Comparison of two systems of tonoplast purification from tobacco cells of suspension culture BY-2

  • Тingzhuo Chen Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation; Chengdu New Sun Crop Science Co., Ltd., No. 35, Gongye Five Road, Hengshan Town, Pujiang, Chengdu, 611630, Sichuan, People's Republic of China https://orcid.org/0000-0001-5143-6128
  • Anastasia Kirpichnikova Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0001-5133-5175
  • Yulia Mikhaylova Laboratory of Biosystematics and Cytology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova, 2, Saint Petersburg, 197376, Russian Federation https://orcid.org/0000-0001-9278-0937
  • Maria Shishova Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0003-3657-2986

Abstract

The tonoplast is an intracellular membrane, important for numerous functions of the vacuoles in plant cells. Transport, signaling, enzymatic activity and other processes of the tonoplast are the focus of a wide spectrum of studies. Multiple advanced analyses demand highly purified vacuoles or vesicles of the tonoplast membrane fraction. Since 1960 several approaches have been developed for such purification, but new goals and new model objects require adjustment of already existing techniques. The presented investigation aimed to compare two methods of tonoplast membrane fraction purification from tobacco suspension cell culture BY-2 (Nicotiana tabacum L., cv Bright Yellow) based on sucrose and sucrose/sorbitol gradients. The functional activity of obtained purified tonoplast fractions was measured by the hydrolytic activity of vacuolar H+-ATPase and H+-PPase.

Keywords:

tonoplast, vesicle fraction, purification, V-ATPase, H -PPase

Downloads

Download data is not yet available.
 

References

Boldyrev, A. A. 1990. Introduction to biomembranology. Izdatelstvo MGU, Moscow. 208 p. (In Russian)

Bradford, M. 1976. A rapid and sensitive method for the quentation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 1(2):248–254. https://doi.org/10.1016/0003-2697(76)90527-3

Briskin, D. P. and Reynolds-Niesman, I. 1991. Determination of H/ATP Stoichiometry for the plasma membrane H-ATPase from red beet (Beta vulgaris L.) storage tissue. Plant Physiology 95(1):242–250. https://doi.org/10.1104/pp.95.1.242

Briskin, D. P., Leonard, R. T., and Hodges, T. K. 1987. Isolation of the plasma membrane: Membrane markers and general principles. Methods in Enzymology 148:542–558. https://doi.org/10.1016/0076-6879(87)48053-1

Churchill, K. A. and Sze, H. 1983. Anion-sensitive, H+-pumping ATPase in membrane vesicles from oat roots. Plant Physiology 71:610–617. https://doi.org/10.1104/pp.71.3.610

Cocking, E. C. 1960. A method for the isolation of plant protoplasts and vacuoles. Nature 187:962–963. https://doi.org/10.1038/187962a0

Dettmer, J., Hong-Hermesdorf, A., Stierhof, Y.-D., and Schumacher, K. 2006. Vacuolar H+-ATPase activity is regulated for endocytic and secretory trafficking in Arabidopsis. The Plant Cell 18:715–730. https://doi.org/10.1105/tpc.105.037978

Dupont, F. M., Bennett, A. B., and Spanswick, R. M. 1982 Localization of a protontranslocating ATPase on sucrose gradient. Plant Physiology 70:1115–1119. https://doi.org/10.1104/pp.70.4.1115

Gregory, D. W. and Cocking, E. C. 1966. Studies on isolated protoplasts and vacuoles. I. General properties. Journal of Experimental Botany 17:57–67. https://doi.org/10.1093/jxb/17.1.57

Hasezawa, S. 1983. Hormonal control of elongation of tobacco cells derived from protoplasts. Plant Cell Physiology 24:127–132. https://doi.org/10.1093/oxfordjournals.pcp.a076507

Hatsugai, N., Yamada, K., Goto-Yamada, S., and Hara-Nishimura, I. 2015. Vacuolar processing enzyme in plant programmed cell death. Frontiers in Plant Science 6:234. https://doi.org/10.3389/fpls.2015.00234

