Dynamics of the photosystem II photochemical activity in the developing Brassica nigra L. seeds

  • Galina Smolikova Saint Petersburg State University, 7–9, Universitetskaya nab., Saint Petersburg, 199034, Russian Federation
  • Vitaliy Lebedev Herzen State Pedagogical University of Russia, 48, nab. Reki Moyki, St. Petersburg, 191186, Russian Federation
  • Vasiliy Lopatov Herzen State Pedagogical University of Russia, 48, nab. Reki Moyki, St. Petersburg, 191186, Russian Federation
  • Valentina Timoshchuk Herzen State Pedagogical University of Russia, 48, nab. Reki Moyki, St. Petersburg, 191186, Russian Federation
  • Sergei Medvedev Saint Petersburg State University, 7–9, Universitetskaya nab., Saint Petersburg, 199034, Russian Federation


Dynamics of the PS II activity in the pod walls, seed coat and embryo cotyledons at early and middle maturation stages of Brassica nigra L. has been studied using the Junior-PAM fluorometer (Heinz Walz Gmbh, Germany). The maximum quantum yield Fv/Fm, effective quantum yield Y(II) and coefficient of photochemical fluorescence quenching qP have been evaluated. We demonstrated maturation-dependent fluctuation of the PS II activity in the different part of seeds: Fv/Fm, Y(II) and qP decreased in the pod walls and seed coat, but increased in the cotyledons of embryo. During transition from early to middle stage of maturation, the maximal electron transport rate of PS II in the cotyledons increased and reached the maximum at higher level of photosynthetic active radiation. Improving the efficiency of PS II in the developing cotyledons of the embryo can be attributed to adaptation of the chloroplasts to a higher light probably due to the increase of light transmission through the seed coat and pericarp at later stages of seed maturation. Refs 29. Figs. 3.


Brassica nigra L., seeds, chloroembryos, embryogenesis, photosynthesis, photosystem II, PAM-fluorometer


Download data is not yet available.


Flahault M. Ch. Sur la présence de la matiére verte dans les organes actuellement soustraits a l’influence de la lumiére. Bull. Soc. Bot. France, 1879, vol. 26, pp. 249–259.

Periasamy K., Vivekanandan M. Photosynthesis in the chloroembryo of Cyamopsis tetrago-naloba Tanu. Ann. Bot., 1981, vol. 47, pp. 793–797.

Eastmond P., Kolacna L., Rawsthorne S. Photosynthesis by developing embryos of oilseed rape (Brassica napus L.). J. Exp. Bot., 1996, vol. 47, pp. 1763–1769.

Asokanthan P. S., Johnson R. W., Griffith M., Krol M. The photosynthetic potential of canola embryos. Physiol. Plant., 1997, vol. 101, pp. 353–360.

Ruuska S. A., Schwender J., Ohlrogge J. B. The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes. Plant Physiol., 2004, vol. 136, pp. 2700–2709.

Puthur J. T., Shackira A. M., Saradhi P. P., Bartels D. Chloroembryos: a unique photosynthesis system. J. Plant Physiol., 2013, vol. 170, pp. 1131–1138.

Allorent G., Osorio S., Vu J. L., Falconet D., Jouhet J., Kuntz M., Fernie A. R., Lerbs-Mache S., Macherel D., Courtois F., Finazzi G. Adjustments of embryonic photosynthetic activity modulate seed fitness in Arabidopsis thaliana. New Phytol., 2015, vol. 205, pp. 707–719.

Yakovlev M. S. Embryogenesis and some problems of phylogenesis. Rev. Cytol. Biol. Veg., 1969, vol. 32, no. 2, pp. 325–330.

Iakovlev M. S., Zhukova G. Ia. Pokrytosemennye rasteniia s zelenym i bestsvetnym zarodyshem (khloro- i leikoembriofity) [Angiosperms with green and colorless embryo (chloro- and leucoembryophytes)]. Leningrad, Nauka Publ., 1973. 116 p. (In Russian)

Periasamy K, Vivekanandan M. Photosynthetic functions and induction of etiolation in chloroembryos of Dolichos lablab L. J. Plant Physiol., 1986, vol. 123, pp. 395–399.

Smolikova G. N., Laman N. A., Boriskevich O. V. Role of chlorophylls and carotenoids in seed tolerance to abiotic stressors. Russ. J. Plant Physiol., 2011, vol. 58, no. 6, pp. 965–973.

