Dynamics of autotrophic Chlamydomonas reinhardtii metabolome during exponentional and stationary phase

  • Roman Puzanskiy Saint Petersburg State University, 7–9, Universitetskaya nab., Saint Petersburg, 199034, Russian Federation
  • Alexey Shavarda Saint Petersburg State University, 7–9, Universitetskaya nab., Saint Petersburg, 199034, Russian Federation
  • Maria Shishova Saint Petersburg State University, 7–9, Universitetskaya nab., Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0003-3657-2986


The growth of autotrophic culture of Chlamydomonas reinhardtii cc-124 was analyzed. Cell density shift was measured and regression model was developed on the basis of approximation by logistic function. For metabolomic analysis of chlamydomonas cells samples were collected at the different time points of culture growth and were analyzed with GC-MS techniques. PCA modeling of the obtained data revealed a correlation of the metabolome and the time of culturing. OPLS (point-by-point pair-wise) modeling of datasets was performed to estimate the links between the growth stage and chlamydomonas metabolome. It was found that the dispersion of metabolite content in cells was strongly related to the time point of cell culture development. SUS-plots visualization of developed models demonstrated strong alteration of the metabolome profile during transition between the first part of exponential growth and the second and during the transition to stationary phase. Correlation analysis and mapping reveal that metabolites are interconnected and clustered in three groups. Refs 33. Figs 5. Tables 2.


Chlamydomonas reinhardtii, exponential growth, metabolomics, OPLS, PCA, stationary phase


Download data is not yet available.


Rolfe M. D., Rice C. J., Lucchini S., Pin C., Thompson A., Cameron A. D., Alston M., Strinchairnameger M. F., Betts R. P., Baranyi J., Peck M. W., Hinton J. C. Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J. Bacteriol. 2012, vol. 194, no. 3, pp. 686–701.

Lee do Y., Park J. J., Barupal D. K., Fiehn O. System response of metabolic networks in Chlamydomonas reinhardtii to total available ammonium. Mol. Cell Proteomics. 2012, vol. 11, no. 10, pp. 973–988.

Herman P. K. Stationary phase in yeast. Curr. Opin. Microbiol. 2002, vol. 5, no. 6, pp. 602–627.

Navarro L. J. M., Tormo A., Martinez-Garcia E. Stationary phase in gram-negative bacteria. FEMS Microbiol. Rev. 2010, vol. 34, no. 4, pp. 476–495.

Berla B. M., Pakrasi H. B. Upregulation of plasmid genes during stationary phase in Synechocystis sp. strain PCC 6803, a cyanobacterium. Appl. Environ. Microbiol. 2012, vol. 78, no. 15, pp. 5448–5451.

Boelling C., Fiehn O. Metabolite profiling of Chlamydomonas reinhardtii under nutrient deprivation. Plant Physiol. 2005, vol. 139, no. 4, pp. 1995–2005.

Grossman A. Acclimation of Chlamydomonas reinhardtii to its nutrient environment. Protist. 2000, vol. 151, no. 3, pp. 201–224.

Schmollinger S., Schulz-Raffelt M., Strenkert D., Veyel D., Vallon O., Schroda M. Dissecting the heat stress response in Chlamydomonas by pharmaceutical and RNAi approaches reveals conserved and novel aspects. Mol. Plant. 2013, vol. 6, no. 6, pp. 1795–1813.

Valledor L., Furuhashi T., Hanak A. M., Weckwerth W. Systemic cold stress adaptation of Chlamydomonas reinhardtii. Mol. Cell. Proteomics. 2013, vol. 12, no. 8, pp. 2032–2047.

Grossman A. R., Lohr M., Im C. S. Chlamydomonas reinhardtii in the landscape of pigments. Annu. Rev. Genet. 2004, vol. 38, pp. 119–173.

Rochaix J. D. Chlamydomonas, a model system for studying the assembly and dynamics of photosynthetic complexes. FEBS Lett. 2002, vol. 529, no. 1, pp. 34–38.

Dutcher S. K. Elucidation of basal body and centriole functions in Chlamydomonas reinhardtii. Traffic. 2003, vol. 4, no. 7, pp. 443–451.

Ide T., Owa M., King S. M., Kamiya R., Wakabayashi K. Protein-protein interactions between intermediate chains and the docking complex of Chlamydomonas flagellar outer arm dynein. FEBS Lett. 2013, vol. 587, no. 14, pp. 2143–2149.

Lechtreck K. F. In vivo imaging of IFT in Chlamydomonas flagella. Methods Enzymol. 2013, vol. 524, pp. 265–284.

