Specific features of the transcriptomic response to nitrogen starvation in methylotrophic yeast Komagataella phaffii

Authors

  • Anastasiya Makeeva Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-7181-0495
  • Anton Sidorin Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-9688-9347
  • Valeria Ishtuganova Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0009-0007-6496-6073
  • Elena Sambuk Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0003-0837-0498
  • Marina Padkina Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-4051-4837
  • Andrey Rumyantsev Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-1744-3890

DOI:

https://doi.org/10.21638/spbu03.2024.402

Abstract

Non-conventional methylotrophic yeast Komagataella phaffii is an important production host in biotechnology and an emerging model organism. In this work, we studied K. phaffii response to nitrogen starvation during cultivation in media with methanol as the sole carbon source. The results were compared with a well-established model yeast Saccharomyces cerevisiae. Some of the observed effects of nitrogen starvation in K. phaffii were similar to those in S. cerevisiae, although this yeast does not have a metabolic pathway for methanol utilization. The effects include activation of autophagy, transport and catabolism of nitrogen-containing compounds, interconversions of amino acids, and biosynthesis of fatty acids. K. phaffii cells also demonstrated a specific response to nitrogen starvation including suppression of genes involved in methanol metabolism and other peroxisomal processes and activation of purine catabolism genes.

Keywords:

Komagataella phaffii, Pichia pastoris, methylotrophy, nitrogen metabolism, nitrogen starvation, methanol metabolism, transcriptomic analysis, sulfur amino acids, purine catabolism

Downloads

Download data is not yet available.
 

References

Alme, E. B., Stevenson, E., Krogan, N. J., Swaney, D. L., and Toczyski, D. P. 2020. The kinase Isr1 negatively regulates hexosamine biosynthesis in S. cerevisiae. PLoS Genetics 16(6):e1008840. https://doi.org/10.1371/journal.pgen.1008840

Andrews S. 2010. FastQC: A quality control tool for high throughput sequence data. Available at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc

Barraza, C. E., Solari, C. A., Rinaldi, J., Ojeda, L., Rossi, S., Ashe, M. P., and Portela, P. 2021. A prion-like domain of Tpk2 catalytic subunit of protein kinase A modulates P-body formation in response to stress in budding yeast. Biochimica et Biophysica Acta. Molecular Cell Research 1868(1):118884. https://doi.org/10.1016/j.bbamcr.2020.118884

Beaufour, M., Godin, F., Vallée, B., Cadene, M., and Bénédetti, H. 2012. Interaction proteomics suggests a new role for the Tfs1 protein in yeast. Journal of Proteome Research 11(6):3211–3218. https://doi.org/10.1021/pr201239t

Bernauer, L., Radkohl, A., Lehmayer, L. G. K., and Emmerstorfer-Augustin, A. 2021. Komagataella phaffii as emerging model organism in fundamental research. Frontiers in Microbiology 11:607028. https://doi.org/10.3389/fmicb.2020.607028

Berrios, J., Theron, C. W., Steels, S., Ponce, B., Velastegui, E., Bustos, C., Altamirano, C., and Fickers, P. 2022. Role of dissimilative pathway of Komagataella phaffii (Pichia pastoris): Formaldehyde toxicity and energy metabolism. Microorganisms 10(7):1466. https://doi.org/10.3390/microorganisms10071466

Bianchi, F., Van’t Klooster, J. S., Ruiz, S. J., and Poolman, B. 2019. Regulation of amino acid transport in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews: MMBR 83(4):e00024–19. https://doi.org/10.1128/MMBR.00024-19

Boer, V. M., de Winde, J. H., Pronk, J. T., and Piper, M. D. 2003. The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur. The Journal of Biological Chemistry 278(5):3265–3274. https://doi.org/10.1074/jbc.M209759200

Bolger, A. M., Lohse, M., and Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

Bonfils, G., Jaquenoud, M., Bontron, S., Ostrowicz, C., Ungermann, C., and De Virgilio, C. 2012. Leucyl-tRNA synthetase controls TORC1 via the EGO complex. Molecular Cell 46(1):105–110. https://doi.org/10.1016/j.molcel.2012.02.009

