Aquatic environmental DNA: Applications for assessment and monitoring vertebrate diversity

Authors

  • Svetlana Galkina Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-7034-2466
  • Irina Demina Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation; Biological Station Rybachy, Zoological Institute of the Russian Academy of Sciences, ul. Pobedy, 32, Rybachy, Kaliningrad Region, 238535, Russian Federation https://orcid.org/0000-0002-9174-902X
  • Elena Platonova Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation; Biological Station Rybachy, Zoological Institute of the Russian Academy of Sciences, ul. Pobedy, 32, Rybachy, Kaliningrad Region, 238535, Russian Federation https://orcid.org/0000-0002-9425-8998
  • Alexander Dyomin Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-2767-8239

DOI:

https://doi.org/10.21638/spbu03.2024.407

Abstract

Environmental DNA from water samples (aquatic eDNA) is a noninvasive, cost-effective and high-throughput tool to conduct biodiversity assessment of both hydrobionts and terrestrial organisms that live nearby or frequently come into contact with a waterbody. Due to the exceptional importance of vertebrates in biomonitoring, a wide range of vertebrate taxonomic groups have been studied in recent years in various ecosystems using aquatic eDNA assays, including endangered, rare, secretive and elusive species that are often missed by traditional survey methods. Given that the potential uses of eDNA vary among different vertebrate groups, in this article we provide an overview of the use of aquatic eDNA for monitoring fish, amphibians, reptiles, mammals, and birds in small and large, marine and fresh water bodies from the tropics to the Arctic. We discuss the main applications of aquatic eDNA for single species detection, biodiversity assessment, genetic characterization, and biomass estimation.

Keywords:

eDNA, metabarcoding, universal primers, fish, amphibians, reptiles, birds, mammals

Downloads

Download data is not yet available.
 

References

Adams, C. I., Hoekstra, L. A., Muell, M. R., and Janzen, F. J. 2019. A brief review of non-avian reptile environmental DNA (eDNA), with a case study of painted turtle (Chrysemys picta) eDNA under field conditions. Diversity 11(4):50. https://doi.org/10.3390/d11040050

Akre, T. S., Parker, L. D., Ruther, E., Maldonado, J. E., Lemmon, L., and McInerney, N. R. 2019. Concurrent visual encounter sampling validates eDNA selectivity and sensitivity for the endangered wood turtle (Glyptemys insculpta). PloS ONE 14(4):e0215586. https://doi.org/10.1371/journal.pone.0215586

Andres, K. J., Lodge, D. M., Sethi S. A., and Andrés, J. 2023. Detecting and analysing intraspecific genetic variation with eDNA: From population genetics to species abundance. Molecular Ecology 32(15):4118-4132. https://doi.org/10.1111/mec.17031

Andruszkiewicz, E. A., Starks, H. A., Chavez, F. P., Sassoubre, L. M., Block, B. A., and Boehm, A. B. 2017. Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding. PloS ONE 12:e0176343. https://doi.org/10.1371/journal.pone.0176343

Andruszkiewicz, E. A., Yamahara, K. M., Closek, C. J., and Boehm, A. B. 2020. Quantitative PCR assays to detect whales, rockfish, and common murre environmental DNA in marine water samples of the Northeastern Pacific. PloS ONE 15:e0242689. https://doi.org/10.1371/journal.pone.0242689

Baker, C. S., Steel, D., Nieukirk, S., and Klinck, H. 2018. Environmental DNA (eDNA) from the wake of the whales: Droplet digital PCR for detection and species identification. Frontiers in Marine Science 5:133. https://doi.org/10.3389/fmars.2018.00133

Beng, K. C. and Corlett, R. T. 2020. Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects. Biodiversity and Conservation 29:2089–2121. https://doi.org/10.1007/s10531-020-01980-0

Berger, C. S., Bougas, B., Turgeon, S., Ferchiou, S., Ménard, N., and Bernatchez, L. 2020. Groundtruthing of pelagic forage fish detected by hydroacoustics in a whale feeding area using environmental DNA. Environmental DNA 2(4):477–492. https://doi.org/10.1002/edn3.73

Berry, T. E., Osterrieder, S. K., Murray, D. C., Coghlan, M. L., Richardson, A. J., Grealy A. K., Stat, M., Bejder, L., and Bunce, M. 2017. DNA metabarcoding for diet analysis and biodiversity: A case study using the endangered Australian sea lion (Neophoca cinerea). Ecology and Evolution 7(14):5435–5453. https://doi.org/10.1002/ece3.3123

Böhm, M., Collen, B., Baillie, J. E., Bowles, P., et al. 2013. The conservation status of the world’s reptiles. Biological Conservation 157:372–385. https://doi.org/10.1016/j.biocon.2012.07.015

Bohmann, K., Evans, A., Gilbert, M. T., Carvalho, G. R., Creer, S., Knapp, M., Yu, D. W., and de Bruyn, M. 2014. Environmental DNA for wildlife biology and biodiversity monitoring. Trends in Ecology and Evolution 29(6):358–367. https://doi.org/10.1016/j.tree.2014.04.003

Clare, E. L., Economou, C. K., Faulke, C. G., Gilbert, J. D., Bennett, F., Drinkwater, R., and Lit-tlefair, J. E. 2021. eDNAir: Proof of concept that animal DNA can be collected from air sampling. PeerJ 9:e11030. https://doi.org/10.7717/peerj.11030

Clare, E. L., Economou, C. K., Bennett, F. J., Dyer, C. E., Adams, K., McRobie, B., Drinkwater, R., and Littlefair, J. E. 2022. Measuring biodiversity from DNA in the air. Current Biology 32:693–700.e5. https://doi.org/10.1016/j.cub.2021.11.064

Closek, C. J., Santora, J. A., Starks, H. A., Schroeder, I. D., Andruszkiewicz, E. A., Sakuma K. M., Bograd, S. J., Hazen, E. L., Field, J. C., and Boehm, A. B. 2019. Marine vertebrate biodiversity and distribution within the central California Current using environmental DNA (eDNA) metabarcoding and ecosystem surveys. Frontiers in Marine Science 6:732. https://doi.org/10.3389/fmars.2019.00732

Coutant, O., Richard-Hansen, C., de Thoisy B., Decotte, J. B., Valentini, A., Dejean, T., Vigouroux, R., Murienne, J., and Brosse, S. 2021. Amazonian mammal monitoring using aquatic environmental DNA. Molecular Ecology Resources 21(6):1875–1888. https://doi.org/10.1111/1755-0998.13393

