Adaptation of Drosophila melanogaster to high and low osmolarity promotes evolutionary change in the phenotypic plasticity of the larval anal organs

Authors

  • Dana Sivunova Lomonosov Moscow State University, Leninskie Gory, 1, Moscow, 119991, Russian Federation https://orcid.org/0009-0003-1534-9440
  • Ekaterina Yakovleva Lomonosov Moscow State University, Leninskie Gory, 1, Moscow, 119991, Russian Federation https://orcid.org/0000-0002-0624-0246
  • Elena Naimark Borissiak Paleontological Institute, Russian Academy of Sciences, ul. Profsoyuznaya, 123, Moscow, 117647, Russian Federation https://orcid.org/0000-0003-0588-811X
  • Sergey Lysenkov Lomonosov Moscow State University, Leninskie Gory, 1, Moscow, 119991, Russian Federation https://orcid.org/0000-0002-5791-7712
  • Ksenia Perfilieva Lomonosov Moscow State University, Leninskie Gory, 1, Moscow, 119991, Russian Federation https://orcid.org/0000-0002-7008-3281
  • Alexander Markov Lomonosov Moscow State University, Leninskie Gory, 1, Moscow, 119991, Russian Federation; Borissiak Paleontological Institute, Russian Academy of Sciences, ul. Profsoyuznaya, 123, Moscow, 117647, Russian Federation https://orcid.org/0000-0002-7113-7181

DOI:

https://doi.org/10.21638/spbu03.2024.303

Abstract

The anal organs (AO) of Drosophila larvae provide a textbook example of phenotypic developmental plasticity as they expand in low osmolarity conditions and shrink when larvae are reared on a high-salt medium. Waddington (1953) experimentally showed that these plastic changes might undergo “genetic as similation”: the adaptive plastic change in the size of AO under high salinity conditions became hereditary after a few generations of rearing on a high-salt medium. Later attempts to replicate this finding produced ambiguous results. To clarify the question, we analyzed plastic osmolarity-related changes in the size of AO in three D. melanogaster lines adapted to low, intermediate, and high osmolarity during a long-term evolutionary experiment. We failed to replicate the genetic assimilation. However, we find that the reaction norm became wider in the low osmolarity adapted line. Additionally, we studied the fine structure of AO in fly lines using dying, SEM, and microtomography and revealed phenotypic plasticity of nanoscale pits on the surface of AO as well as confirmed the reduction of the epithelial cells of AO in flies adapted to higher osmolarity.

Keywords:

anal papillae, osmotolerance, fly, adaptation, phenotypic plasticity, genetic compensation, genetic assimilation

Downloads

Download data is not yet available.
 

References

Belkina, E. G., Naimark, E. B., Gorshkova, A. A., and Markov, A. V. 2018. Does adaptation to different diets result in assortative mating? Ambiguous results from experiments on Drosophila. Journal of Evolutionary Biology 31(12):1803–1814. https://doi.org/10.1111/jeb.13375

Bradley, T. J. 1987. Physiology of osmoregulation in mosquitoes. Annual Review of Entomology 32(1):439–462. https://doi.org/10.1146/annurev.en.32.010187.002255

Chen, P. S. and Brugger, C. 1973. An electron microscope study of the anal organs of Drosophila larvae. Experientia 29(2):233–235. https://doi.org/10.1007/BF01945496

Copeland, E. 1964. A mitochondrial pump in the cells of the anal papillae of mosquito larvae. The Journal of Cell Biology 23(2):253–263. https://doi.org/10.1083/jcb.23.2.253

Donini, A. and O’Donnell, M. J. 2005. Analysis of Na+, Cl-, K+, H+ and NH4+ concentration gradients adjacent to the surface of anal papillae of the mosquito Aedes aegypti: application of self-referencing ion-selective microelectrodes. Journal of Experimental Biology 208(4):603–610. https://doi.org/10.1242/jeb.01422

Durham, B. and Grodowitz, M. J. 2012. The anal plates of larval Hydrellia pakistanae (Diptera: Ephydridae). Florida Entomologist 95(1):82–88. https://doi.org/10.1653/024.095.0113

Edwards, H. A. and Harrison, J. B. 1983. An osmoregulatory syncytium and associated cells in a freshwater mosquito. Tissue and Cell 15(2):271–280. https://doi.org/10.1016/0040-8166(83)90022-8

Ehrenreich, I. M. and Pfennig, D. W. 2016. Genetic assimilation: a review of its potential proximate causes and evolutionary consequences. Annals of Botany 117(5):769–779. https://doi.org/10.1093/aob/mcv130

Ghalambor, C. K., Hoke, K. L., Ruell, E. W., Fischer, E. K., Reznick, D. N., and Hughes, K. A. 2015. Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature 525(7569):372–375. https://doi.org/10.1038/nature15256

Gloor, H. and Chen, P. S. 1950. Uber ein Analorgan bei Drosophila-Larven. Revue suisse de Zoologie (57):570–576.