Goodenough U. W., Heuser J. E. The Chlamydomonas cell wall and its constituent glycoproteins analyzed by the quick-freeze, deep-etch technique. J. Cell Biol. 1985, vol. 101, no. 4, pp. 1550–1568.

Imam S. H., Buchanan M. J., Shin H. C., Snell W. J. The Chlamydomonas cell wall: characterization of the wall framework. J. Cell Biol. 1985, vol. 101, no. 4, pp. 1599–1607.

Voigt J., Hinkelmann B., Harris E. H. Production of cell wall polypeptides by different cell wall mutants of the unicellular green alga Chlamydomonas reinhardtii. Microbiol. Res. 1997, vol. 152, no. 2, pp. 189–198.

Fiehn O. Metabolomics — the link between genotypes and phenotypes. Plant Mol. Biol. 2002, vol. 48, no. 1–2, pp. 155–171.

Okada T., Afendi F. M., Altaf U., Amin M., Takahashi H., Nakamura K., Kanaya S. Metabolomics of medicinal plants: the importance of multivariate analysis of analytical chemistry data. Curr. Comput. Aided Drug Des. 2010, vol. 6, no. 3, pp. 179–196.

Bylesjo M., Rantalainen M., Cloarec O., Nicholson J. K., Holmes E., Trygg J. OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. J. Chemometrics. 2006, vol. 20, no. 8–10, pp. 341–351.

Wiklund S., Johansson E., Sjostrom L., Mellerowicz E. J., Edlund U., Shockcor J. P., Gottfries J., Moritz T., Trygg J. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal. Chem. 2008, vol. 80, no. 1, pp. 115–122.

Renberg L., Johansson A. I., Shutova T., Stenlund H., Aksmann A., Raven J. A., Gardestrom P., Moritz T., Samuelsson G. A. Metabolomic approach to study major metabolite changes during acclimation to limiting CO2 in Chlamydomonas reinhardtii. Plant Physiol. 2010, vol. 154, no. 1, pp. 187–196.

Grossman A. R., Catalanotti C., Yang W., Dubini A., Magneschi L., Subramanian V., Posewitz M. C., Seibert M. Multiple facets of anoxic metabolism and hydrogen production in the unicellular green alga Chlamydomonas reinhardtii. New Phytol. 2011, vol. 190, no. 2, pp. 279–288.

Jamers A., Blust R., De Coen W., Griffin J. L., Jones O. A. Copper toxicity in the microalga Chlamydomonas reinhardtii: an integrated approach. Biometals. 2013, vol. 26, no. 5, pp. 731–740.

Lu H., Qu G., Qi X., Lu L., Tian C., Ma Y. Transcriptome analysis of Chlamydomonas reinhardtii during the process of lipid accumulation. Genomics. 2013, vol. 101, no. 4, pp. 229–237.

Lee D. Y., Fiehn O. High quality metabolomic data for Chlamydomonas reinhardtii. Plant Methods. 2008, vol. 4, no. 7.

Gorman D. S., Levine R. P. Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc. Natl. Acad. Sci. USA. 1965, vol. 54, no. 6, pp. 1665–1669.

Kim S., Yun E. J., Hossain M. A., Lee H., Kim K. H. Global profiling of ultraviolet-induced metabolic disruption in Melissa officinalis by using gas chromatography-mass spectrometry. Anal. Bioanal. Chem. 2012, vol. 404, no. 4, pp. 553–562.

Trygg J., Wold S. Orthogonal projections to latent structures (O-PLS). J. Chemom. 2002, vol. 16, no. 3, pp. 119–128.

Lin J., Lee S.-M., Lee H.-J., Koo Y.-M. Modeling of typical microbial cell growth in batch culture. Biotechnol. Bioprocess Eng. 2000, vol. 5, no. 5, pp. 382–385.

Efron B., Stein C. The jackknife estimate of variance. The Annals of Statistics. 1981, vol. 9, no. 3, pp. 586–596.

Niittyla T., Messerli G., Trevisan M., Chen J., Smith A. M., Zeeman S. C. A previously unknown maltose transporter essential for starch degradation in leaves. Science. 2004, vol. 303, no. 2, pp. 87–89.

Johnson X., Alric J. Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. Eukaryot Cell. 2013, vol. 12, no. 6, pp. 776–93.
How to Cite
Puzanskiy, R., Shavarda, A., & Shishova, M. (2015). Dynamics of autotrophic <em>Chlamydomonas reinhardtii</em&gt; metabolome during exponentional and stationary phase. Biological Communications, (1), 104–121. Retrieved from https://biocomm.spbu.ru/article/view/888
Full communications