Coordinated alterations in gene expression and metabolomic profiles of Chlamydomonas reinhardtii during batch autotrophic culturing

  • Roman Puzanskiy Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-5862-2676
  • Daria Romanyuk Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0001-9576-1256
  • Maria Shishova Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0003-3657-2986

Abstract

Chlamydomonas reinhardtii was grown under autotrophic batch culturing, which is known to be a widely applicable method for both fundamental research and applied purposes. This type of cultivation results in elevation of cell density and fast exhaustion of nutrient resources. We expected the revealed metabolic adaptation to be triggered at the transcriptional level. This investigation focuses on analyzing expression of the genes encoding enzymes involved in primary metabolism and plastid transporters during the exponential phase of C. reinhardtii autotrophic batch culture. About two-thirds of the tested genes demonstrated differential expression during algae growth. Patterns of expression were clustered into 5 groups. Most of the genes were gathered in two large clusters, characterized by peaks of expression at early or later exponential growth (EG). Genes which showed maximal expression in early EG were OMT1, HXK1, AMYB1, ACK1,2, CHLREDRAFT_123419, APE2, PCK1, CHLREDRAFT_195672, CIS2, TPT2 and ACLA1. Among the genes with maximal expression in later EG were SBE3, TPIC, CHLREDRAFT_137300, CHLREDRAFT_111372, PPT1 and CHLREDRAFT_122970. There were no genes detected with maximal expression at the cessation of proliferation. PCA showed that the expression profiles in the beginning EG were similar, and profiles changed drastically in the middle of exponential growth. PLS-DA revealed the difference between the beginning of EG and later periods linked to PC1 (44 %), between late EG and early stationary linked to PC2 (23 %) and finally between two points at the beginning of growth linked to PC3 (10 %). Mapping of genes and metabolites according to their correlation revealed a graph with two clusters. The first, smaller cluster contains genes that encode plastid exporters, enzymes of starch and carbohydrates metabolism. The expression level of these genes peaked later in EG. These genes are mainly associated with metabolites such as carbohydrates, acylglycerols and fatty acids metabolism. The second cluster is larger and more diverse. It combines genes with maximum expression in the beginning of EG. The core of this cluster is formed by genes encoding enzymes of fatty acids synthesis, energy and plastic pathways, and plastid transporters. This cluster included the majority of amino acids, carboxylic acids and many fatty acids.

Keywords:

gene expression, primary metabolism, autotrophic growth, plastid transporter, Chlamydomonas reinhardtii, batch culture, PCA, PLS, MEBA, exponential growth

Downloads

Download data is not yet available.
 

References

Adesanya, V. O., Cadena, E., Scott, S. A., and Smith, A. G. 2014. Life cycle assessment on microalgal biodiesel production using a hybrid cultivation system. Bioresource Technology 163:343–355. https://doi.org/10.1016/j.biortech.2014.04.051

Atteia, A., van Lis, R., Tielens, A. G., and Martin, W. F., 2013. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes. Biochimica et Biophysica Acta 1827(2):210–223. https://doi.org/10.1016/j.bbabio.2012.08.002

Chomzynski, P. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Analytical Biochemistry 162(1):156–159. https://doi.org/10.1006/abio.1987.9999

Cronan, J., and Waldrop, G. 2002. Multi-subunit acetyl-CoA carboxylases. Progress in Lipid Research 41(5):407–435. https://doi.org/10.1016/s0163-7827(02)00007-3

Deng, X., Cai, J., and Fei, X. 2013. Effect of the expression and knockdown of citrate synthase gene on carbon flux during triacylglycerol biosynthesis by green algae Chlamydomonas reinhardtii. BMC Biochemistry 14(1):38. https://doi.org/10.1186/1471-2091-14-38

Emerson, R., and Lewis, C. M. 1939. Factors influencing the efficiency of photosynthesis. American Journal of Botany 26(10):808–822. https://doi.org/10.2307/2436774

Fan, J., Cui, Y., Wan, M., Wang, W., and Li, Y. 2014. Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors. Biotechnology for Biofuels 7(1):17. https://doi.org/10.1186/1754-6834-7-17

Fiehn, O. 2002. Metabolomics — the link between genotypes and phenotypes. Plant Molecular Biology 48(1–2):155-171. https://doi.org/10.1023/A:1013713905833

