Analysis of the polydispersity of soil-like bodies in glacier environments by the laser light scattering (diffraction) method

Authors

  • Evgeny Abakumov Department of Applied Ecology, Faculty of Biology, Saint Petersburg State University, 16 liniya V. O., 29, Saint Petersburg, 199178, Russian Federation https://orcid.org/0000-0002-5248-9018
  • Timur Nizamutdinov Department of Applied Ecology, Faculty of Biology, Saint Petersburg State University, 16 liniya V. O., 29, Saint Petersburg, 199178, Russian Federation https://orcid.org/0000-0003-2600-5494
  • Viacheslav Polyakov Department of Applied Ecology, Faculty of Biology, Saint Petersburg State University, 16 liniya V. O., 29, Saint Petersburg, 199178, Russian Federation; Arctic and Antarctic Research Institute, ul. Beringa, 38, Saint Petersburg, 199397, Russian Federation https://orcid.org/0000-0001-6171-3221

DOI:

https://doi.org/10.21638/spbu03.2021.302

Abstract

This study presents the results of polydispersity analysis of soil-like bodies from two various polar regions using the laser light scattering method. The differences in the particle size distribution of cryoconite samples from the Anuchin Glacier (Antarctica) and the Mushketov Glacier (Arctic) are described. The samples obtained from the Mushketov Glacier are characterized by a finer particle size distribution than samples collected on the Anuchin Glacier. While comparing our results with previously published studies, it was found that the method of laser light scattering shows a lower content of small fractions (<0.05 mm) compared to the classical methods of sedimentation, since these methods are based on fundamentally different physical principles. The laser method used requires low amounts of samples (0.2–0.5 g), while the classical sedimentary method uses a higher gravimetric portion of cryoconite (5–10 g), which is critical for field sampling.

Keywords:

soloids, cryoconites, Anuchin Glacier, Mushketov Glacier

Downloads

Download data is not yet available.
 

References

Abakumov, E. 2010. Particle size distribution of soils in West Antarctica. Eurasian Soil Science 43(3):297–304. https://doi.org/10.1134/S1064229310030075

Abakumov, E. V., Pomelov, V. N., Krylenkov, V. A., and Vlasov, D. Y. 2008. Morphological organization of soils in Western Antarctica. Vestnik Sankt-Peterburgskogo Universiteta. Seriya 3: Biologiya (3):102–116. (In Russian)

Abakumov, E. V., Gijanski, M., Chigray, S. N., and Polyakov, V. I. 2020. The role of birds in the formation of organo-mineral cryoconites on Subantarctic glaciers. The Russian Journal of Ornithology 29(1957). (In Russian)

Baccolo, G., Łokas, E., Gaca, P., Massabò, D., Ambrosini, R., Azzoni, R. S., Clason, C., Di Mauro, B., Franzetti, A., Nastasi, M., Prata, M., Prati, P., Previtali, E., Delmonte, B., and Maggi, V. 2020. Cryoconite: An efficient accumulator of radioactive fallout in glacial environments. Cryosphere 14(2):657–672. https://doi.org/10.5194/tc-14-657-2020

Bizzotto, E., Villa, S., Vaj, C., and Vighi, M. 2009. Comparison of glacial and non-glacial-fed streams to evaluate the loading of persistent organic pollutants through seasonal snow/ice melt. Chemosphere 74(7):924–930. https://doi.org/10.1016/j.chemosphere.2008.10.013

Bolshiyanov, D. and Makeev, V. 1995. The Severnaya Zemlya Archipelago: glaciation, history of the natural environment. St. Petersburg: Gidrometeoizdat. 217 p. (In Russian)

Bolshiyanov, D. Y., Sokolov, V. T., Yozhikov, I. S., Bulatov, R. K., Rachkova, A. N., Fedorov, G. B., and Paramzin, A. S. 2016. Conditions of the alimentation and the variability of glaciers of the Severnaya Zemlya Archipelago from observations of 2014–2015. Ice and Snow 56(3):358–368. https://doi.org/10.15356/2076-6734-2016-3-358-368

Cameron, K. A., Hodson, A. J., and Osborn, A. M. 2012. Structure and diversity of bacterial, eukaryotic and archaeal communities in glacial cryoconite holes from the Arctic and the Antarctic. FEMS Microbiology Ecology 82(2):254–267. https://doi.org/10.1111/j.1574-6941.2011.01277.x

