowski, K. and Sirrenberg, A. 2003. Symbiosis between Frankia and actinorhizal plants: root nodules of non-legumes. Indian Journal of Experimental Biology 41:1165–1183.

Piasecka, A., Jedrzejczak-Rey, N., and Bednarek, P. 2015. Secondary metabolites in plant innate immunity: conserved function of divergent chemicals. New Phytologist 206:948–964. https://doi.org/10.1111/nph.13325

Pii, Y., Astegno, A., Peroni, E., Zaccardelli, M., Pandolfini, T., and Crimi, M. 2009. The Medicago truncatula N5 gene encoding a root-specific lipid transfer protein is required for the symbiotic interaction with Sinorhizobium meliloti. Molecular Plant-Microbe Interactions 22:1577–1587. https://doi.org/10.1094/MPMI-22-12-1577

Pii, Y., Molesini, B., Masiero, S., and Pandolfini, T. 2012. The non-specific lipid transfer protein N5 of Medicago truncatula is implicated in epidermal stages of rhizobium-host interaction. BMC Plant Biology 12:233. https://doi.org/10.1186/1471-2229-12-233

Polanowski, A., Wilusz, T., Nienartowicz, B., Cieślar, E., Słomińska, A., and Nowak, K. 1980. Isolation and partial amino acid sequence of the trypsin inhibitor from the seeds of Cucurbita maxima. Acta Biochimica Polonica 27:371–382.

Rejeb, I., Pastor, V., and Mauch-Mani, B. 2014. Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants 3(4):458–475. https://doi.org/10.3390/plants3040458

Sagaram, U. S., Pandurangi, R., Kaur, J., Smith, T. J., and Shah, D. M. 2011. Structure-activity determinants in antifungal plant defensins MsDef1 and MtDef4 with different modes of action against Fusarium graminearum. PLoS ONE 6:e18550. https://doi.org/10.1371/journal.pone.0018550

Segura, A., Moreno, M., and García-Olmedo, F. 1993. Purification and antipathogenic activity of lipid transfer proteins (LTPs) from the leaves of Arabidopsis and spinach. FEBS Letters 332:243–246. https://doi.org/10.1016/0014-5793(93)80641-7

Selitrennikoff, C. P. 2001. Antifungal proteins. Applied and Environmental Microbiology 67:2883–2894. https://doi.org/10.1128/AEM.67.7.2883-2894.2001

Slavokhotova, A. A., Shelenkov, A. A., Andreev, Y. A., and Odintsova, T. I. 2017. Hevein-like antimicrobial peptides of plants. Biochemistry (Moscow) 82:1659–1674. https://doi.org/10.1134/S0006297917130065

Slazak, B., Kapusta, M., Malik, S., Bohdanowicz, J., Kuta, E., Malec, P., and Göransson, U. 2016. Immunolocalization of cyclotides in plant cells, tissues and organ supports their role in host defense. Planta 244:1029–1040. https://doi.org/10.1007/s00425-016-2562-y

Sousa, D. A., Porto, W. F., Silva, M. Z., Da Silva, T. R., and Franco, O. L. 2016. Influence of cysteine and tryptophan substitution on DNA-binding activity on maize α-hairpinin antimicrobial peptide. Molecules 21:1062. https://doi.org/10.3390/molecules21081062

Stec, B. 2006. Plant thionins — the structural perspective. Cellular and Molecular Life Sciences 63:1370–1385. https://doi.org/10.1007/s00018-005-5574-5

Stec, B., Markman, O., Rao, U., Heffron, G., Henderson, S., Vernon, L. P., Brumfeld, V., and Teeter, M. M. 2004. Proposal for molecular mechanism of thionins deduced from physico-chemical studies of plant toxins. The Journal of Peptide Research 64:210–224. https://doi.org/10.1111/j.1399-3011.2004.00187.x

Stolf-Moreira, R., Medri, M. E., Neumaier, N., Lemos, N. G., Pimenta, J. A., Tobita, S., Brogin, R. L., Marcelino-Guimarães, F. C., Oliveira, M. C. N., Farias, J. R. B., Abdelnoor, R. V., and Nepomuceno, A. L. 2010. Soybean physiology and gene expression during drought. Genetics and Molecular Research 9:1946–1956. https://doi.org/10.4238/vol9-4gmr851

Stotz, H. U., Thomson, J., and Wang, Y. 2009. Plant defensins: defense, development and application. Plant Signaling & Behavior 4:1010–1012. https://doi.org/10.4161/psb.4.11.9755