Burg, J. S. and Espenshade, P. J. 2011. Regulation of HMG-CoA reductase in mammals and yeast. Progress in Lipid Research 50(4):403–410. https://doi.org/10.1016/j.plipres.2011.07.002

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T. L. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421. https://doi.org/10.1186/1471-2105-10-421

Carneiro, C. V. G. C., Serra, L. A., Pacheco, T. F., Ferreira, L. M. M., Brandão, L. T. D., Freitas, M. Nd. M., Trichez, D., and Almeida, J. R. Md. 2022. Advances in Komagataella phaffii Engineering for the production of renewable chemicals and proteins. Fermentation 8(11):575. https://doi.org/10.3390/fermentation8110575

Chautard, H., Jacquet, M., Schoentgen, F., Bureaud, N., and Bénédetti, H. 2004. Tfs1p, a member of the PEBP family, inhibits the Ira2p but not the Ira1p Ras GTPase-activating protein in Saccharomyces cerevisiae. Eukaryotic Cell 3(2):459–470. https://doi.org/10.1128/EC.3.2.459-470.2004

Cherry, J. R., Johnson, T. R., Dollard, C., Shuster, J. R., and Denis, C. L. 1989. Cyclic AMP-dependent protein kinase phosphorylates and inactivates the yeast transcriptional activator ADR1. Cell 56(3):409–419. https://doi.org/10.1016/0092-8674(89)90244-4

Cherry, J. M., Hong, E. L., Amundsen, C., Balakrishnan, R., Binkley, G., Chan, E. T., Christie, K. R., Costanzo, M. C., Dwight, S. S., Engel, S. R., Fisk, D. G., Hirschman, J. E., Hitz, B. C., Karra, K., Krieger, C. J., Miyasato, S. R., Nash, R. S., Park, J., Skrzypek, M. S., Simison, M., Weng, S., and Wong, E. D. 2012. Saccharomyces Genome Database: The genomics resource of budding yeast. Nucleic Acids Research 40(Database issue):D700–D705. https://doi.org/10.1093/nar/gkr1029

Conrad, M., Schothorst, J., Kankipati, H. N., Van Zeebroeck, G., Rubio-Texeira, M., and Thevelein, J. M. 2014. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiology Reviews 38(2):254–299. https://doi.org/10.1111/1574-6976.12065

Creamer, D. R., Hubbard, S. J., Ashe, M. P., and Grant, C. M. 2022. Yeast protein kinase A isoforms: A means of encoding specificity in the response to diverse stress conditions? Biomolecules 12(7):958. https://doi.org/10.3390/biom12070958

Cultrone, A., Scazzocchio, C., Rochet, M., Montero-Morán, G., Drevet, C., and Fernández-Martín, R. 2005. Convergent evolution of hydroxylation mechanisms in the fungal kingdom: molybdenum cofactor-independent hydroxylation of xanthine via alpha-ketoglutarate-dependent dioxygenases. Molecular Microbiology 57(1):276–290. https://doi.org/10.1111/j.1365-2958.2005.04686.x

Daignan-Fornier, B. and Pinson, B. 2019. Yeast to study human purine metabolism diseases. Cells 8(1):67. https://doi.org/10.3390/cells8010067

De, S., Rebnegger, C., Moser, J., Tatto, N., Graf, A. B., Mattanovich, D., and Gasser, B. 2020. Pseudohyphal differentiation in Komagataella phaffii: Investigating the FLO gene family. FEMS Yeast Research 20(5):foaa044. https://doi.org/10.1093/femsyr/foaa044

De Schutter, K., Lin, Y. C., Tiels, P., Van Hecke, A., Glinka, S., Weber-Lehmann, J., Rouzé, P., Van de Peer, Y., and Callewaert, N. 2009. Genome sequence of the recombinant protein production host Pichia pastoris. Nature Biotechnology 27(6):561–566. https://doi.org/10.1038/nbt.1544

Dey, T., Krishna Rao, K., Khatun, J., and Rangarajan, P. N. 2018. The nuclear transcription factor Rtg1p functions as a cytosolic, post-transcriptional regulator in the methylotrophic yeast Pichia pastoris. The Journal of Biological Chemistry 293(43):16647–16660. https://doi.org/10.1074/jbc.RA118.004486