Cook, J., Edwards, A., Takeuchi, N., and Irvine-Fynn, T. 2016. Cryoconite: The dark biological secret of the cryosphere. Progress in Physical Geography-Earth and Environment 40(1):66–111. https://doi.org/10.1177/0309133315616574

Cook, J., Hodson, A., Telling, J., Anesio, A., Irvine-Fynn, T., and Bellas, C. 2010. The mass-area relationship within cryoconite holes and its implications for primary production. Annals of Glaciology 51(56):106–110. https://doi.org/10.3189/172756411795932038

Di Mauro, B., Baccolo, G., Garzonio, R., Piazzalunga, A., Massabò, D., and Colombo, R. 2016. Mountain glaciers darkening: geochemical characterizazion of cryoconites and their radiative impact on the Vadret da Morteratsch (Swiss Alps). EGU General Assembly Conference Abstracts: EPSC2016-9654.

Domkin, C. 2011. Physical basics of particle size analysis by laser diffraction. Trudy Mezhdunarodnogo simpoziuma «Nadezhnost' i kachestvo» 2:150–152. (In Russian)

Dumont, M., Durand, Y., Arnaud, Y., and Six, D. 2012. Variational assimilation of albedo in a snowpack model and reconstruction of the spatial mass-balance distribution of an alpine glacier. Journal of Glaciology 58(207):151–164. https://doi.org/10.3189/2012JoG11J163

ESRI. “Topographic”. February 19, 2012. Scale Not Given. “World Topographic Map”.

Ferrario, C., Pittino, F., Tagliaferri, I., Gandolfi, I., Bestetti, G., Azzoni, R. S., Diolaiuti, G., Franzetti, A., Ambrosini, R., and Villa, S. 2017. Bacteria contribute to pesticide degradation in cryoconite holes in an Alpine glacier. Environmental Pollution 230:919–926. https://doi.org/10.1016/j.envpol.2017.07.039

Fountain, A. G., Tranter, M., Nylen, T. H., Lewis, K. J., and Mueller, D. R. 2004. Evolution of cryoconite holes and their contribution to meltwater runoff from glaciers in the McMurdo Dry Valleys, Antarctica. Journal of Glaciology 50(168):35–45. https://doi.org/10.3189/172756504781830312

Gagarina, E. I. 2004. Lithological factor of soil formation (on the example of the Northwest of the Russian Plain). St. Petersburg: St Petersburg University Press. (In Russian)

Gajda, R. 2008. Cryoconite phenomena on the Greenland Ice Cap in the Thule Area. The Canadian Geographer / Le Géographe canadien 3:35–44. https://doi.org/10.1111/j.1541-0064.1958.tb01802.x

Gee, G. W. and Or, D. 2002. 2.4 Particle‐size analysis. Methods of soil analysis: Part 4 physical methods 5:255–293. https://doi.org/10.2136/sssabookser5.4.c12

Glazovskaya, M. 1952. Aeolian fine-grained deposits on the glaciers of the Terskey Ala Tau ridge. Trudy Instituta geografii ANSSSR (49):55. (In Russian)

Glazovskaya, M. 1958. Weathering and primary soil formation in Antarctica. Nauchnyye Doklady Vysshey Shkoly, Geologo-Geograficheskiye nauki 1:63–76. (In Russian)

Goldberg, E. D. 1985. Black carbon in the environment: properties and distribution.

Goryachkin, S. V., Mergelov, N. S., and Targulian, V. O. 2019. Extreme Pedology: Elements of Theory and Methodological Approaches. Eurasian Soil Science (1):5–19. https://doi.org/10.1134/s0032180x19010040 (In Russian)

GPM. 2016. GPM 1.2.1.0008.15 Determination of particle size distribution by laser light diffraction. (In Russian)

Hildes, D. H., Clarke, G. K., Flowers, G. E., and Marshall, S. J. 2004. Subglacial erosion and englacial sediment transport modelled for North American ice sheets. Quaternary Science Reviews 23(3–4):409–430. https://doi.org/10.1016/j.quascirev.2003.06.005

Hodson, A., Anesio, A. M., Tranter, M., Fountain, A., Osborn, M., Priscu, J., Laybourn-Parry, J., and Sattler, B. 2008. Glacial ecosystems. Ecological Monographs 78(1):41–67. https://doi.org/10.1890/07-0187.1

Jahn, R., Blume, H., Asio, V., Spaargaren, O., and Schad, P. 2006. Guidelines for soil description: FAO.