Strömstedt, A. A., Ringstad, L., Schmidtchen, A., and Malmsten, M. 2010. Interaction between amphiphilic peptides and phospholipid membranes. Current Opinion in Colloid & Interface Science 15:467–478. https://doi.org/10.1016/j.cocis.2010.05.006

Sui, J., Jiang, D., Zhang, D., Song, X., Wang, J., Zhao, M., and Qiao, L. 2016. The salinity responsive mechanism of a hydroxyproline-tolerant mutant of peanut based on digital gene expression profiling analysis. PLoS ONE 11:e0162556. https://doi.org/10.1371/journal.pone.0162556

Sun, S., Wang, H., Yu, H., Zhong, C., Zhang, X., Peng, J., and Wang, X. 2013. GASA14 regulates leaf expansion and abiotic stress resistance by modulating reactive oxygen species accumulation. Journal of Experimental Botany 64:1637–1647. https://doi.org/10.1093/jxb/ert021

Svangård, E., Burman, R., Gunasekera, S., Lövborg, H., Gullbo, J., and Göransson, U. 2007. Mechanism of action of cytotoxic cyclotides: cycloviolacin O2 disrupts lipid membranes. Journal of Natural Products 70:643–647. https://doi.org/10.1021/np070007v

Taji, T., Seki, M., Satou, M., Sakurai, T., Kobayashi, M., Ishiyama, K., Narusaka, Y., Narusaka, M., Zhu, J.-K., and Shinozaki, K. 2004. Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiology 135:1697–1709. https://doi.org/10.1104/pp.104.039909

Tam, J. P., Wang, S., Wong, K. H., and Tan, W. L. 2015. Antimicrobial peptides from plants. Pharmaceuticals 8:711–757. https://doi.org/10.3390/ph8040711

Terras, F. R., Eggermont, K., Kovaleva, V., Raikhel, N. V., Osborn, R. W., Kester, A., Rees, S. B., Torrekens, S., Van Leuven, F., and Vanderleyden, J. 1995. Small cysteine-rich antifungal proteins from radish: their role in host defense. The Plant Cell 7:573–588. https://doi.org/10.1105/tpc.7.5.573

Thomma, B. P. H. J., Nürnberger, T., and Joosten, M. H. A. J. 2011. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. The Plant Cell 23:4–15. https://doi.org/10.1105/tpc.110.082602

Tiffin, P. and Moeller, D. A. 2006. Molecular evolution of plant immune system genes. Trends in Genetics 22:662–670. https://doi.org/10.1016/j.tig.2006.09.011

Turrini, A., Sbrana, C., Pitto, L., Castiglione, M. R., Giorgetti, L., Briganti, R., Bracci, T., Evangelista, M., Nuti, M. P., and Giovannetti, M. 2004. The antifungal Dm-AMP1 protein from Dahlia merckii expressed in Solanum melongena is released in root exudates and differentially affects pathogenic fungi and mycorrhizal symbiosis. New Phytologist 163:393–403. https://doi.org/10.1111/j.1469-8137.2004.01107.x

Van de Velde, W., Zehirov, G., Szatmari, A., Debreczeny, M., Ishihara, H., Kevei, Z., Farkas, A., Mikulass, K., Nagy, A., Tiricz, H., Satiat-Jeunemaître, B., Alunni, B., Bourge, M., Kucho, K., Abe, M., Kereszt, A., Maroti, G., Uchiumi, T., Kondorosi, E., and Mergaert, P. 2010. Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327:1122–1126. https://doi.org/10.1126/science.1184057

Van den Bergh, K. P. B., Rougé, P., Proost, P., Coosemans, J., Krouglova, T., Engelborghs, Y., Peumans, W. J., and Van Damme, E. J. M. 2004. Synergistic antifungal activity of two chitin-binding proteins from spindle tree (Euonymus europaeus L.). Planta 219:221–232. https://doi.org/10.1007/s00425-004-1238-1

Vasilchenko, A. S., Yuryev, M., Ryazantsev, D. Y., Zavriev, S. K., Feofanov, A. V., Grishin, E. V., and Rogozhin, E. A. 2016. Studying of cellular interaction of hairpin-like peptide EcAMP1 from barnyard grass (Echinochloa crusgalli L.) seeds with plant pathogenic fungus Fusarium solani using microscopy techniques. Scanning 38:591–598. https://doi.org/10.1002/sca.21305

Verma, S., Nizam, S., and Verma, P. K. 2013. Biotic and abiotic stress signaling in plants, in: Sarwat, M., Ahmad, A., and Abdin, M. (Eds.), Stress signaling in plants: Genomics and proteomics perspective, Volume 1. Springer New York, New York, NY, pp. 25–49. https://doi.org/10.1007/978-1-4614-6372-6_2