Cox, N., Young, B. E., Bowles, P., Fernandez, M., Marin, J., Rapacciuolo, G., Böhm, M, Brooks, T. M., Hedges, S. B., Hilton-Taylor, C., Hoffmann, M., Jenkins, R. K. B., Tognelli, M. F., Alexander, G. J., Allison, A., Ananjeva, N. B., Auliya, M., Avila, L. J., Chapple, D. G., Cisneros-Heredia, D. F., Cogger, H. G., Colli, G. R., de Silva, A., Eisemberg, C. C., Els, J., Fong, G. A., Grant, T. D., Hitchmough, R. A., Iskandar, D. T., Kidera, N., Mar-tins, M., Meiri, S., Mitchell, N. J., Molur, S., Nogueira, C. C., Ortiz, J. C., Penner, J., Rhodin, A. G. J., Rivas, G. A., Rödel, M. O., Roll, U., Sanders, K. L., Santos-Barrera, G., Shea, G. M., Spawls, S., Stuart, B. L., Tolley, K. A., Trape, J. F., Vidal, M. A., Wagner, P., Wallace, B. P., and Xie, Y. 2022. A global reptile assessment highlights shared conservation needs of tetrapods. Nature 605(7909):285–290. https://doi.org/10.1038/s41586-022-04664-7

Czeglédi, I., Sály, P., Specziár, A., Preiszner, B., Szalóky, Z., Maroda, Á., Pont D., Meulenbroek, P., Valentini, A. E., and Erős, T. 2021. Congruency between two traditional and eDNA-based sampling methods in characterising taxonomic and trait-based structure of fish communities and community-environment relationships in lentic environment. Ecological Indicators 129:107952. https://doi.org/10.1016/j.ecolind.2021.107952

David, B. O., Fake, D. R., Hicks, A. S., Wilkinson, S. P., Bunce, M., Smith, J. S., West D. W., Collins, K. E., and Gleeson, D. M. 2021. Sucked in by eDNA — a promising tool for complementing riverine assessment of freshwater fish communities in Aotearoa New Zealand. New Zealand Journal of Zoology 48(3–4):217–244. https://doi.org/10.1080/03014223.2021.1905672

Davy, C. M., Kidd, A. G., and Wilson, C. C. 2015. Development and validation of environmental DNA (eDNA) markers for detection of freshwater turtles. PloS ONE 10(7):e0130965. https://doi.org/10.1371/journal.pone.0130965

Day, K., Campbell, H., Fisher, A., Gibb, K., Hill, B., Rose, A., and Jarman, S. N. 2019. Development and validation of an environmental DNA test for the endangered Gouldian finch. Endangered Species Research 40:171–182. https://doi.org/10.3354/esr00987

Deeg, C. M., Li, S., Esenkulova, S., Hunt, B. P., Schulze, A. D., and Miller, K. M. 2023. Environmental DNA survey of the Winter Salmonosphere in the Gulf of Alaska. Environmental DNA 5(3):519–539. https://doi.org/10.1002/edn3.404

Djurhuus, A., Port J., Closek, C. J., Yamahara, K. M., Romero-Maraccini, O., Walz, K. R., Goldsmith, D. B., Michisaki, R., Breitbart, M., and Boehm, A. B. 2017. Evaluation of filtration and DNA extraction methods for environmental DNA biodiversity assessments across multiple trophic levels. Frontiers in Marine Science 4:314. https://doi.org/10.3389/fmars.2017.00314

Dugal, L., Thomas, L., Jensen, M. R., Sigsgaard, E. E., Simpson, T., Jarman, S., Thomsen, P. F., and Meekan, M. 2022. Individual haplotyping of whale sharks from seawater environmental DNA. Molecular Ecology Resources 22(1):56–65. https://doi.org/10.1111/1755-0998.13451

Dyomin, A. G., Ilina, A. V., Starikov, D. A., Skripnichenko, A. Y., and Galkina, S. A. 2024. Assessment of possibility of waterfowl DNA detection by real-time PCR in water samples from Lake Ladoga. Ecological Genetics. (In press)

Dysthe, J. C., Franklin, T. W., McKelvey, K. S., Young, M. K., and Schwartz, M. K. 2018. An improved environmental DNA assay for bull trout (Salvelinus confluentus) based on the ribosomal internal transcribed spacer I. PloS ONE 13(11):e0206851. https://doi.org/10.1371/journal.pone.0206851

Eiler, A., Löfgren, A., Hjerne, O., Nordén, S., and Saetre, P. 2018. Environmental DNA (eDNA) detects the pool frog (Pelophylax lessonae) at times when traditional monitoring methods are insensitive. Scientific Reports 8:5452. https://doi.org/10.1038/s41598-018-23740-5

Feist, S. M., Guan, X., Malmfeldt, M. P., and Lance, R. F. 2022. Two novel qPCR assays to enhance black rail (Laterallus jamaicensis) eDNA surveys in the United States. Conservation Genetics Resources 14:321–329. https://doi.org/10.1007/s12686-022-01279-y

Ficetola, G. F., Miaud, C., Pompanon, F., and Taberlet, P. 2008. Species detection using environmental DNA from water samples. Biology Letters 4(4):423–425. https://doi.org/10.1098/rsbl.2008.0118

Foote, A. D., Thomsen, P. F., Sveegaard, S., Wahlberg, M., Kielgast, J., Kyhn, L. A., Salling, A. B., Galatius, A., Orlando, L., and Gilbert, M. T. P. 2012. Investigating the potential use of environmental DNA (eDNA) for genetic monitoring of marine mammals. PloS ONE 7:e41781. https://doi.org/10.1371/journal.pone.0041781

Fraija-Fernández, N., Bouquieaux, M. C., Rey, A., Mendibil, I., Cotano, U., Irigoien, X., Santos, M., and Rodríguez‐Ezpeleta, N. 2020. Marine water environmental DNA metabarcoding provides a comprehensive fish diversity assessment and reveals spatial patterns in a large oceanic area. Ecology and Evolution 10:7560–7584. https://doi.org/10.1002/ece3.6482

Furlan, E. M., Gleeson, D., Hardy, C. M., and Duncan, R. P. 2016. A framework for estimating the sensitivity of eDNA surveys. Molecular Ecology Resources 16(3):641–654. https://doi.org/10.1111/1755-0998.12483

Galbraith, E. K. 2022. Design and Assessment of a Novel eDNA Survey Method for the Eastern Indigo Snake (Drymarchon couperi). Dr. Sci. thesis. Tampa. https://doi.org/10.1098/rsbl.2008.0118