Kachinsky, N. 1958. Mechanical and microaggregate composition of soil, methods of its study.

Kowalski, B. and Andrianova, G. 1970. Micronutrients in soils of the USSR/Academy of Sciences of the USSR. Scientific Council on problems of microelements in animal husbandry and crop production. (In Russian)

Kutuzov, S. S., Mikhalenko, V. N., Shahgedanova, M. V., Ginot, P., Kozachek, A. V., Kuderina, T. M., Lavrentiev, I. I., and Popov, G. V. 2014. Ways of far-distance dust transport onto Caucasian glaciers and chemical composition of snow on the Western plateau of Elbrus. Ice and Snow 54(3):5–15. https://doi.org/10.15356/2076-6734-2014-3-5-15

Langford, H., Hodson, A., Banwart, S., and Bøggild, C. 2010. The microstructure and biogeochemistry of Arctic cryoconite granules. Annals of Glaciology 51(56):87–94. https://doi.org/10.3189/172756411795932083

Lee, K., Do Hur, S., Hou, S., Hong, S., Qin, X., Ren, J., Liu, Y., Rosman, K. J., Barbante, C., and Boutron, C. F. 2008. Atmospheric pollution for trace elements in the remote high-altitude atmosphere in central Asia as recorded in snow from Mt. Qomolangma (Everest) of the Himalayas. Science of the Total Environment 404(1):171–181. https://doi.org/10.1016/j.scitotenv.2008.06.022

Levitan, M. A., Girin, Y. P., Luksha, V. L., Kubrakova, I. V., Roshchina, I. A., Sattler, B., Tyutyunnik, O. A., and Chudetskii, M. Y. 2011. Modern sedimentation system of Lake Untersee, East Antarctica. Geochemistry International 49(5):459–481. https://doi.org/10.1134/s0016702911050077

Li, Q., Kang, S., Wang, N., Li, Y., Li, X., Dong, Z., and Chen, P. 2017. Composition and sources of polycyclic aromatic hydrocarbons in cryoconites of the Tibetan Plateau glaciers. Science of the Total Environment 574:991–999. https://doi.org/10.1016/j.scitotenv.2016.09.159

Łokas, E., Zawierucha, K., Cwanek, A., Szufa, K., Gaca, P., Mietelski, J. W., and Tomankiewicz, E. 2018. The sources of high airborne radioactivity in cryoconite holes from the Caucasus (Georgia). Scientific Reports 8(1):1–10. https://doi.org/10.1038/s41598-018-29076-4

MacDonell, S. and Fitzsimons, S. 2008. The formation and hydrological significance of cryoconite holes. Progress in Physical Geography-Earth and Environment 32(6):595–610. https://doi.org/10.1177/0309133308101382

MacDonell, S. and Fitzsimons, S. 2008. The formation and hydrological significance of cryoconite holes. Progress in Physical Geography 32(6):595–610. https://doi.org/10.1177/0309133308101382

Manousakas, M., Popovicheva, O., Evangeliou, N., Diapouli, E., Sitnikov, N., Shonija, N., and Eleftheriadis, K. 2020. Aerosol carbonaceous, elemental and ionic composition variability and origin at the Siberian High Arctic, Cape Baranova. Tellus B: Chemical and Physical Meteorology 72(1):1–14. https://doi.org/10.1080/16000889.2020.1803708

Masiello, C. A. 2004. New directions in black carbon organic geochemistry. Marine Chemistry 92(1–4):201–213. https://doi.org/10.1016/j.marchem.2004.06.043

Matsuoka, K., Skoglund, A., and Roth, G. 2018. Quantarctica. Norwegian Polar Data Centre. https://doi.org/10.21334/npolar.2018.8516e961

Matveyeva, N. 2006. Vegetation of the southern part of Bolshevik Island (Severnaya Zemlya archipelago). Vegetation of Russia 8:3–87. https://doi.org/10.31111/vegrus/2006.08.3

McIntyre, N. F. 1984. Cryoconite hole thermodynamics. Canadian Journal of Earth Sciences 21(2):152–156. https://doi.org/10.1139/e84-016

Mueller, D. R. and Pollard, W. H. 2004. Gradient analysis of cryoconite ecosystems from two polar glaciers. Polar Biology 27(2):66–74. https://doi.org/10.1007/s00300-003-0580-2

Mukhametova, N., Abakumov, E., and Rumin, A. 2013. Particle size distribution of Antarctic soils by sedimentometry and laser diffraction. Agrophysica (3):1–6. (In Russian)