Kobayashi, T., Niino, T., and Kobayashi, M. 2006. Cryopreservation of tobacco BY-2 suspension cell cultures using an encapsulation — simple prefreezing method. Biotechnology in Agriculture and Forestry, pp. 329–337 in: T. Nagata, K. Matsuoka, D. Inzé (eds) Tobacco BY-2 cells: From cellular dynamics to omics. Biotechnology in Agriculture and Forestry, vol 58. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32674-X_21

Kruger, F. and Schumacher, K. 2018. Pumping up the volume — vacuole biogenesis in Arabidopsis thaliana. Seminars in Cell & Developmental Biology 80:106–112. https://doi.org/10.1016/j.semcdb.2017.07.008

Larsson, C., Widell, S., and Kjellbom, P. 1987. Preparation of high-purity plasma membranes. Methods in Enzymology 148:558–568. https://doi.org/10.1016/0076-6879(87)48054-3

Leigh, R. A. and Branton, D. 1976. Isolation of vacuoles from root storage tissue of Beta vulgaris L. Plant Physiology 58:656–662. https://doi.org/10.1104/pp.58.5.656

Leonard, R. T. and Vanderwoude, W. J. 1976. Isolation of plasma membranes from corn roots by sucrose density gradient centrifugation: an anomalous effect of ficoll. Plant Physiology 57(1):105–114. https://doi.org/10.1104/pp.57.1.105

Lindeman, W. 1958. Observations on the behavior of phosphate compounds in Chlorella at the transition from dark to light. Processings of the II International Conference of UN on the Peaceful Uses of Atomic Energy 24:8–15.

Maeshima, M. 2000. Vacuolar H(+)-pyrophosphatase. Biochimica et Biophysica Acta (BBA) — Biomembranes 1465(1–2):37–51. https://doi.org/10.1016/S0005-2736(00)00130-9

Maeshima, M. and Yoshida, S. 1989. Purification and properties of vacuolar membrane proton-translocating inorganic pyrophosphatase from mung bean. Journal of Biological Chemistry 264(33):20068–20073.

Martinoia, E., Maeshima, M., and Neuhaus, H. E. 2007. Vacuolar transporters and their essential role in plant metabolism. Journal of Experimental Botany 58(1):83–102. https://doi.org/10.1093/jxb/erl183

Marty, F. 1978. Cytochemical studies on GERL provacuoles, and vacuoles in root meristematic cells of Euphorbia. Proceedings of the National Academy of Sciences of the United States of America 75(2):852–856. https://doi.org/10.1073/pnas.75.2.852

Mesquita, J. F. 1969. Electron microscope study of the origin and development of the vacuoles in root-tip cells of Lupinus albus L. Journal of Ultrastructure Research 26(3–4):242–250. https://doi.org/10.1016/S0022-5320(69)80004-3

Mettler, I. J. and Leonard, R. T. 1979. Ion transport in isolated protoplasts from tobacco suspension cells: I. General characteristics. Plant Physiology 63(1):183–190. https://doi.org/10.1104/pp.63.1.183

Murashige, T. and Skoog, F. 1962 A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiologia Plantarum 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Nagata, T. and Kumagai, F. 1999. Plant cell biology through the window of the highly synchronized tobacco By-2 cell line. Methods in Cell Science 21:123–127. https://doi.org/10.1023/A:1009832822096

Nagata, T., Hasezawa, and S., Inze, D. (Eds.) 2004. Tobacco By-2 Cells. 347 pp. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10572-6

Nagata, T., Nemoto, Y., and Hasezawa, S. 1992. Tobacco By-2 cell line as the ‘Hela’ cells in the cell biology of higher plants. International Review of Cytology 132:1–30. https://doi.org/10.1016/S0074-7696(08)62452-3

Ohkuma, S., Shimizu. S., Noto., M., Sai, Y., Kinoshita, K., and Tamura, H.-O. 1993. Inhibition of cell growth by bafilomycin A1, a selective inhibitor of vacuolar H(+)-ATPase. In Vitro Cellular & Developmental Biology — Animal 29(11):862–866. https://doi.org/10.1007/BF02631364