Genuth, N. R. and Barna, M. 2018. The Discovery of ribosome heterogeneity and its implications for gene regulation and organismal life. Molecular Cell 71(3):364–374. https://doi.org/10.1016/j.molcel.2018.07.018

Godard, P., Urrestarazu, A., Vissers, S., Kontos, K., Bontempi, G., van Helden, J., and André, B. 2007. Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. Molecular and Cellular Biology 27(8):3065–3086. https://doi.org/10.1128/MCB. 01084-06

Grimm, I., Erdmann, R., and Girzalsky, W. 2016. Role of AAA(+)-proteins in peroxisome biogenesis and function. Biochimica et Biophysica Ac-ta 1863(5):828–837. https://doi.org/10.1016/j.bbamcr.2015.10.001

Guaragnella, N. and Butow, R. A. 2003. ATO3 encoding a putative outward ammonium transporter is an RTG-independent retrograde responsive gene regulated by GCN4 and the Ssy1-Ptr3-Ssy5 amino acid sensor system. The Journal of Biological Chemistry 278(46):45882–45887. https://doi.org/10.1074/jbc.M309301200

Guo, C., Huang, Y., Zheng, H., Tang, L., He, J., Xiang, L., Liu, D., and Jiang, H. 2012. Secretion and activity of antimicrobial peptide cecropin D expressed in Pichia pastoris. Experimental and Therapeutic Medicine 4(6):1063–1068. https://doi.org/10.3892/etm.2012.719

Gupta, A., Krishna Rao, K., Sahu, U., and Rangarajan, P. N. 2021. Characterization of the transactivation and nuclear localization functions of Pichia pastoris zinc finger transcription factor Mxr1p. The Journal of Biological Chemistry 297(4):101247. https://doi.org/10.1016/j.jbc.2021.101247

Hartner, F. S. and Glieder, A. 2006. Regulation of methanol utilisation pathway genes in yeasts. Microbial Cell Factories 5:39. https://doi.org/10.1186/1475-2859-5-39

Hazelwood, L. A., Daran, J. M., van Maris, A. J., Pronk, J. T., and Dickinson, J. R. 2008. The Ehrlich pathway for fusel alcohol production: A century of research on Saccharomyces cerevisiae metabolism. Applied and Environmental Microbiology 74(8):2259–2266. https://doi.org/10.1128/AEM. 02625-07

Ianshina, T., Sidorin, A., Petrova, K., Shubert, M., Makeeva, A., Sambuk, E., Govdi, A., Rumyantsev, A., and Padkina, M. 2023. Effect of methionine on gene expression in Komagataella phaffii cells. Microorganisms 11(4):877. https://doi.org/10.3390/microorganisms11040877

Jordá, T. and Puig, S. 2020. Regulation of ergosterol biosynthesis in Saccharomyces cerevisiae. Genes 11(7):795. https://doi.org/10.3390/genes11070795

Kanehisa, M. and Goto, S. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research 28(1):27–30. https://doi.org/10.1093/nar/28.1.27

Karbalaei, M., Rezaee, S. A., and Farsiani, H. 2020. Pichia pastoris: A highly successful expression system for optimal synthesis of heterologous proteins. Journal of Cellular Physiology 235(9):5867–5881. https://doi.org/10.1002/jcp.29583

Kim, D., Paggi, J. M., Park, C., Bennett, C., and Salzberg, S. L. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology 37(8):907–915. https://doi.org/10.1038/s41587-019-0201-4

Leonardi, R., Zhang, Y. M., Rock, C. O., and Jackowski, S. 2005. Coenzyme A: Back in action. Progress in Lipid Research 44(2–3):125–153. https://doi.org/10.1016/j.plipres.2005.04.001

Li, D., Song, J. Z., Li, H., Shan, M. H., Liang, Y., Zhu, J., and Xie, Z. 2015. Storage lipid synthesis is necessary for autophagy induced by nitrogen starvation. FEBS Letters 589(2):269–276. https://doi.org/10.1016/j.febslet.2014.11.050