Nagatsuka, N., Takeuchi, N., Uetake, J., and Shimada, R. 2014. Mineralogical composition of cryoconite on glaciers in northwest Greenland. Bulletin of Glaciological Research 32:107–114. https://doi.org/10.5331/bgr.32.107

Nagatsuka, N., Takeuchi, N., Uetake, J., Shimada, R., Onuma, Y., Tanaka, S., and Nakano, T. 2016. Variations in Sr and Nd isotopic ratios of mineral particles in cryoconite in Western Greenland. Frontiers in Earth Science 4:93. https://doi.org/10.3389/feart.2016.00093

Owens, P. N., Blake, W. H., and Millward, G. E. 2019. Extreme levels of fallout radionuclides and other contaminants in glacial sediment (cryoconite) and implications for downstream aquatic ecosystems. Scientific Reports 9(1):1–9. https://doi.org/10.1038/s41598-019-48873-z

Petrakov, D., Tutubalina, O., Shpuntova, A., Kovalenko, N., Usubaliev, R., Azisov, E., and Mikhailukova, P. 2019. Assessment of glacier albedo in the Ak-Shyirak Mountains (Inner Tien Shan) from ground-based and Landsat data. Earth's Cryosphere 23(3):13–24. https://doi.org/10.21782/KZ1560-7496-2019-3(13-24)

Podgorny, I. A. and Grenfell, T. C. 1996. Absorption of solar energy in a cryoconite hole. Geophysical Research Letters 23(18):2465–2468. https://doi.org/10.1029/96GL02229

Ramanathan, V. and Carmichael, G. 2008. Global and regional climate changes due to black carbon. Nature Geoscience 1(4):221–227. https://doi.org/10.1038/ngeo156

Ruth, U., Wagenbach, D., Steffensen, J. P., and Bigler, M. 2003. Continuous record of microparticle concentration and size distribution in the central Greenland NGRIP ice core during the last glacial period. Journal of Geophysical Research: Atmospheres 108(4098). https://doi.org/10.1029/2002JD002376

Shein, E. 2005. Soil physics course. Moscow: Moscow University Press. (In Russian)

Shein, E. 2009. The particle-size distribution in soils: Problems of the methods of study, interpretation of the results, and classification. Eurasian Soil Science 42(3):284–291. https://doi.org/10.1134/S1064229309030053

Shein, E. and Madi, A. 2018. Particle size distribution of soils: methods of laser diffraction and sedimentometry, their comparison and use. Agrochemical Herald 1: 9–11. https://doi.org/10.24411/0235-2516-2018-00003

Shishkov, V., Zazovskaya, E., Mergelov, N., and Dolgikh, A. 2017. Soils forming on cryoconites material in the retreat zone of the glacier. Earth's Cryosphere: Past, Present and Future: International Conference. Russia, Pushino 5–8.06.2017.

Shishkov, V. A., Zazovskaya, E. P., Lebedeva, M. P., Mergelov, N. S., and Dolgikh, A. V. 2016. Micromorphology of soils on cryoconites in extreme environmental conditions formed in the area of Aldegond glacier retreat (Western Spitzbergen). Morfologiya pochv: ot makro- do submikrourovnya: all Russian conference. Russia, Moscow 19–21.12.2016. (In Russian)

Singh, S. M., Sharma, J., Gawas-Sakhalkar, P., Upadhyay, A. K., Naik, S., Pedneker, S. M., and Ravindra, R. 2013. Atmospheric deposition studies of heavy metals in Arctic by comparative analysis of lichens and cryoconite. Environmental Monitoring and Assessment 185(2):1367–1376. https://doi.org/10.1007/s10661-012-2638-5

Takeuchi, N. 2002. Optical characteristics of cryoconite (surface dust) on glaciers: the relationship between light absorbency and the property of organic matter contained in the cryoconite. Annals of Glaciology 34:409–414. https://doi.org/10.3189/172756402781817743

Takeuchi, N. and Li, Z. 2008. Characteristics of surface dust on Ürümqi glacier No. 1 in the Tien Shan mountains, China. Arctic, Antarctic, and Alpine Research 40(4):744–750. https://doi.org/10.1657/1523-0430(07-094)[TAKEUCHI]2.0.CO;2

Takeuchi, N., Kohshima, S., and Seko, K. 2001. Structure, formation, and darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier: A granular algal mat growing on the glacier. Arctic, Antarctic, and Alpine Research 33(2):115–122. https://doi.org/10.2307/1552211