Smolikova G. N., Medvedev S. S. Photosynthesis in the seeds of chloroembryophytes. Russ. J. Plant Physiol., 2016, vol. 63, no. 1. pp. 1–12.

Kremnev D., Strand A. Plastid encoded RNA polymerase activity and expression of photosynthesis genes required for embryo and seed development in Arabidopsis. Front. Plant Sci., 2014, vol. 5, pp. 385–397.

Allen D. K., Ohlrogge J. B., Shachar-Hill Y. The role of light in soybean seed filling metabolism. Plant J., 2009, vol. 58, pp. 220–234.

Kulkarni M. G., Dalai A. K., Bakhshi N. N. Utilization of green seed canola oil for biodiesel production. J. Chem. Tech. Biotechnol., 2006, vol. 81, pp. 1886–1893.

Borisjuk L., Nguyen T. H., Neuberger T., Rutten T., Tschiersch H., Claus B., Feussner I., Webb A. G., Jakob P., Weber H., Wobus U., Rolletschek H. Gradients of lipid storage, photosynthesis and plastid differentiation in developing soybean seeds. New Phytol., 2005, vol. 167, no. 3, pp. 761–776.

Gaevskii N. A., Morgun V. N. Ispol’zovanie variabel’noi i zamedlennoi fluorestsentsii v izuchenii fotosinteza rastenii [Using a variable and delayed fluorescence in the study of photosynthesis in plants]. Fiziologiia rastenii [Russian Journal of Plant Physiology], 1993, vol. 40, no. 1, pp. 119–127. (In Russian)

Korneev D. Iu. Informatsionnye vozmozhnosti metoda induktsii fluorestsentsii khlorofilla [Information possibilities of the method of chlorophyll fluorescence induction]. K., Al’terpres Publ., 2002. 188 p. (In Russian)

Murchie E. H., Lawson T. Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. J. Exp. Bot., 2013, vol. 64, no. 13, pp. 3983–3998.

Kalaji H. M., Schansker G., Ladle R. J. et al. Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynth. Res., 2014, vol. 122, pp. 121–158.

Porcar-Castell A., Tyystjärvi E., Atherton J., Van Der Tol C., Flexas J., Pfündel E. E., Moreno J., Frankenberg C., Berry J. A. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: Mechanisms and challenges. J. Exp. Bot., 2014, vol. 65, no. 15, pp. 4065–4095.

Junior-PAM Chlorophyll Fluorometer: Operator’s Guide. Ed. by E. Pfündel. Germany, Heinz Walz GmbH, 2007. 58 p.

Kitajima M., Butler W. L. Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim Biophys Acta., 1975, vol. 376, pp. 105–115.

Genty B., Briantaies J.-M., Baker N. R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta., 1989, vol. 990, pp. 87–92.

Loriaux S. D., Avenson T. J., Welles J. M., Mcdermitt D. K., Eckles R. D., Riensche B., Genty B. Closing in on maximum yield of chlorophyll fluorescence using a single multiphase flash of sub-saturating intensity. Plant, Cell and Environment, 2013, vol. 36, pp. 1755–1770.

Schreiber U. Detection of rapid induction kinetics with a new type of high frequency modulated chlorophyll fluorometer. Photosynth Res., 1986, vol. 9, no. 1–2, pp. 261–272.

Jahns P., Holzwarth A. R. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochimica et Biophysica Acta., 2012, vol. 1817, pp. 182–193.

Smolikova G. N., Medvedev S. S. Seed Carotenoids: Synthesis, Diversity, and Functions. Russ. J. Plant Physiol., 2015, vol. 62, no. 1, pp. 1–13.

Nixon P. J., Michoux F., Yu J., Boehm M., Komenda J. Recent advances in understanding the assembly and repair of photosystem II. Annals of Botany, 2010, vol. 106, pp. 1–16.
How to Cite
Smolikova, G., Lebedev, V., Lopatov, V., Timoshchuk, V., & Medvedev, S. (2015). Dynamics of the photosystem II photochemical activity in the developing <em>Brassica nigra</em&gt; L. seeds. Biological Communications, (3), 53–65. https://doi.org/10.21638/spbu03.2015.305
Full communications