Liao, Y., Smyth, G. K., and Shi, W. 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7):923–930. https://doi.org/10.1093/bioinformatics/btt656

Lin-Cereghino, G. P., Godfrey, L., de la Cruz, B. J., Johnson, S., Khuongsathiene, S., Tolstorukov, I., Yan, M., Lin-Cereghino, J., Veenhuis, M., Subrama-ni, S., and Cregg, J. M. 2006. Mxr1p, a key regulator of the methanol utilization pathway and peroxisomal genes in Pichia pastoris. Molecular and Cellular Biology 26(3):883–897. https://doi.org/10.1128/MCB. 26.3.883-897.2006

Liu, K., Sutter, B. M., and Tu, B. P. 2021. Autophagy sustains glutamate and aspartate synthesis in Saccharomyces cerevisiae during nitrogen starvation. Nature Communications 12(1):57. https://doi.org/10.1038/s41467-020-20253-6

Ljungdahl, P. O. and Daignan-Fornier, B. 2012. Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics 190(3):885–929. https://doi.org/10.1534/genetics.111.133306

Love, M. I., Huber, W., and Anders, S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15(12):550. https://doi.org/10.1186/s13059-014-0550-8

Mima, J., Hayashida, M., Fujii, T., Narita, Y., Hayashi, R., Ueda, M., and Hata, Y. 2005. Structure of the carboxypeptidase Y inhibitor IC in complex with the cognate proteinase reveals a novel mode of the proteinase-protein inhibitor interaction. Journal of Molecular Biology 346(5):1323–1334. https://doi.org/10.1016/j.jmb.2004.12.051

Nakamura, N., Matsuura, A., Wada, Y., and Ohsumi, Y. 1997. Acidification of vacuoles is required for autophagic degradation in the yeast, Saccharomyces cerevisiae. Journal of Biochemistry 121(2):338–344. https://doi.org/10.1093/oxfordjournals.jbchem.a021592

Palmgren, M., Hernebring, M., Eriksson, S., Elbing, K., Geijer, C., Lasič, S., Dahl, P., Hansen, J. S., Topgaard, D., and Lindkvist-Petersson, K. 2017. Quan-tification of the intracellular life time of water molecules to measure transport rates of human aquaglyceroporins. The Journal of Membrane Biology 250(6):629–639. https://doi.org/10.1007/s00232-017-9988-4

Parzych, K. R., Ariosa, A., Mari, M., and Klionsky, D. J. 2018. A newly characterized vacuolar serine carboxypeptidase, Atg42/Ybr139w, is required for normal vacuole function and the terminal steps of autophagy in the yeast Saccharomyces cerevisiae. Molecular Biology of the Cell 29(9):1089–1099. https://doi.org/10.1091/mbc.E17-08-0516

Perpète, P., Duthoit, O., De Maeyer, S., Imray, L., Lawton, A. I., Stavropoulos, K. E., Gitonga, V. W., Hewlins, M. J., and Dickinson, J. R. 2006. Methionine catabolism in Saccharomyces cerevisiae. FEMS Yeast Research 6(1):48–56. https://doi.org/10.1111/j.1567-1356.2005.00005.x

Pietrocola, F., Galluzzi, L., Bravo-San Pedro, J. M., Madeo, F., and Kroemer, G. 2015. Acetyl coenzyme A: A central metabolite and second messenger. Cell Metabolism 21(6):805–821. https://doi.org/10.1016/j.cmet.2015.05.014

Pires, E. J., Teixeira, J. A., Brányik, T., and Vicente, A. A. 2014. Yeast: the soul of beer’s aroma–a review of flavour-active esters and higher alcohols produced by the brewing yeast. Applied Microbiology and Biotechnology 98(5):1937–1949. https://doi.org/10.1007/s00253-013-5470-0

R Core Team. 2021. R: A language and environment for statistical computing. R foundation for statistical computing. Vienna, Austria. Available at: https://www.r-project.org/