Targulian, V. O., Mergelov, N. S., and Goryachkin, S. V. 2017. Soil-like bodies on Mars. Eurasian Soil Science 50(2):185–197. https://doi.org/10.1134/s1064229317020120

Tieber, A., Lettner, H., Bossew, P., Hubmer, A., Sattler, B., and Hofmann, W. 2009. Accumulation of anthropogenic radionuclides in cryoconites on Alpine glaciers. Journal of Environmental Radioactivity 100(7):590–598. https://doi.org/10.1016/j.jenvrad.2009.04.008

Ukalska-Jaruga, A., Smreczak, B., and Klimkowicz-Pawlas, A. 2019. Soil organic matter composition as a factor affecting the accumulation of polycyclic aromatic hydrocarbons. Journal of Soils and Sediments 19(4):1890–1900. https://doi.org/10.1007/s11368-018-2214-x

Uspenskaya, E. V., Syroeshkin, A., Pleteneva, T., and Dobrovolsky, V. 2016. Pharmacopoeial methods for determining the size of particles. The method of laser light diffraction in the control of heterogeneity of drugs. Health and Education Millennium 18(9):112–115. (In Russian)

Usyagina, I., Ilyin, G., Mescheryakov, N., and Valuyskaya, D. 2019. Sources of natural and artificial radionuclides in the Svalbard Archipelago. Ekologicheskaya, promyshlennaya i energeticheskaya bezopasnost' – 2019: all Russian Conference Russia, Sevastopol 23–26.09.2019. (In Russian)

Ward, J. H. 1963. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58(301):236–244. https://doi.org/10.2307/2282967

Weiland-Bräuer, N., Fischer, M. A., Schramm, K.-W., and Schmitz, R. A. 2017. Polychlorinated biphenyl (PCB)-degrading potential of microbes present in a cryoconite of Jamtalferner Glacier. Frontiers in Microbiology 8:1105. https://doi.org/10.3389/fmicb.2017.01105

Weisleitner, K., Perras, A., Moissl-Eichinger, C., Andersen, D. T., and Sattler, B. 2019. Source environments of the microbiome in perennially ice-covered Lake Untersee, Antarctica. Frontiers in Microbiology 10:1019. https://doi.org/10.3389/fmicb.2019.01019

Weisleitner, K., Perras, A. K., Unterberger, S. H., Moissl-Eichinger, C., Andersen, D. T., and Sattler, B. 2020. Cryoconite hole location in East-Antarctic Untersee Oasis shapes physical and biological diversity. Frontiers in Microbiology 11:1165. https://doi.org/10.3389/fmicb.2020.01165

Weisleitner, K., Perras, A. K., Unterberger, S. H., Moissl-Eichinger, C., Andersen, D. T., and Sattler, B. 2020. Data_Sheet_1_Cryoconite hole location in East-Antarctic Untersee Oasis shapes physical and biological diversity.docx. Figshare. https://doi.org/10.3389/fmicb.2020.01165.s001

Wharton Jr, R. A., McKay, C. P., Simmons Jr, G. M., and Parker, B. C. 1985. Cryoconite holes on glaciers. Bioscience 35(8):499–503. https://doi.org/10.2307/1309818

Wientjes, I. G. M., Van De Wal, R. S. W., Reichart, G. J., Sluijs, A., and Oerlemans, J. 2011. Dust from the dark region in the western ablation zone of the Greenland ice sheet. Cryosphere 5(3):589–601. https://doi.org/10.5194/tc-5-589-2011

WRB, I. W. G. 2015. World reference base for soil resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps: FAO, Rome.

Zawierucha, K., Buda, J., Azzoni, R. S., Niśkiewicz, M., Franzetti, A., and Ambrosini, R. 2019. Water bears dominated cryoconite hole ecosystems: densities, habitat preferences and physiological adaptations of Tardigrada on an alpine glacier. Aquatic Ecology 53(4):543–556. https://doi.org/10.1007/s10452-019-09707-2

Downloads

Published

2021-11-12

How to Cite

Abakumov, E., Nizamutdinov, T., & Polyakov, V. (2021). Analysis of the polydispersity of soil-like bodies in glacier environments by the laser light scattering (diffraction) method. Biological Communications, 66(3), 198–209. https://doi.org/10.21638/spbu03.2021.302

Issue

Section

Full communications

Categories

Most read articles by the same author(s)

1 2 > >>