Vernon, L. P. and Bell, J. D. 1992. Membrane structure, toxins and phospholipase A2 activity. Pharmacology & Therapeutics 54:269–295. https://doi.org/10.1016/0163-7258(92)90003-i

Wang, Q., Liu, J., Li, H., Yang, S., Körmöczi, P., Kereszt, A., and Zhu, H. 2018. Nodule-specific cysteine-rich peptides negatively regulate nitrogen-fixing symbiosis in a strain-specific manner in Medicago truncatula. Molecular Plant-Microbe Interactions 31:240–248. https://doi.org/10.1094/MPMI-08-17-0207-R

Wang, Q., Yang, S., Liu, J., Terecskei, K., Ábrahám, E., Gombár, A., Domonkos, Á., Szűcs, A., Körmöczi, P., Wang, T., Fodor, L., Mao, L., Fei, Z., Kondorosi, É., Kaló, P., Kereszt, A., and Zhu, H. 2017. Host-secreted antimicrobial peptide enforces symbiotic selectivity in Medicago truncatula. Proceedings of the National Academy of Sciences USA 114:6854–6859. https://doi.org/10.1073/pnas.1700715114

Ward, J. M., Mäser, P., and Schroeder, J. I. 2009. Plant ion channels: gene families, physiology, and functional genomics analyses. Annual Review of Physiology 71:59–82. https://doi.org/10.1146/annurev.physiol.010908.163204

Weerden, N. L. van der, Lay, F. T., and Anderson, M. A. 2008. The plant defensin, NaD1, enters the cytoplasm of Fusarium oxysporum hyphae. The Journal of Biological Chemistry 283:14445–14452. https://doi.org/10.1074/jbc.M709867200

Woynarowski, J. M. and Konopa, J. 1980. Interaction between DNA and viscotoxins. Cytotoxic basic polypeptides from Viscum album L. Hoppe-Seyler's Zeitschrift fur physiologische Chemie 361:1535–1545. https://doi.org/10.1515/bchm2.1980.361.2.1535

Yang, S., Wang, Q., Fedorova, E., Liu, J., Qin, Q., Zheng, Q., Price, P. A., Pan, H., Wang, D., Griffitts, J. S., Bisseling, T., and Zhu, H. 2017. Microsymbiont discrimination mediated by a host-secreted peptide in Medicago truncatula. Proceedings of the National Academy of Sciences USA 114:6848–6853. https://doi.org/10.1073/pnas.1700460114

Ye, Y., Ding, Y., Jiang, Q., Wang, F., Sun, J., and Zhu, C. 2017. The role of receptor-like protein kinases (RLKs) in abiotic stress response in plants. Plant Cell Reports 36:235–242. https://doi.org/10.1007/s00299-016-2084-x

Zhang, H. and Sonnewald, U. 2017. Differences and commonalities of plant responses to single and combined stresses. The Plant Journal 90:839–855. https://doi.org/10.1111/tpj.13557

Zhang, S. and Wang, X. 2011. Overexpression of GASA5 increases the sensitivity of Arabidopsis to heat stress. Journal of Plant Physiology 168:2093–2101. https://doi.org/10.1016/j.jplph.2011.06.010

Zhu, S. 2008. Discovery of six families of fungal defensin-like peptides provides insights into origin and evolution of the CSαβ defensins. Molecular Immunology 45:828–838. https://doi.org/10.1016/j.molimm.2007.06.354

Zhu, S. 2007. Evidence for myxobacterial origin of eukaryotic defensins. Immunogenetics 59:949–954. https://doi.org/10.1007/s00251-007-0259-x

Zipfel, C. and Oldroyd, G. E. D. 2017. Plant signalling in symbiosis and immunity. Nature 543:328–336. https://doi.org/10.1038/nature22009

Zou, H.-W., Tian, X.-H., Ma, G.-H., and Li, Z.-X. 2013. Isolation and functional analysis of ZmLTP3, a homologue to Arabidopsis LTP3. International Journal of Molecular Sciences 14:5025–5035. https://doi.org/10.3390/ijms14035025

Published
2020-06-05
How to Cite
Kulaeva, O., Kliukova, M., Afonin, A., Sulima, A., Zhukov, V., & Tikhonovich, I. (2020). The role of plant antimicrobial peptides (AMPs) in response to biotic and abiotic environmental factors. Biological Communications, 65(2), 187–199. https://doi.org/10.21638/spbu03.2020.205
Section
Review communications