Garlapati, D., Charankumar, B., Ramu, K., Madeswaran, P., and Ramana Murthy, M. V. 2019. A review on the applications and recent advances in environmental DNA (eDNA) metagenomics. Reviews in Environmental Science and Bio/Technology 18:389–411. https://doi.org/10.1007/s11157-019-09501-4

Garrett, N. R., Watkins, J., Simmons, N. B., Fenton, B., Maeda-Obregon, A., Sanchez, D. E., Froehlich, E. M., Walker, F. M., Little-fair, J. E., and Clare, E. L. 2023. Airborne eDNA documents a diverse and ecologically complex tropical bat and other mammal community. Environmental DNA 5:350–362. https://doi.org/10.1002/edn3.385

Gehri, R. R., Larson, W. A., Gruenthal, K., Sard, N. M., and Shi, Y. 2021. eDNA metabarcoding outperforms traditional fisheries sampling and reveals fine-scale heterogeneity in a temperate freshwater lake. Environmental DNA 3(5):912–929. https://doi.org/10.1002/edn3.197

Gillett, C. P., Johnson, A. J., Barr, I., and Hulcr, J. 2016. Metagenomic sequencing of dung beetle intestinal contents directly detects and identifies mammalian fauna. BioRxiv 074849. https://doi.org/10.1101/074849

Gold, Z., Sprague, J., Kushner, D. J., Zerecero Marin, E., and Barber, P. H. 2021. eDNA metabarcoding as a biomonitoring tool for marine protected areas. PLoS ONE 16(2):e0238557. https://doi.org/10.1371/journal.pone.0238557

Goldberg, C. S., Pilliod, D. S., Arkle, R. S., and Waits, L. P. 2011. Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders. PloS ONE 6(7):e22746. https://doi.org/10.1371/journal.pone.0022746

Harper, L. R., Handley, L. L., Carpenter, A. I., Ghazali, M., Di Muri, C., Macgregor, C. J., Logan, T. W., Law, A., Breithaupt, T., and Read, D. S. 2019. Environmental DNA (eDNA) metabarcoding of pond water as a tool to survey conservation and management priority mammals. Biological Conservation 238:108225. https://doi.org/10.1016/j.biocon.2019.108225

Hebert, P. D., Stoeckle, M. Y., Zemlak, T. S., and Francis, C. M. 2004. Identification of Birds through DNA Barcodes. PLoS Biology 2(10):e312. https://doi.org/10.1371/journal.pbio.0020312

Hunter, M. E., Meigs-Friend, G., Ferrante, J. A., Kamla, A. T., Dorazio, R. M., Diagne, L. K., Luna, F., Lanyon, J. M., and Reid, J. P. 2018. Surveys of environmental DNA (eDNA): a new approach to estimate occurrence in Vulnerable manatee populations. Endangered Species Research 35:101–111. https://doi.org/10.3354/esr00880

Jacobsen, M. W., Nygaard, R., Hansen, B. K., Broberg, M., Hansen, M. M., Hedeholm, R., and Nielsen, E. E. 2023. Observing the Arctic: A comparison of environmental DNA (eDNA) and electrofishing for monitoring Arctic char and Atlantic salmon. Environmental DNA 5(4):782–795. https://doi.org/10.1002/edn3.442

Jensen, M. R., Høgslund, S., Knudsen, S. W., Nielsen, J., Møller, P. R., Rysgaard, S., and Thomsen, P. F. 2023. Distinct latitudinal community patterns of Arctic marine vertebrates along the East Greenlandic coast detected by environmental DNA. Diversity and Distributions 29:316–334. https://doi.org/10.1111/ddi.13665

Jerde, C. L., Mahon, A. R., Chadderton, W. L., and Lodge, D. M. 2011. “Sight‐unseen” detection of rare aquatic species using environmental DNA. Conservation Letters 4(2):150–157. https://doi.org/10.1111/j.1755-263X.2010.00158.x

Jo, T. S., Tsuri, K., and Yamanaka, H. 2022. Can nuclear aquatic environmental DNA be a genetic marker for the accurate estimation of species abundance? Naturwissenschaften 109(4):38. https://doi.org/10.1007/s00114-022-01808-7

Kakuda, A., Doi, H., Souma, R., Nagano, M., Minamoto, T., and Katano, I. 2019. Environmental DNA detection and quantification of invasive red-eared sliders, Trachemys scripta elegans, in ponds and the influence of water quality. PeerJ 7:p.e8155. https://doi.org/10.7717/peerj.8155

Kelly, R. P., Port, J. A., Yamahara, K. M., and Crowder, L. B. 2014. Using environmental DNA to census marine fishes in a large mesocosm. PloS ONE 9(1):e86175. https://doi.org/10.1371/journal.pone.0086175

Kerley, G. I. H., Wilson, S. L., and Balfour, D. (eds) 2018. Livestock Predation and its Management in South Africa: A Scientific Assessment. Centre for African Conservation Ecology, Nelson Mandela University, Port Elizabeth.

Klymus, K. E., Richter, C. A., Thompson, N., and Hinck, J. E. 2017. Metabarcoding of Environmental DNA Samples to Explore the Use of Uranium Mine Containment Ponds as a Water Source for Wildlife. Diversity 9(4):54. https://doi.org/10.3390/d9040054

Knudsen, S. W., Hesselsøe, M., Rytter, M., Lillemark, M. R., Tøttrup, A. P., Rahbek, C., Sheard, J. K., Thomsen, P. F., Agersnap, S., Mortensen, P. B., and Møller, P. R. 2023. Detection of environmental DNA from amphibians in Northern Europe applied in citizen science. Environmental DNA 5(6):1429–1448. https://doi.org/10.1002/edn3.462

Kraus, F. 2015. Impacts from invasive reptiles and amphibians. Annual Review of Ecology, Evolution, and Systematics 46:75–97. https://doi.org/10.1146/annurev-ecolsys-112414-054450

Kucherenko, A., Herman, J. E., Iii, E. M. E., and Urakawa, H. 2018. Terrestrial snake environmental DNA accumulation and degradation dynamics and its environmental application. Herpetologica 74(1):38–49. https://doi.org/10.1655/Herpetologica-D-16-00088

Kyle, K. E., Allen, M. C., Dragon, J., Bunnell, J. F., Reinert, H. K., Zappalorti, R., Jaffe, B. D., Angle, J. C., and Lockwood, J. L. 2022. Combining surface and soil environmental DNA with artificial cover objects to improve terrestrial reptile survey detection. Conservation Biology 36(6):e13939. https://doi.org/10.1111/cobi.13939