Gorman, D., and Levine, R. 1965. Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proceedings of the National Academy of Sciences of USA 54(6):1665–1669. https://doi.org/10.1073/pnas.54.6.1665

Guerrini, A., Cremona, T., and Preddie, E. 1971. Influence of β-glycerophosphate, acetate and CO2 in the appearance of an alkaline phosphatase in Chlamydomonas reinhardi. Biochemical and Biophysical Research Communications 42(3):558–563. https://doi.org/10.1016/0006-291x(71)90407-4

Johnson, X., and Alric, J. 2013. Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. Eukaryotic Cell 12(6):776–793. https://doi.org/10.1128/EC.00318-12

Kim, J.-H., Kim, K. Y., Kang, E. J., Lee, K., Kim, J.-M., Park, K.-T., Shin, K., Hyun, B., and Jeong, H. J. 2013. Enhancement of photosynthetic carbon assimilation efficiency by phytoplankton in the future coastal ocean. Biogeosciences 10(11):7525–7535. https://doi.org/10.5194/bg-10-7525-2013

Krishnan, A., Kumaraswamy, G. K., Vinyard, D. J., Gu, H., Ananyev, G., Posewitz, M. C., and Dismukes, G. C. 2015. Metabolic and photosynthetic consequences of blocking starch biosynthesis in the green alga Chlamydomonas reinhardtii sta6 mutant. Plant Journal 81(6):947–960. https://doi.org/10.1111/tpj.12783

Kulandaivelu, G., and Senger, H. 1976. Changes in the reactivity of the photosynthetic apparatus in heterotrophic ageing cultures of Scenedesmus obliquus. II. Changes in ultrastructure and pigment composition. Physiologia Plantarum 36(2):165–168. https://doi.org/10.1111/j.1399-3054.1976.tb03929.x

Lee, D., Park, J., Barupal, D., and Fiehn, O. 2012. System response of metabolic networks in Chlamydomonas reinhardtii to total available ammonium. Molecular & Cellular Proteomics 11(10):973–988. https://doi.org/10.1074/mcp.m111.016733

Liu, C., Wu, G., Huang, X., Liu, S., and Cong, B. 2012. Validation of housekeeping genes for gene expression studies in an ice alga Chlamydomonas during freezing acclimation. Extremophiles 16(3):419-425. https://doi.org/10.1007/s00792-012-0441-4

Lv, H., Qu, G., Qi, X., Lu, L., Tian, C., and Ma, Y. 2013. Transcriptome analysis of Chlamydomonas reinhardtii during the process of lipid accumulation. Genomics 101(4):229–237. https://doi.org/10.1016/j.ygeno.2013.01.004

Maikova, A., Zalutskaya, Z., Lapina, T., and Ermilova, E. 2016. The HSP70 chaperone machines of Chlamydomonas are induced by cold stress. Journal of Plant Physiology 204:85–91. https://doi.org/10.1016/j.jplph.2016.07.012

Mandalam, R., Palsson, B. O. 1995. Chlorella vulgaris (Chlorellaceae) does not secrete autoinhibitors at high cell densities. American Journal of Botany 82(8):955–963. https://doi.org/10.2307/2446224

Merchant, S., Prochnik, S., Vallon, O., Harris, E., Karpowicz, S., & Witman, G. et al. 2007. The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions. Science 318(5848):245–250. https://doi.org/10.1126/science.1143609

Murtagh, F., and Legendre, P. 2014. Ward’s hierarchical agglomerative clustering method: Which algorithms implement Ward’s criterion? Journal of Classification 31(3):274–295. https://doi.org/10.1007/s00357-014-9161-z

Mus, F., Dubini, A., Seibert, M., Posewitz, M., and Grossman, A. 2007. Anaerobic acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways. Journal of Biological Chemistry 282(35):25475–25486. https://doi.org/10.1074/jbc.m701415200

O’Leary, N., Wright, M., Brister, J., Ciufo, S., Haddad, D., & McVeigh, R. et al. 2015. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Research 44(D1):D733–D745. https://doi.org/10.1093/nar/gkv1189

Orús, M., Marco, E., and Martínez, F. 1991. Suitability of Chlorella vulgaris UAM 101 for heterotrophic biomass production. Bioresource Technology 38(2–3):179–184. https://doi.org/10.1016/0960-8524(91)90151-9