Petrášek, J. and Zažímalová, E. 2006 The BY-2 cell line as a tool to study auxin transport. pp. 107–117 In: Nagata T., Matsuoka K., Inzé D. (eds) Tobacco BY-2 cells: From cellular dynamics to omics. Biotechnology in Agriculture and Forestry, vol 58. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32674-X_8

Salyaev, R. K., Kuzevanov, V. Ya., Khaptagaev, S. B., and Kopytchuk, V. N. 1981. Isolation and purification of vacuoles and vacuolar membranes from plant cells. Russian Journal of Plant Physiology 28(6):1295–1305. (In Russian)

Scheuring, D., Löfke, C., Krüger, F., Kittelmann, M., Eisa, A., Hughes, L., Smith, R. S, Hawes, C., Schumacher, K., and Kleine-Vehn, J. 2016. Actin-dependent vacuolar occupancy of the cell determines auxin-induced growth repression. Proceedings of the National Academy of Sciences of the United States of America 113:452–457. https://doi.org/10.1073/pnas.1517445113

Schumacher, K. 2006. Endomembrane proton pumps: connecting membrane and vesicle transport. Current Opinion in Plant Biology 9:595–600. https://doi.org/10.1016/j.pbi.2006.09.001

Shakhova, N. V. and Tankelyun, O. V. 2008. Some characteristics of ATP and pyrophosphate-dependent transport of H+ ions in the endomembrane fraction from coleoptile cells of maize seedlings. Vestnik Sankt-Peterburgskogo Universiteta. Seriya 3: Biologiya 1:69–79. (In Russian)

Tankelyun, O. V. 1998. Properties of pyrophosphatase and ATPase activity of membrane fractions containing tonoplast isolated from corn coleoptile cells. Vestnik Sankt-Peterburgskogo Universiteta. Seriya 3: Biologiya 2(10):97–103. (In Russian)

Tankelyun, O. V., Chirkova, T. V., Tishchenko, N. N., and Magomedov, I. M. 1986. Enzymes. pp. 50–71. in V. V. Polevoy, G. B. Maksimov, and N. F. Sinyutina (Eds.) Methods for the study of plant cell membranes. Izdatelstvo Leningradskogo Universiteta, Leningrad. (In Russian)

Trentmann, O. and Haferkamp, I. 2013. Current progress in tonoplast proteomics reveals insights into the function of the large central vacuole. Frontiers in Plant Science 4:34. https://doi.org/10.3389/fpls.2013.00034

Wach, A., Ahlers, J., and Gräber, P. 1990. The H+-ATPase of the plasma membrane from yeast. Kinetics of ATP-hydrolysis in native membranes, isolated and reconstituted enzymes. European Journal of Biochemistry 189:675–682. https://doi.org/10.1111/j.1432-1033.1990.tb15536.x

Wagner, G. J. and Siegelman, H. W. 1975. Large-scale isolation of intact vacuoles and isolation of chloroplast from protoplasts of mature plant tissues. Science 190:1298–1299. https://doi.org/10.1126/science.190.4221.1298

Zažímalová, E., Petrášek, J., and Morris, D. A. 2003. The dynamics of auxin transport in tobacco cells. Bulgarian Journal of Plant Physiology. Special issue:207–224.

Zhang, C., Hicks, G. R., and Raikhel, N. V. 2014. Plant vacuole morphology and vacuolar trafficking. Frontiers in Plant Science 5:476. https://doi.org/10.3389/fpls.2014.00476

Published
2020-06-05
How to Cite
ChenТ., Kirpichnikova, A., Mikhaylova, Y., & Shishova, M. (2020). Comparison of two systems of tonoplast purification from tobacco cells of suspension culture BY-2. Biological Communications, 65(2), 178–186. https://doi.org/10.21638/spbu03.2020.204
Section
Full communications