Gorshkova, A. A., Fetisova, E. S., Yakovleva, E. U., Naimark, E. B., and Markov, A. V. 2019. Impact of spatial heterogeneity on Drosophila melanogaster adaptation to unfavourable food media: the results of an experimental evolution study. Biology Bulletin Reviews 9(1):29–41. https://doi.org/10.1134/S207908641901002X

Grether, G. F. 2005. Environmental change, phenotypic plasticity, and genetic compensation. The American Naturalist 166(4):E115–E123. https://doi.org/10.1086/432023

Iordansky, N. N. 2009. Phenotypic plasticity of organisms and evolution. Zhurnal obshchei biologii 70(1):1–9. (In Russian)

Jarial, M. S. 1987. Ultrastructure of the anal organ of Drosophila larva with reference to ion transport. Tissue and Cell 19(4):559–575. https://doi.org/10.1016/0040-8166(87)90048-6

Kamshilov, M. M. 1972. Phenotype and genotype in evolution. Problems of Evolution (2):28–44.

Kawecki, T. J., Lenski, R. E., Ebert, D., Hollis, B., Olivieri, I., and Whitlock, M. C. 2012. Experimental evolution. Trends in Ecology and Evolution 27(10):547–560. https://doi.org/10.1016/j.tree.2012.06.001

Koch, H. J. 1938. The absorption of chloride ions by the anal papillae of Diptera larvae. Journal of Experimental Biology 15(1):152–160. https://doi.org/10.1242/jeb.15.1.152

Krivosheina, M. G. 2005. Structure and role of larva anal papillae in Diptera (Insecta). Zoologicheskii zhurnal 84(2):207–217.

Markov, A. V. and Ivnitsky, S. B. 2016. Evolutionary role of phenotypic plasticity. Moscow University Biological Sciences Bulletin 71(4):185–192. https://doi.org/10.3103/S0096392516040076

Markov, A. V., Ivnitsky, S. B., Kornilova, M. B., Naimark, E. B., Shirokova, N. G., and Perfilieva, K. S. 2016. Maternal effect obscures adaptation to adverse environments and hinders divergence in Drosophila melanogaster. Biology Bulletin Reviews 6(5):429–435. https://doi.org/10.1134/S2079086416050054

Martini-Hamburg, E. 1922. Uber beeinflussung der keimenlange von aedeslarvendurch das wasser. Internationale Vereinigung für Theoretische und Angewandte Limnologie: Verhandlungen (1):235–259.

Meredith, J. and Phillips, J. E. 1973. Ultrastructure of the anal papillae of a salt-water mosquito larva, Aedes campestris. Journal of Insect Physiology 19(6):1157–1172. https://doi.org/10.1016/0022-1910(73)90201-1

Miyoshi, Y. 1961. On the resistibility of Drosophila to sodium chloride I. Strain difference and heritability in D. melanogaster. Genetics 46(8):935–945. https://doi.org/10.1093/genetics/46.8.935

Mullins, D. E. and Cochran, D. G. 1974. Nitrogen metabolism in the American cockroach: an examination of whole body and fat body regulation of cations in response to nitrogen balance. Journal of Experimental Biology 61(3):557–570. https://doi.org/10.1242/jeb.61.3.557

Nijhout, H. F. 2003. Development and evolution of adaptive polyphenisms. Evolution and Development 5(1):9–18. https://doi.org/10.1046/j.1525-142X.2003.03003.x

Nishikawa, K. and Kinjo, A. R. 2018. Mechanism of evolution by genetic assimilation. Equivalence and independence of genetic mutation and epigenetic modulation in phenotypic expression. Biophysical Reviews 10(2):667–676. https://doi.org/10.1007/s12551-018-0403-x

Pfennig, D. W., Wund, M. A., Snell-Rood, E. C., Cruickshank, T., Schlichting, C. D., and Moczek, A. P. 2010. Phenotypic plasticity’s impacts on diversification and speciation. Trends in Ecology and Evolution 25(8):459–467. https://doi.org/10.1016/j.tree.2010.05.006

Pigliucci, M., Murren, C. J., and Schlichting, C. D. 2006. Phenotypic plasticity and evolution by genetic assimilation. Journal of Experimental Biology 209(12):2362–2367. https://doi.org/10.1242/jeb.02070

R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.R-project.org/

Ramsay, J. A. 1953. Exchanges of sodium and potassium in mosquito larvae. Journal of Experimental Biology 30(1):79–89. https://doi.org/10.1242/jeb.30.1.79

Shannon, C. E. and Weaver, W. 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana.