Lacoursière-Roussel, A., Dubois, Y., Normandeau, E., and Bernatchez, L. 2016. Improving herpetological surveys in eastern North America using the environmental DNA method. Genome 59(11):991–1007. https://doi.org/10.1139/gen-2015-0218

Layton, A., McKay L., Williams, D., Garrett, V., Gentry, R., and Sayler, G. 2006. Development of Bacteroides 16S rRNA gene TaqMan-based real-time PCR assays for estimation of total, human, and bovine fecal pollution in water. Applied and Environmental Microbiology 72(6):4214–4224. https://doi.org/10.1128/AEM.01036-05

Leduc, N., Lacoursière‐Roussel, A., Howland, K. L., Archambault, P., Sevellec, M., Normandeau, E., Dispas A., Winkler, G., McKindsey, C. W., Simard, N., and Bernatchez, L. 2019. Comparing eDNA metabarcoding and species collection for documenting Arctic metazoan biodiversity. Environmental DNA 1(4):342–358. https://doi.org/10.1002/edn3.35

Lines, R., Juggernauth, M., Peverley, G., Keating, J., Simpson, T., Mousavi-Derazmahalleh, M., Bunce, M., Berry, T. E., Taysom, A., and Bernardino, A. F. 2023. A largescale temporal and spatial environmental DNA biodiversity survey of marine vertebrates in Brazil following the Fundão tailings dam failure. Marine Environmental Research 192:106239. https://doi.org/10.1016/j.marenvres.2023.106239

Lopes, C. M., Baêta, D., Valentini, A., Lyra, M. L., Sabbag, A. F., Gasparini, J. L., Dejean, T., Haddad, C. F. B., and Zamudio, K. R. 2021. Lost and found: Frogs in a biodiversity hotspot rediscovered with environmental DNA. Molecular Ecology 30(13):3289-3298. https://doi.org/10.1111/mec.15594

Lowe, S., Browne, M., Boudjelas, S., and De Poorter, M. 2000. 100 of the world’s worst invasive alien species: A selection from the global invasive species database. Vol. 12. Invasive Species Specialist Group, Auckland.

Lozano Mojica, J. D. and Caballero, S. 2021. Applications of eDNA metabarcoding for vertebrate diversity studies in northern Colombian water bodies. Frontiers in Ecology and Evolution 8:617948. https://doi.org/10.3389/fevo.2020.617948

Ma, H., Stewart, K., Lougheed, S., Zheng, J., Wang, Y., and Zhao, J. 2016. Characterization, optimization, and validation of environmental DNA (eDNA) markers to detect an endangered aquatic mammal. Conservation Genetics Resources 8:561–568. https://doi.org/10.1007/s12686-016-0597-9

Macher, T-H., Schütz, R., Arle J., Beermann, A. J., Koschorreck, J., and Leese, F. 2021. Beyond fish eDNA metabarcoding: Field replicates disproportionately improve the detection of stream-associated vertebrate species. Metabarcoding and Metagenomics 5:e66557. https://doi.org/10.3897/mbmg.5.66557

Mariani, S., Harper, L. R., Collins, R. A., Baillie, C., Wangensteen, O. S., McDevitt, A. D., Heddell-Cowie, M., and Genner, M. J. 2021. Estuarine molecular bycatch as a landscape-wide biomonitoring tool. Biological Conservation 261:109287. https://doi.org/10.1016/j.biocon.2021.109287

Martellini, A., Payment, P., and Villemur, R. 2005. Use of eukaryotic mitochondrial DNA to differentiate human, bovine, porcine and ovine sources in fecally contaminated surface water. Water Research 39(4):541–548. https://doi.org/10.1016/j.watres.2004.11.012

Marques, V., Castagné, P., Polanco, A., Fernández, Borrero-Pérez, G. H., Hocdé, R., Guérin, P. É., Juhel, J. B., Velez, L., Loiseau, N., Letessier, T. B., Bessudo, S., Valentini, A., Dejean, T., Mouillot, D., Pellissier, L., and Villéger, S. 2021. Use of environmental DNA in assessment of fish functional and phylogenetic diversity. Conservation Biology 35(6):1944–1956. https://doi.org/10.1111/cobi.13802

Matthias, L., Allison, M. J., Maslovat, C. Y., Hobbs, J., and Helbing, C. C. 2021. Improving ecological surveys for the detection of cryptic, fossorial snakes using eDNA on and under artificial cover objects. Ecological Indicators 131:108187. https://doi.org/10.1016/j.ecolind.2021.108187

McDonald, R., Bateman, P. W., Cooper, C., van der Heyde, M., Mousavi‐Derazmahalleh, M., Hedges, B. A., Guzik, M. T., and Nevill, P. 2023. Detection of vertebrates from natural and artificial inland water bodies in a semi‐arid habitat using eDNA from filtered, swept, and sediment samples. Ecology and Evolution 13:e10014. https://doi.org/10.1002/ece3.10014

Miaud, C., Taberlet, P., and Dejean, T. 2012. ADN “environnemental”: un saut méthod-ologique pour les inventaires de la biodiversité. Sciences Eaux and Territoires 6:92–95. https://doi.org/10.3917/set.006.0092

Miya, M. 2022. Environmental DNA metabarcoding: a novel method for biodiversity monitoring of marine fish communities. Annual Review of Marine Science 14:161–185. https://doi.org/10.1146/annurev-marine-041421-082251

Miya, M., Sato, Y., Fukunaga, T., Sado, T., Poulsen, J. Y., Sato, K., Minamoto, T., Yamamoto, S., Yamanaka, H., Araki, H., and Kondoh, M. 2015. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: Detection of more than 230 subtropical marine species. Royal Society Open Science 2(7):150088. https://doi.org/10.1098/rsos.150088

Moss, W. E., Harper, L. R., Davis, M. A., Goldberg, C. S., Smith, M. M., and Johnson, P. T. 2022. Navigating the trade‐offs between environmental DNA and conventional field surveys for improved amphibian monitoring. Ecosphere 13(2):e3941. https://doi.org/10.1002/ecs2.3941

Mousavi-Derazmahalleh, M., Ellis, R. J., D’Rozario, B. L., Berry, T. E., Peverley, G., Dawkins, K. L., Campbell, M., White, N. E., and Allentoft, M. E. 2023. Rock pools as a source of environmental DNA for the detection of the threatened Pilbara olive python (Liasis olivaceus barroni). Frontiers in Environmental Science 11:639. https://doi.org/10.3389/fenvs.2023.1187545