Robertson, L. S., Causton, H. C., Young, R. A., and Fink, G. R. 2000. The yeast A kinases differentially regulate iron uptake and respiratory function. Proceedings of the National Academy of Sciences of the United States of America 97(11):5984–5988. https://doi.org/10.1073/pnas.100113397

Rumyantsev, A. M., Soloviev, G. A., Slepchenkov, A. V., and Sambuk E. V. 2018. Effects of deletions in Pichia pastoris RTG genes on phenotype and AOX1 expression. Advances in Microbiology 8:439–450. https://doi.org/10.4236/aim.2018.85029

Rumyantsev, A., Sidorin, A., Volkov, A., Al Shanaa, O., Sambuk, E., and Padkina, M. 2021. Transcriptome analysis unveils the effects of proline on gene expression in the yeast Komagataella phaffii. Microorganisms 10(1):67. https://doi.org/10.3390/microorganisms10010067

Rußmayer, H., Buchetics, M., Gruber, C., Valli, M., Grillitsch, K., Modarres, G., Guerrasio, R., Klavins, K., Neubauer, S., Drexler, H., Steiger, M., Troyer, C., Al Chalabi, A., Krebiehl, G., Sonntag, D., Zellnig, G., Daum, G., Graf, A. B., Altmann, F., Koellensperger, Hann, S., Sauer, M., Mattanovich, D., and Gasser, B. 2015. Systems-level organization of yeast methylotrophic lifestyle. BMC Biology 13:80. https://doi.org/10.1186/s12915-015-0186-5

Sahu, U. and Rangarajan, P. N. 2016a. Regulation of acetate metabolism and acetyl Co-a Synthetase 1 (ACS1) expression by methanol expression Regulator 1 (Mxr1p) in the methylotrophic yeast Pichia pastoris. The Journal of Biological Chemistry 291(7):3648–3657. https://doi.org/10.1074/jbc.M115.673640

Sahu, U. and Rangarajan, P. N. 2016b. Methanol expression Regulator 1 (Mxr1p) is essential for the utilization of amino acids as the sole source of carbon by the methylotrophic yeast, Pichia pastoris. The Journal of Biological Chemistry 291(39):20588–20601. https://doi.org/10.1074/jbc.M116.740191

Shen, W., Kong, C., Xue, Y., Liu, Y., Cai, M., Zhang, Y., Jiang, T., Zhou, X., and Zhou, M. 2016. Kinase screening in Pichia pastoris identified promising targets involved in cell growth and alcohol Oxidase 1 promoter (PAOX1) regulation. PloS ONE 11(12):e0167766. https://doi.org/10.1371/journal.pone.0167766

Shi, L., Wang, X., Wang, J., Zhang, P., Qi, F., Cai, M., Zhang, Y., and Zhou, X. 2018. Transcriptome analysis of Δmig1Δmig2 mutant reveals their roles in methanol catabolism, peroxisome biogenesis and autophagy in methylotrophic yeast Pichia pastoris. Genes and Genomics 40(4):399–412. https://doi.org/10.1007/s13258-017-0641-5

Smith, R. L. and Johnson, A. D. 2000. Turning genes off by Ssn6-Tup1: A conserved system of transcriptional repression in eukaryotes. Trends in Biochemical Sciences 25(7):325–330. https://doi.org/10.1016/s0968-0004(00)01592-9

Sutter, B. M., Wu, X., Laxman, S., and Tu, B. P. 2013. Methionine inhibits autophagy and promotes growth by inducing the SAM-responsive methylation of PP2A. Cell 154(2):403–415. https://doi.org/10.1016/j.cell.2013.06.041

Tarassov, K., Messier, V., Landry, C. R., Radinovic, S., Serna Molina, M. M., Shames, I., Malitskaya, Y., Vogel, J., Bussey, H., and Michnick, S. W. 2008. An in vivo map of the yeast protein interactome. Science 320(5882):1465–1470. https://doi.org/10.1126/science.1153878

Tesnière, C., Brice, C., and Blondin, B. 2015. Responses of Saccharomyces cerevisiae to nitrogen starvation in wine alcoholic fermentation. Applied Microbiology and Biotechnology 99(17):7025–7034. https://doi.org/10.1007/s00253-015-6810-z

