A 3-D-printable plastic trough for serial semithin sectioning

Authors

  • Viktor Starunov Department of Invertebrate Zoology, Saint Petersburg State University, Universitetskaya nab., 7–9, 199034, Saint Petersburg, Russian Federation; Zoological Institute, Russian Academy of Sciences, Universitetskaya nab., 1, 199034, Saint Petersburg, Russian Federation https://orcid.org/0000-0002-9001-2069

DOI:

https://doi.org/10.21638/spbu03.2018.405

Abstract

A simple lightweight 3-D-printable trough to make ribbons of semithin sections is described. The trough is large enough to fit the standard glass slide. The sectioning process is identical to a diamond histo jumbo knife; therefore, the trough may be recommended for specimens which contain hard particles that could damage the knife. The trough is designed to fit the three most common glass knife sizes and can be used with different ultratome models.

Keywords:

3-D reconstruction, 3-D printing, microscopy, semithin sectioning, glass knife, trough

Downloads

Download data is not yet available.
 

References

Blumer, M. J. F., Gahleitner, P., Narzt, T., Handl, C., Ruthensteiner, B., 2002. Ribbons of semithin sections: an advanced method with a new type of diamond knife. Journal of Neuroscience Methods 120:11–16. https://doi.org/10.1016/S0165-0270(02)00166-8

Böhm, A., Szucsich, N. U., Pass, G., 2012. Brain anatomy in Diplura (Hexapoda). Frontiers in Zoology 9:1–17. https://doi.org/10.1186/1742-9994-9-26

Campbell, R. D., 1981. A method for making ribbons of semithin plastic sections. Biotechnic & Histochemistry 56:247–249. https://doi.org/10.3109/10520298109067319

Fukushima, K., Abbate, C., Tabuani, D., Gennari, M., Camino, G., 2009. Biodegradation of poly(lactic acid) and its nanocomposites. Polymer Degradation and Stability 94:1646–1655. https://doi.org/10.1016/j.polymdegradstab.2009.07.001

Handschuh, S., Schwaha, T., Metscher, B. D., 2010. Showing their true colors: A practical approach to volume rendering from serial sections. BMC Developmental Biology 10. https://doi.org/10.1186/1471-213X-10-41

Leys, S. P., Kamarul Zaman, A., Boury-Esnault, N., 2016. Three-dimensional fate mapping of larval tissues through metamorphosis in the glass sponge Oopsacas minuta. Invertebrate Biology 135:259–272. https://doi.org/10.1111/ivb.12142

Lucas, M. S., Günthert, M., Gasser, P., Lucas, F., Wepf, R., 2012. Bridging Microscopes: 3D Correlative Light and Scanning Electron Microscopy of Complex Biological Structures. Methods in Cell Biology 111:325–356. https://doi.org/10.1016/B978-0-12-416026-2.00017-0

Pernstich, A., Krenn, H. W., Pass, G., 2003. Preparation of serial sections of arthropods using 2,2-dimethoxypropane dehydration and epoxy resin embedding under vacuum. Biotechnic & Histochemistry 78:1–5. https://doi.org/10.1080/10520290312120002

Qi, X., Ren, Y., Wang, X., 2017. New advances in the biodegradation of Poly(lactic) acid. International Biodeterioration and Biodegradation 117:215–223. https://doi.org/10.1016/j.ibiod.2017.01.010

Roth, J. A., Wilson, T. D., Sandig, M., 2015. The development of a virtual 3D model of the renal corpuscle from serial histological sections for E-learning environments. Anatomical Sciences Education 8:574–583. https://doi.org/10.1002/ase.1529

Royer, S. M., 1988. A simple method for collecting and mounting ribboned serial sections of epoxy embedded specimens. Biotechnic & Histochemistry 63:23–26. https://doi.org/10.3109/10520298809107155

Ruthensteiner, B., 2008. Soft Part 3D visualization by serial sectioning and computer reconstruction. Zoosymposia 1:63–100. https://doi.org/1178-9913

Schoenwolf, G. C., Chandler, N. B., 1983. A Novel Sectioning Technique for Use in Descriptive Embryology: Bridging the Gap Between Paraffin and Plastic Serial Sections. The Anatomical Record 225:221–225. https://doi.org/10.1002/ar.1092060211

Stephens, B., Azimi, P., El Orch, Z., Ramos, T., 2013. Ultrafine particle emissions from desktop 3D printers. Atmospheric Environment 79:334–339. https://doi.org/10.1016/j.atmosenv.2013.06.050

Tilic, E., von Döhren, J., Quast, B., Beckers, P., Bartolomaeus, T., 2015. Phylogenetic significance of chaetal arrangement and chaetogenesis in Maldanidae (Annelida). Zoomorphology 134:383–401. https://doi.org/10.1007/s00435-015-0272-9

Wali, N., Jagadeesh, J. M., 1988. A method for collecting semithin epoxy serial sections for light microscopy and 3-D reconstruction. Journal of Neuroscience Methods 23:91–94. https://doi.org/10.1016/0165-0270(88)90179-3

Downloads

Published

2019-03-26

How to Cite

Starunov, V. (2019). A 3-D-printable plastic trough for serial semithin sectioning. Biological Communications, 63(4), 261–263. https://doi.org/10.21638/spbu03.2018.405

Issue

Section

Brief communications