Mu, Y., Zhang J., Yang, J., Wu, J., Zhang Y., Yu, H., and Zhang, X. 2024. Enhancing amphibian biomonitoring through eDNA metabarcoding. Molecular Ecology Resources 24(4):e13931. https://doi.org/10.1111/1755-0998.13931

Muff, M., Jaquier, M., Marques, V., Ballesta, L., Deter, J., Bockel, T., Hocdé, R., Juhel, J. B., Boulanger, E., Guellati, N., and Fernández, A. P. 2023. Environmental DNA highlights fish biodiversity in mesophotic ecosystems. Environmental DNA 5(1):56–72. https://doi.org/10.1002/edn3.358

Neice, A. A. and McRae, S. B. 2021. An eDNA diagnostic test to detect a rare, secretive marsh bird. Global Ecology and Conservation 27:e01529. https://doi.org/10.1016/j.gecco.2021.e01529

Newton, J. P., Bateman, P. W., Heydenrych, M. J., Kestel, J. H., Dixon, K. W., Prendergast, K. S., White, N. E., and Nevill, P. 2023. Monitoring the birds and the bees: Environmental DNA metabarcoding of flowers detects plant–animal interactions. Environmental DNA 5(3):488–502. https://doi.org/10.1002/edn3.399

Nordstrom, B., Mitchell, N., Byrne, M., and Jarman, S. 2022. A review of applications of environmental DNA for reptile conservation and management. Ecology and Evolution 12(6):e8995. https://doi.org/10.1002/ece3.8995

O’Donnell, J. L., Kelly, R. P., Shelton, A. O., Samhouri, J. F., Lowell, N. C., and Williams, G. D. 2017. Spatial distribution of environmental DNA in a nearshore marine habitat. PeerJ 28(5):e3044. https://doi.org/10.7717/peerj.3044

Ogram, A., Sayler, G. S., and Barkay T. The extraction and purification of microbial DNA from sediments. 1987. Journal of Microbiological Methods 7(2-3):57–66. https://doi.org/10.1016/0167-7012(87)90025-X

Olson, Z. H., Briggler, J. T., and Williams, R. N. 2012. An eDNA approach to detect eastern hellbenders (Cryptobranchus a. alleganiensis) using samples of water. Wildlife Research 39(7):629–636. http://dx.doi.org/10.1071/WR12114

Orzechowski, S. C. M., Frederick, P. C., Dorazio, R. M., and Hunter, M. E. 2019. Environmental DNA sampling reveals high occupancy rates of invasive Burmese pythons at wading bird breeding aggregations in the central Everglades. PLoS ONE 14(4):e0213943. https://doi.org/10.1371/journal.pone.0213943

Palacios Mejia, M., Curd, E., Edalati, K., Renshaw, M. A., Dunn, R., Potter, D., Fraga, N., Moore, J., Saiz, J., and Wayne, R. 2021. The utility of environmental DNA from sediment and water samples for recovery of observed plant and animal species from four Mojave Desert springs. Environmental DNA 3:214–230. https://doi.org/10.1002/edn3.161

Parsons, K. M., Everett, M., Dahlheim, M., and Park, L. 2018. Water, water everywhere: Environmental DNA can unlock population structure in elusive marine species. Royal Society open science 5:180537. https://doi.org/10.1098/rsos.180537

Pérez-Fleitas, E., Milián-García, Y., Sosa-Rodríguez, G., Amato, G., Rossi, N., Shirley, M. H., and Hanner, R. H. 2023. Environmental DNA-based biomonitoring of Cuban Crocodylus and their accompanying vertebrate fauna from Zapata Swamp, Cuba. Scientific Reports 13:20438. https://doi.org/10.1038/s41598-023-47675-8

Piaggio, A. J., Engeman, R. M., Hopken, M. W., Humphrey, J. S., Keacher, K. L., Bruce, W. E., and Avery, M. L. 2014. Detecting an elusive invasive species: A diagnostic PCR to detect Burmese python in Florida waters and an assessment of persistence of environmental DNA. Molecular Ecology Resources 14(2):374–380. https://doi.org/10.1111/1755-0998.12180

Piggott, M. P., Banks, S. C., Broadhurst, B. T., Fulton, C. J., and Lintermans, M. 2021. Comparison of traditional and environmental DNA survey methods for detecting rare and abundant freshwater fish. Aquatic Conservation: Marine and Freshwater Ecosystems 31(1):173–184. https://doi.org/10.1002/aqc.3474

Pilliod, D. S., Goldberg, C. S., Arkle, R. S., and Waits, L. P. 2014. Factors influencing detection of eDNA from a stream-dwelling amphibian. Molecular Ecology Resources 14(1):109–116. https://doi.org/10.1111/1755-0998.12159

Pinfield, R., Dillane, E., Runge, A. K. W., Evans, A., Mirimin, L., Niemann, J., Reed, T. E., Reid, D. G., Rogan, E., and Samarra, F. I. 2019. False-negative detections from environmental DNA collected in the presence of large numbers of killer whales (Orcinus orca). Environmental DNA 1:316–328. https://doi.org/10.1002/edn3.32

Polanco, F. A., Mutis Martinezguerra, M., Marques, V., Villa-Navarro, F., Borrero Pérez G. H., Cheutin, M. C., Dejean, T., Hocdé, R., Juhel, J. B., and Maire, E. 2021. Detecting aquatic and terrestrial biodiversity in a tropical estuary using environmental DNA. Biotropica 53:1606–1619. https://doi.org/10.1111/btp.13009

Pont, D., Meulenbroek, P., Bammer, V., Dejean, T., Erős, T., Jean, P., Lenhardt, M., Nagel, C., Pekarik, L., Schabuss, M., and Stoeckle, B. C. 2023. Quantitative monitoring of diverse fish communities on a large scale combining eDNA metabarcoding and qPCR. Molecular Ecology Resources 23(2):396-409. https://doi.org/10.1111/1755-0998.13715

Port, J. A., O’Donnell, J. L., Romero-Maraccini, O. C., Leary, P. R., Litvin, S. Y., Nickols, K. J., Yamahara, K. M., and Kelly, R. P. 2016. Assessing vertebrate biodiversity in a kelp forest ecosystem using environmental DNA. Molecular Ecology 25:527–541. https://doi.org/10.1111/mec.13481

Qu, C. and Stewart, K. A. 2019. Evaluating monitoring options for conservation: Comparing traditional and environmental DNA tools for a critically endangered mammal. The Science of Nature 106:9. https://doi.org/10.1007/s00114-019-1605-1