Park, J.-J., Wang, H., Gargouri, M., Deshpande, R. R., Skepper, J. N., Holguin, F. O., Juergens, M. T., Shachar-Hill, Y., Hicks, L. M., and Gang, D. R. 2015. The response of Chlamydomonas reinhardtii to nitrogen deprivation: a systems biology analysis. Plant Journal 81(4):611–624. https://doi.org/10.1111/tpj.12747

Perez-Garcia, O., and Bashan, Y. 2015. Microalgal heterotrophic and mixotrophic culturing for bio-refining: From metabolic routes to techno-economics. Algal Biorefineries 61–131. https://doi.org/10.1007/978-3-319-20200-6_3

Plancke, C., Vigeolas, H., Höhner, R., Roberty, S., Emonds-Alt, B., Larosa, V., Willamme, R., Duby, F., Dhali, D. O., Thonart, P., Hiligsmann, S., Franck, F., Eppe, G., Cardol, P., Hippler, M., and Remacle, C. 2014. Lack of isocitrate lyase in Chlamydomonas leads to changes in carbon metabolism and in the response to oxidative stress under mixotrophic growth. Plant Journal 77(3):404–417. https://doi.org/10.1111/tpj.12392

Pootakham, W., Gonzalez-Ballester, D., and Grossman, A. 2010. Identification and regulation of plasma membrane sulfate transporters in Chlamydomonas. Plant Physiology 153(4):1653–1668. https://doi.org/10.1104/pp.110.157875

Pratt, R. 1943. Studies on Chlorella vulgaris. VII. Influence of the age of the culture on the rates of photosynthesis and respiration. American Journal of Botany 30(6):404–408. https://doi.org/10.2307/2437206

Pratt, R., and Fong, J. 1940. Studies on Chlorella vulgaris II. Further evidence that Chlorella cells form a growth-inhibiting substance. American Journal of Botany 27(6):431–436. https://doi.org/10.2307/2436459

Puzanskiy, R. K., Tarakhovskaya, E. R., Maslov, Yu.I., and Shishova, M. F. 2011. Vliyanie ekzogennykh organicheskikh veshchestv i osveshchennosti na rost mikrovodorosley [The influence of organic substances and light on growth of microalgae]. Biological Communications (2):85–99.

Puzanskiy, R. K., Shavarda, A. L., and Shishova, M. F. 2015a. Dinamika metaboloma kletok avtotrofnoy kul’tury Chlamydomonas reinhardtii v period eksponentsial’noy i statsionarnoy fazy rosta [Dynamics of autotrophic Chlamydomonas reinhardtii metabolome during exponentional and stationary phase]. Biological Communications (1):104–121.

Puzanskiy, R. K., Shavarda, A. L., Tarakhovskaya, E. R., and Shishova, M. F. 2015b. Analysis of metabolic profile of Chlamydomonas reinhardtii cultivated under autotrophic conditions. Applied Biochemistry and Microbiology 51(1):83–94. https://doi.org/10.1134/S0003683815010135

Puzanskiy, R., Tarakhovskaya, E., Shavarda, A., and Shishova, M. 2017. Metabolomic and physiological changes of Chlamydomonas reinhardtii (Chlorophyceae, Chlorophyta) during batch culture development. Journal of Applied Phycology 30(2): 803-818. https://doi.org/10.1007/s10811-017-1326-9

Puzanskiy, R. K., Romanyuk, D. A., and Shishova, M. F. 2018. The role of Chlamydomonas reinhardtii batch culture aging in determination of expression profile of the genes encoding plastid transporters and enzymes involved in primary metabolism. Molecular Biology 52: in press.

R Core Team, 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org

Samuelsson, G., and Oquist, G. 1977. A method for studying photosynthetic capacities of unicellular algae based on in vivo chlorophyll fluorescence. Physiologia Plantarum 40(4):315–319. https://doi.org/10.1111/j.1399-3054.1977.tb04080.x

Sargent, M. 1940. Effect of light intensity on the development of the photosynthetic mechanism. Plant Physiology 15(2):275–290. https://doi.org/10.1104/pp.15.2.275

Schloss, J. 1990. A Chlamydomonas gene encodes a G protein β subunit-like polypeptide. Molecular and General Genetics 221(3):443–452. https://doi.org/10.1007/bf00259410