Vogl, T., Sturmberger, L., Kickenweiz, T., Wasmayer, R., Schmid, C., Hatzl, A. M., Gerstmann, M. A., Pitzer, J., Wagner, M., Thallinger, G. G., Geier, M., and Glieder, A. 2016. A Toolbox of diverse promoters related to methanol utilization: functionally verified parts for heterologous pathway expression in Pichia pastoris. ACS Synthetic Biology 5(2):172–186. https://doi.org/10.1021/acssynbio.5b00199

Vuralhan, Z., Luttik, M. A., Tai, S. L., Boer, V. M., Morais, M. A., Schipper, D., Almering, M. J., Kötter, P., Dickinson, J. R., Daran, J. M., and Pronk, J. T. 2005. Physiological characterization of the ARO10-dependent, broad-substrate-specificity 2-oxo acid decarboxylase activity of Saccharomyces cerevisiae. Applied and Environmental Microbiology 71(6):3276–3284. https://doi.org/10.1128/AEM. 71.6.3276-3284.2005

Wang, X., Cai, M., Shi, L., Wang, Q., Zhu, J., Wang, J., Zhou, M., Zhou, X., and Zhang, Y. 2016. PpNrg1 is a transcriptional repressor for glucose and glycerol repression of AOX1 promoter in methylotrophic yeast Pichia pastoris. Biotechnology Letters 38(2):291–298. https://doi.org/10.1007/s10529-015-1972-4

Wang, J., Wang, X., Shi, L., Qi, F., Zhang, P., Zhang, Y., Zhou, X., Song, Z., and Cai, M. 2017. Methanol-independent protein expression by AOX1 pro-moter with transacting elements engineering and glucose-glycerol-shift induction in Pichia pastoris. Scientific Reports 7:41850. https://doi.org/10.1038/srep41850

Wolfe K. H. 2015. Origin of the yeast whole-genome duplication. PloS Biology 13(8):e1002221. https://doi.org/10.1371/journal.pbio.1002221

Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., Feng, T., Zhou, L., Tang, W., Zhan, L., Fu, X., Liu, S., Bo, X., and Yu, G. 2021. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2(3):100141. https://doi.org/10.1016/j.xinn.2021.100141

Yurimoto, H., Oku, M., and Sakai, Y. 2011. Yeast methylotrophy: Metabolism, gene regulation and peroxisome homeostasis. International Journal of Microbiology 2011:101298. https://doi.org/10.1155/2011/101298

Zeng, Q., Araki, Y., and Noda, T. 2024. Pib2 is a cysteine sensor involved in TORC1 activation in Saccharomyces cerevisiae. Cell Reports 43(1):113599. https://doi.org/10.1016/j.celrep.2023.113599

Zhan, C., Wang, S., Sun, Y., Dai, X., Liu, X., Harvey, L., McNeil, B., Yang, Y., and Bai, Z. 2016. The Pichia pastoris transmembrane protein GT1 is a glycerol transporter and relieves the repression of glycerol on AOX1 expression. FEMS Yeast Research 16(4):fow033. https://doi.org/10.1093/femsyr/fow033

Zhang, W., Du, G., Zhou, J., and Chen, J. 2018. Regulation of sensing, transportation, and catabolism of nitrogen sources in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews: MMBR 82(1):e00040-17. https://doi.org/10.1128/MMBR.00040-17

Zhang, P., Zhang, W., Zhou, X., Bai, P., Cregg, J. M., and Zhang, Y. 2010. Catabolite repression of Aox in Pichia pastoris is dependent on hexose transporter PpHxt1 and pexophagy. Applied and Environmental Microbiology 76(18):6108–6118. https://doi.org/10.1128/AEM.00607-10

Downloads

Published

2024-12-31

How to Cite

Makeeva, A., Sidorin, A., Ishtuganova, V., Sambuk, E., Padkina, M., & Rumyantsev, A. (2024). Specific features of the transcriptomic response to nitrogen starvation in methylotrophic yeast <em>Komagataella phaffii</em>. Biological Communications, 69(4), 214–228. https://doi.org/10.21638/spbu03.2024.402

Issue

Section

Full communications

Categories