Quilumbaquin, W., Carrera-Gonzalez, A., Van der Heyden, C., Ortega-Andrade, H. M. 2023. Environmental DNA and visual encounter surveys for amphibian biomonitoring in aquatic environments of the Ecuadorian Amazon. PeerJ 11:e15455. https://doi.org/10.7717/peerj.15455

Raemy, M. and Ursenbacher, S., 2018. Detection of the European pond turtle (Emys orbicularis) by environmental DNA: is eDNA adequate for reptiles? Amphibia-reptilia 39(2):135–143. https://doi.org/10.1163/15685381-17000025

Randall, L. A., Goldberg, C. S., and Moehenschlager, A. 2023. Environmental DNA surveys can underestimate amphibian occupancy and overestimate detection probability: implications for practice. The Journal of Wildlife Management 87(7):e22463. https://doi.org/10.1002/jwmg.22463

Reji Chacko, M., Altermatt, F., Fopp, F., Guisan, A., Keggin, T., Lyet, A., Rey, P. L., Richards, E., Valentini, A., Waldock, C., and Pellissier, L. 2023. Catchment-based sampling of river eDNA integrates terrestrial and aquatic biodiversity of alpine landscapes. Oecologia 202(4):699–713. https://doi.org/10.1007/s00442-023-05428-4

Riaz, T., Shehzad, W., Viari, A., Pompanon, F., Taberlet, P., and Coissac, E. 2011. ecoPrimers: Inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Res 39(21):e145. https://doi.org/10.1093/nar/gkr732

Ritter, C. D., Dal Pont, G., Stica, P. V., Horodesky, A., Cozer, N., Netto, O. S. M., Henn, C., Ostrensky, A., and Pie, M. R. 2022. Wanted not, wasted not: Searching for non-target taxa in environmental DNA metabarcoding by-catch. Environmental Advances 7:100169. https://doi.org/10.1016/j.envadv.2022.100169

Robinson, C. V., Dracott, K., Glover, R. D., Warner, A., and Migneault, A. 2024. DNA from dives: Species detection of humpback whales (Megaptera novaeangliae) from flukeprint eDNA. Environmental DNA 6(2):e524. https://doi.org/10.1002/edn3.524

Rodgers, T. W. and Mock, K. E. 2015. Drinking water as a source of environmental DNA for the detection of terrestrial wildlife species. Conservation Genetics Resources 7:693–696. https://doi.org/10.1007/s12686-015-0478-7

Roesma, D. I., Djong, H. T., Janra, M. N., and Aidil, D. R. 2021. Freshwater vertebrates monitoring in Maninjau Lake, West Sumatra, Indonesia using environmental DNA. Biodiversitas Journal of Biological Diversity 22(5). https://doi.org/10.13057/biodiv/d220543

Rojahn, J., Trujillo-González, A., Gleeson, D., Cutter, N., and Furlan, E. M. 2024. Does mesocosm validation of environmental DNA methods translate to natural environment monitoring applications? A case study detecting a high-profile invader; the red eared slider turtle, Trachemys scripta elegans, in Australia. Conservation Genetics Resources 16:63–71. https://doi.org/10.1007/s12686-023-01333-3

Rose, A., Fukuda, Y., and Campbell, H. A. 2020. Using Environmental DNA to Detect Estuarine Crocodiles, a Cryptic-Ambush Predator of Humans, Human–Wildlife Interactions 14(1):11. https://doi.org/10.26077/jsvz-fh36

Rose, J. P., Wademan, C., Weir, S., Wood, J. S., and Todd, B. D. 2019. Traditional trapping methods outperform eDNA sampling for introduced semi-aquatic snakes. PloS ONE 14(7):e0219244. https://doi.org/10.1371/journal.pone.0219244

Rourke, M. L., Fowler, A. M., Hughes, J. M., Broadhurst, M. K., DiBattista, J. D., Fielder, S., Wilkes Walburn, J., and Furlan, E. M. 2022. Environmental DNA (eDNA) as a tool for assessing fish biomass: A review of approaches and future considerations for resource surveys. Environmental DNA 4(1): 9–33. https://doi.org/10.1002/edn3.185

Saenz‐Agudelo, P., Delrieu‐Trottin, E., DiBattista, J. D., Martínez‐Rincon, D., Morales‐González, S., Pontigo, F., Ramírez, P., Silva, A., Soto M., and Correa, C. 2022. Monitoring vertebrate biodiversity of a protected coastal wetland using eDNA metabarcoding. Environmental DNA 4:77–92. https://doi.org/10.1002/edn3.200

Sakata, M. K., Kawata, M. U., Kurabayashi, A., Kurita, T., Nakamura, M., Shirako, T., Kakehashi, R., Nishikawa, K., Hossman, M. Y., Nishijima, T., Kabamoto, J., Miya M., and Minamoto, T. 2022. Development and evaluation of PCR primers for environmental DNA (eDNA) metabarcoding of Amphibia. Metabarcoding and Metagenomics 6:e76534. https://doi.org/10.3897/mbmg.6.76534

Sakata, M. K., Yamamoto, S., Gotoh, R. O., Miya, M., Yamanaka, H., and Minamoto, T. 2020. Sedimentary eDNA provides different information on timescale and fish species composition compared with aqueous eDNA. Environmental DNA 2:505–518. https://doi.org/10.1002/edn3.75

Sales, N. G., Kaizer, M. C., Coscia, I., Perkins, J. C., Highlands, A., Boubli, J. P., Magnusson, W. E., Da Silva, M. N. F., Benvenuto, C., and Mcdevitt, A. D. 2020. Assessing the potential of environmental DNA metabarcoding for monitoring Neotropical mammals: a case study in the Amazon and Atlantic Forest, Brazil. Mammal Review 50:221–225. https://doi.org/10.1111/mam.12183

Sard, N. M., Herbst, S. J., Nathan, L., Uhrig, G., Kanefsky, J., Robinson, J. D., and Scribner, K. T. 2019. Comparison of fish detections, community diversity, and relative abundance using environmental DNA metabarcoding and traditional gears. Environmental DNA 1(4):368–384. https://doi.org/10.1002/edn3.38

Sasso, T., Lopes, C. M., Valentini, A., Dejean, T., Zamudio, K. R., Haddad, C. F., and Martins, M. 2017. Environmental DNA characterization of amphibian communities in the Brazilian Atlantic Forest: Potential application for conservation of a rich and threatened fauna. Biological Conservation 215:225-232. https://doi.org/10.1016/j.biocon.2017.09.015

Schütz, R., Tollrian, R., and Schweinsberg, M. 2020. A novel environmental DNA detection approach for the wading birds Platalea leucorodia, Recurvirostra avosetta and Tringa totanus. Conservation Genetics Resources 12:529–531. https://doi.org/10.1007/s12686-020-01143-x