Schmollinger, S., Schulz-Raffelt, M., Strenkert, D., Veyel, D., Vallon, O., and Schroda, M. 2013. Dissecting the heat stress response in Chlamydomonas by pharmaceutical and RNAi approaches reveals conserved and novel aspects. Molecular Plant 6(6):1795–1813. https://doi.org/10.1093/mp/sst086

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13(11):2498–2504. https://doi.org/10.1101/gr.1239303

Siaut, M., Cuine, S., Cagnon, C., Fessler, B., Nguyen, M., Carrier, P., and Peltier, G. 2011. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnology 11:7. https://doi.org/10.1186/1472-6750-11-7

Smith, R., Bangert, K., Wilkinson, S., and Gilmour, D. 2015. Synergistic carbon metabolism in a fast growing mixotrophic freshwater microalgal species Micractinium inermum. Biomass and Bioenergy 82:73–86. https://doi.org/10.1016/j.biombioe.2015.04.023

Stacklies, W., Redestig, H., Scholz, M., Walther, D., and Selbig, J. 2007. pcaMethods — a bioconductor package providing PCA methods for incomplete data. Bioinformatics 23(9):1164–1167. https://doi.org/10.1093/bioinformatics/btm069

Tai, Y. C., and Speed T. P. 2006. A multivariate empirical Bayes statistic for replicated microarray time course data. Annals of Statistics 34(5):2387–2412. https://doi.org/10.1214/009053606000000759

Tai Y. C. 2007. Statistical Analysis for Developmental Microarray Time Course Data. R package version 1.50.0. https://doi.org/10.18129/B9.bioc.timecourse

Terashima, M., Specht, M., Naumann, B., and Hippler, M. 2010. Characterizing the anaerobic response of Chlamydomonas reinhardtii by quantitative proteomics. Molecular & Cellular Proteomics 9(7):1514–1532. https://doi.org/10.1074/mcp.m900421-mcp200

Thevenot, E. A., Roux, A., Xu, Y., Ezan, E., and Junot, C. 2015. Analysis of the human adult urinary metabolome variations with age, body mass index and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. Journal of Proteome Research 14(8):3322–3335. https://doi.org/10.1021/acs.jproteome.5b00354

Wan, M., Liu, P., Xia, J., Rosenberg, J. N., Oyler, G. A., Betenbaugh, M. J., Nie, Z., and Qiu, G. 2011. The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Applied Microbiology and Biotechnology 91(3):835–844. https://doi.org/10.1007/s00253-011-3399-8

Winokur, M. 1949. Aging effects in Chlorella cultures. American Journal of Botany 36(3):287–291. https://doi.org/10.2307/2437886

Xia, J., Sinelnikov, I., Han, B., and Wishart, D. 2015. Metabo-Analyst 3.0 — making metabolomics more meaningful. Nucleic Acids Research 43(W1):W251–W257. https://doi.org/10.1093/nar/gkv380

Yang, C., Hua, Q., and Shimizu, K. 2000. Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochemical Engineering Journal 6(2):87–102. https://doi.org/10.1016/s1369-703x(00)00080-2

Yang, W., Catalanotti, C., D’Adamo, S., Wittkopp, T. M, Ingram-Smith, C. J., Mackinder, L., Miller, T. E., Heuberger, A. L., Peers, G., Smith, K. S., Jonikas, M. C., Grossman, A. R., and Posewitz, M. C. 2014. Alternative acetate production pathways in Chlamydomonas reinhardtii during dark anoxia and the dominant role of chloroplasts in fermentative acetate production. Plant Cell 26(11):4499–4518. https://doi.org/10.1105/tpc.114.129965

Zalutskaya, Z., Kharatyan, N., Forchhammer, K., and Ermilova, E. 2015. Reduction of PII signaling protein enhances lipid body production in Chlamydomonas reinhardtii. Plant Science 240:1–9. https://doi.org/10.1016/j.plantsci.2015.08.019
Published
2018-06-08
How to Cite
Puzanskiy, R., Romanyuk, D., & Shishova, M. (2018). Coordinated alterations in gene expression and metabolomic profiles of <em>Chlamydomonas reinhardtii</em&gt; during batch autotrophic culturing. Biological Communications, 63(1), 87–99. https://doi.org/10.21638/spbu03.2018.110
Section
Full communications

Most read articles by the same author(s)