Shishkin, M. A. 1988. Regularities of ontogenesis evolution. Modern Paleontology 1:169–209.

Sohal, R. S. and Copeland, E. 1966. Ultrastructural variations in the anal papillae of Aedes aegypti (L.) at different environmental salinities. Journal of Insect Physiology 12(4):429–434. https://doi.org/10.1016/0022-1910(66)90006-0

Stoffolano, J. G. 1970. The anal organ of larvae of Musca autumnalis, M. domestica, and Orthellia caesarion (Diptera: Muscidae). Annals of the Entomological Society of America 63(6):1647–1654. https://doi.org/10.1093/aesa/63.6.1647

Te Velde, J. H., Molthoff, C. F. M., and Scharloo, W. 1988. The function of anal papillae in salt adaptation of Drosophila melanogaster larvae. Journal of Evolutionary Biology 1(2):139–153. https://doi.org/10.1046/j.1420-9101.1988.1020139.x

Waddington, C. H. 1942. Canalization of development and the inheritance of acquired characters. Nature 150(3811):563–565. https://doi.org/10.1038/150563a0

Waddington, C. H. 1953. Genetic assimilation of an acquired character. Evolution 7(2):118–126. https://doi.org/10.1111/j.1558-5646.1953.tb00070.x

Waddington, C. H. 1956. Genetic assimilation of the bithorax phenotype. Evolution 10(1):1–13. https://doi.org/10.1111/j.1558-5646.1956.tb02824.x

Waddington, C. H. 1959. Canalization of development and genetic assimilation of acquired characters. Nature 183(4676):1654–1655. https://doi.org/10.1038/1831654a0

Walworth, N. G., Lee, M. D., Fu, F.-X., Hutchins, D. A., and Webb, E. A. 2016. Molecular and physiological evidence of genetic assimilation to high CO2 in the marine nitrogen fixer Trichodesmium. Proceedings of the National Academy of Sciences 113(47). https://doi.org/10.1073/pnas.1605202113

Wigglesworth, V. B. 1933. The effect of salts on the anal gills of the mosquito larva. Journal of Experimental Biology 10(1):1–14. https://doi.org/10.1242/jeb.10.1.1

Wigglesworth, V. B. 1938. The regulation of osmotic pressure and chloride concentration in the haemolymph of mosquito larvae. Journal of Experimental Biology 15(2):235–247. https://doi.org/10.1242/jeb.15.2.235

Wipfler, B., Schneeberg, K., Löffler, A., Hünefeld, F., Meier, R., and Beutel, R. G. 2013. The skeletomuscular system of the larva of Drosophila melanogaster (Drosophilidae, Diptera) — A contribution to the morphology of a model organism. Arthropod Structure and Development 42(1):47–68. https://doi.org/10.1016/j.asd.2012.09.005

Wood, D. P., Holmberg, J. A., Osborne, O. G., Helmstetter, A. J., Dunning, L. T., Ellison, A. R., Smith, R. J., Lighten, J., and Papadopulos, A. S. T. 2023. Genetic assimilation of ancestral plasticity during parallel adaptation to zinc contamination in Silene uniflora. Nature Ecology & Evolution 7(3):414–423. https://doi.org/10.1038/s41559-022-01975-w

Yakovleva, E. U., Naimark, E. B., and Markov, A. V. 2016. Adaptation of Drosophila melanogaster to unfavorable growth medium affects lifespan and age-related fecundity. Biochemistry (Moscow) 81(12):1445–1460. https://doi.org/10.1134/S0006297916120063

Yakovleva, E. Yu., Naimark, E. B., Sivunova, D. D., Krivosheina, M. G., and Markov, A. V. 2023. Larva morphology of shore flies Ephydra riparia and Paracoenia fumosa (Diptera: Ephydridae) and adaptation of Diptera to increased salinity. Zhurnal obshchei biologii 84(3):1–18.

Downloads

Published

2024-12-06

How to Cite

Sivunova, D., Yakovleva, E., Naimark, E., Lysenkov, S., Perfilieva, K., & Markov, A. (2024). Adaptation of <em>Drosophila melanogaster</em> to high and low osmolarity promotes evolutionary change in the phenotypic plasticity of the larval anal organs. Biological Communications, 69(3), 149–161. https://doi.org/10.21638/spbu03.2024.303

Issue

Section

Full communications

Categories