Seeber, P. A., McEwen, G. K., Löber, U., Förster, D. W., East, M. L., Melzheimer, J., and Greenwood, A. D. 2019. Terrestrial mammal surveillance using hybridization capture of environmental DNA from African waterholes. Molecular Ecology Resources 19(6):1486–1496. https://doi.org/10.1111/1755-0998.13069

Severtsov, A. S. 2013. The significance of vertebrates in the structure and functioning of ecosystems. Biol Bull Russ Acad Sci 40:571–579. https://doi.org/10.1134/S1062359013070054

Sigsgaard, E. E., Nielsen, I. B., Bach, S. S., Lorenzen, E. D., Robinson, D. P., Knudsen, S. W., Pedersen, M. W., Jaidah, M. A., Orlando, L., Willerslev, E., Møller, P. R., and Thomsen, P. F. 2016. Population characteristics of a large whale shark aggregation inferred from seawater environmental DNA. Nature Ecology and Evolution 1(1):4. https://doi.org/10.1038/s41559-016-0004

Sigsgaard, E. E., Nielsen, I. B., Carl, H., Krag, M. A., Knudsen, S. W., Xing, Y., Holm-Hansen, T. H., Møller P. R., and Thomsen, P. F. 2017. Seawater environmental DNA reflects seasonality of a coastal fish community. Marine Biology 128:1–15. https://doi.org/10.1007/s00227-017-3147-4

Suarez-Bregua, P., Alvarez-Gonzalez, M., Parsons, K. M., Rotllant, J., Pierce, G. J., and Saa-vedra, C. 2022. Environmental DNA (eDNA) for monitoring marine mammals: Challenges and opportunities. Frontiers in Marine Science, 9:987774. https://doi.org/10.3389/fmars.2022.987774

Sun, X., Guo, N., Gao, J., and Xiao, N., 2024. Using eDNA to survey amphibians: Methods, applications, and challenges. Biotechnology and Bioengineering 121(2):456–471. https://doi.org/10.1002/bit.28592

Svenningsen, A. K. N., Pertoldi, C., and Bruhn, D. 2022. eDNA Metabarcoding Benchmarked towards Conventional Survey Methods in Amphibian Monitoring. Animals (Basel) 12(6):763. https://doi.org/10.3390/ani12060763

Székely, D., Corfixen, N. L., Mørch, L. L., Knudsen, S. W., McCarthy, M. L., Teilmann, J., Heide‐Jørgensen, M. P., and Olsen, M. T. 2021. Environmental DNA captures the genetic diversity of bowhead whales (Balaena mysticetus) in West Greenland. Environmental DNA 3:248–260. https://doi.org/10.1002/edn3.176

Taberlet, P., Coissac, E., Hajibabaei, M., and Rieseberg, L. H. 2012. Environmental DNA. Molecular Ecology. 21(8):1789–1793. https://doi.org/10.1111/j.1365-294X.2012.05542.x

Taberlet, P., Bonin, A., Zinger, L., and Coissac, E. 2018. Environmental DNA: For biodiversity research and monitoring. Oxford: Oxford University Press. https://doi.org/10.1093/oso/9780198767220.001

Takahara, T., Minamoto, T., and Doi, H. 2013. Using environmental DNA to estimate the distribution of an invasive fish species in ponds. PLoS ONE 8(2):e56584. https://doi.org/10.1371/journal.pone.0056584

Takahashi, M., Saccò, M., Kestel, J. H., Nester, G., Campbell, M. A., van der Heyde, M., Hey-denrych, M. J., Juszkiewicz, D. J., Nevill, P., Dawkins, K. L., Bessey, C., Fernandes, K., Miller, H., Power, M., Mousavi-Derazmahalleh, M., Newton, J. P., White, N. E., Richards, Z. T., and Allentoft, M. E. 2023. Aquatic environmental DNA: A review of the macro-organismal biomonitoring revolution. Science of The Total Environment 873:162322. https://doi.org/10.1016/j.scitotenv.2023.162322

Taylor, P. G. 1996. Reproducibility of ancient DNA sequences from extinct Pleistocene fauna. Molecular Biology and Evolution 13(1):283–285. https://doi.org/10.1093/oxfordjournals.molbev.a025566

Thalinger, B., Empey, R., Cowperthwaite, M., Coveny, K., and Steinke, D. 2023. BirT: a novel primer pair for avian environmental DNA metabarcoding. bioRxiv 2023.08.08.552521. https://doi.org/10.1101/2023.08.08.552521

Thomsen, P., Kielgast, J., Iversen, L., Moller, P., Rasmussen, M., and Willerslev, E. 2012a. Detection of a Diverse Marine Fish Fauna Using Environmental DNA from Seawater Samples. PLoS ONE 7:e41732. https://doi.org/10.1371/journal.pone.0041732

Thomsen, P. F., Kielgast, J. O. S., Iversen, L. L., Wiuf, C., Rasmussen, M., Gilbert, M. T. P., Or-lando, L., and Willerslev, E. 2012b. Monitoring endangered freshwater biodiversity using environmental DNA. Molecular Ecology 21(11):2565-73. https://doi.org/10.1111/j.1365-294X.2011.05418.x

Thomsen, P. F., Møller, P. R., Sigsgaard, E. E., Knudsen, S. W., Jørgensen, O. A., and Willerslev, E. 2016. Environmental DNA from seawater samples correlate with trawl catches of subarctic, deepwater fishes. PLoS ONE 11:e0165252. https://doi.org/10.1371/journal.pone.0165252

Ushio, M., Fukuda, H., Inoue, T., Makoto K., Kishida, O., Sato, K., Murata, K., Nikaido, M., Sado, T., Sato, Y., Takeshita, M., Iwasaki, W., Yamanaka, H., Kondoh, M., and Miya, M. 2017. Environmental DNA enables detection of terrestrial mammals from forest pond water. Molecular Ecology Resources 17(6):e63-e75. https://doi.org/10.1111/1755-0998.12690

Ushio, M., Murata, K., Sado, T., Nishiumi, I., Takeshita, M., Iwasaki, W., and Miya, M. 2018. Demonstration of the potential of environmental DNA as a tool for the detection of avian species. Scientific Reports 8(1):4493. https://doi.org/10.1038/s41598-018-22817-5

Valentini, A., Taberlet, P., Miaud, C., Civade, R., Herder, J., Thomsen, P. F., Bellemain, E., Besnard, A., Coissac, E., Boyer, F., Gaboriaud, C., Jean, P., Poulet, N., Roset, N., Copp, G. H., Geniez, P., Pont, D., Argillier, C., Baudoin, J. M., Peroux, T., Crivelli, A. J., Olivier, A., Acqueberge, M., Le Brun, M., Møller, P. R., Willerslev, E., and Dejean, T. 2016. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Molecular Ecology 25(4):929–942. https://doi.org/10.1111/mec.13428

Valsecchi, E., Bylemans, J., Goodman, S. J., Lombardi, R., Carr, I., Castellano, L., Galimberti, A., and Galli, P. 2020. Novel universal primers for metabarcoding environmental DNA surveys of marine mammals and other marine vertebrates. Environmental DNA 2(4):460–476. https://doi.org/10.1002/edn3.72

Valsecchi, E., Arcangeli, A., Lombardi, R., Boyse, E., Carr, I. M., Galli, P., and Goodman, S. J. 2021a. Ferries and environmental DNA: Underway sampling from commercial vessels provides new opportunities for systematic genetic surveys of marine biodiversity. Frontiers in Marine Science 8:704786. https://doi.org/10.3389/fmars.2021.704786

Valsecchi, E., Coppola, E., Pires, R., Parmegiani, A., Casiraghi, M., Galli, P., and Bruno, A. 2022. A species-specific qPCR assay provides novel insight into range expansion of the Mediterranean monk seal (Monachus monachus) by means of eDNA analysis. Biodiversity and Conservation 31:1175–1196. https://doi.org/10.1007/s10531-022-02382-0

Valsecchi, E., Coppola, E., Pires, R., Parmegiani, A., Casiraghi, M., Galli, P., and Bruno, A. 2021b. Newly developed ad hoc molecular assays show how eDNA can witness and anticipate the monk seal recolonization of central Mediterranean. BioRxiv 2021-02. https://doi.org/10.1101/2021.02.13.431078

Van Driessche, C., Everts, T., Neyrinck, S., Halfmaerten, D., Haegeman, A., Ruttink, T., Bonte, D., and Brys, R. 2023. Using environmental DNA metabarcoding to monitor fish communities in small rivers and large brooks: Insights on the spatial scale of information. Environmental Research 228:115857. https://doi.org/10.1016/j.envres.2023.115857

Vences, M., Lyra, M. L., Perl, R. B., Bletz, M. C., Stanković, D., Lopes, C. M., Jarek, M., Bhuju, S., Geffers, R., Haddad, C. F. B., and Steinfartz, S. 2016. Freshwater vertebrate metabarcoding on Illumina platforms using double-indexed primers of the mitochondrial 16S rRNA gene. Conservation Genetics Resources 8:323–327. https://doi.org/10.1007/s12686-016-0550-y

Villacorta-Rath, C., Hoskin, C. J., Strugnell, J. M., and Burrows, D. 2021. Long distance (>20 km) downstream detection of endangered stream frogs suggests an important role for eDNA in surveying for remnant amphibian populations. PeerJ 9:e12013. https://doi.org/10.7717/peerj.12013

Vörös, J., Márton, O., Schmidt, B. R., Gál, J. T., and Jelić, D. 2017. Surveying Europe’s only cave-dwelling chordate species (Proteus anguinus) using environmental DNA. PloS ONE 12(1):e0170945. https://doi.org/10.1371/journal.pone.0170945

Wang, B., Jiao, L., Ni, L., Wang, M., and You, P. 2024. Bridging the gap: The integration of eDNA techniques and traditional sampling in fish diversity analysis. Frontiers in Marine Science 11:1289589. https://doi.org/10.3389/fmars.2024.1289589

Wang, S., Yan, Z., Hänfling, B., Zheng, X., Wang, P., Fan, J., and Li, J. 2021. Methodology of fish eDNA and its applications in ecology and environment. Science of the Total Environment 755:142622. https://doi.org/10.1016/j.scitotenv.2020.142622

Wang, Z., Liu, X., Liang, D., Wang, Q., Zhang, L., and Zhang, P. 2023. VertU: universal multilocus primer sets for eDNA metabarcoding of vertebrate diversity, evaluated by both artificial and natural cases. Frontiers in Ecology and Evolution, 11:1164206. https://doi.org/10.3389/fevo.2023.1164206

West, K., Travers, M. J., Stat, M., Harvey, E. S., Richards, Z. T., DiBattista, J. D., Newman, S. J., Harry, A., Skepper, C. L., Heydenrych, M., and Bunce, M. 2021. Large-scale eDNA metabarcoding survey reveals marine biogeographic break and transitions over tropical north-western Australia. Diversity and Distributions 27(10):1942–1957. https://doi.org/10.1111/ddi.13228

West, K. M., Matthew, H., Rose, L., Tony, T., Sabrina, F., Scott, W., and Michael, B. 2023. Development of a 16S metabarcoding assay for the environmental DNA (eDNA) detection of aquatic reptiles across northern Australia. Marine and Freshwater Research 74:432–440. https://doi.org/10.1071/MF20288

Wikston, M., Breton, B.-A., Vilaça, S., Bennett, A., Kyle, C., Beresford, D., Lesbarreres, D., Wilson, C., Green, D., Fortin, M.-J., and Murray, D. 2023. Comparative efficacy of eDNA and conventional methods for monitoring wetland anuran communities. Frontiers in Ecology and Evolution 11. https://doi.org/10.3389/fevo.2023.1179158

Williams, K. E., Huyvaert, K. P., and Piaggio, A. J. 2017. Clearing muddied waters: Capture of environmental DNA from turbid waters. PLoS ONE 12:e0179282. https://doi.org/10.1371/journal.pone.0179282

Wilson, J. J., Sing, K. W., Chen, P. N., and Zieritz, A. 2018. Tracking the southern river terrapin (Batagur affinis) through environmental DNA: prospects and challenges. Mitochondrial DNA Part A 29(6):862–866. https://doi.org/10.1080/24701394.2017.1373109

Yamamoto, S., Masuda, R., Sato, Y., Sado, T., Araki, H., Kondoh, M., Minamoto, T., and Miya, M. 2017. Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Scientific Reports 7:40368. https://doi.org/10.1038/srep40368

Downloads

Published

2024-12-31

How to Cite

Galkina, S., Demina, I., Platonova, E., & Dyomin, A. (2024). Aquatic environmental DNA: Applications for assessment and monitoring vertebrate diversity. Biological Communications, 69(4), 263–279. https://doi.org/10.21638/spbu03.2024.407

Issue

Section

Review communications

Categories

Most read articles by the same author(s)