Abscisic acid utilizing rhizobacteria disturb nitrogen-fixing symbiosis of pea Pisum sativum L.

Authors

  • Andrey Belimov Laboratory of Rhizosphere Microflora, All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0002-9936-8678
  • Alexander Shaposhnikov Laboratory of Rhizosphere Microflora, All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0003-0771-5589
  • Vera Safronova Russian Collection of Agricultural Microorganisms (RCAM), All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0003-4510-1772
  • Yuri Gogolev Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, ul. Lobachevskogo, 2/31, Kazan, 420111, Russian Federation https://orcid.org/0000-0002-2391-2980

DOI:

https://doi.org/10.21638/spbu03.2020.401

Abstract

Rhizosphere bacteria are capable of utilizing various phytohormones (particularly auxins) as nutrients and thereby affect plant growth, nutrition and interactions with symbiotic microorganisms. Here, for the first time we evaluated the effects of rhizosphere bacteria Novosphingobium sp. P6W and Rhodococcus sp. P1Y capable of utilizing abscisic acid (ABA) on growth and nitrogen-fixing symbiosis of pea (Pisum sativum L.) line SGE and its Cd-insensitive mutant SGECdt using hydroponic culture. The plants were co-inoculated with the ABA-utilizing bacteria and nodule bacterium Rhizobium leguminosarum bv. viciae RCAM1066. Treatment with cadmium (Cd) was applied as an inducer of ABA biosynthesis in plants. In the presence of only nodule bacteria, Cd significantly inhibited the growth of roots and shoots and also decreased the nodule number and nitrogen-fixing activity in SGE peas, but not in the SGECdt mutant. Inoculation with ABA-utilizing bacteria also inhibited biomass production, nodulation and nitrogen-fixation of Cd-untreated SGE plants. This negative effect of bacteria on the SGECdt mutant was less pronounced. Contrary to this, ABA-utilizing bacteria had no effect on SGE plants treated with Cd, but decreased shoot biomass and nitrogen-fixing activity of the SGECdt mutant. Inoculation with ABA-utilizing bacteria had no effect on shoot Cd and nutrient content of both pea genotypes, suggesting that bacterial effects on plants were not associated with the plant nutrient status. We propose that the bacteria counteracted the increased ABA concentrations in SGE roots caused by Cd due to utilization of this phytohormone. However, opposite processes aimed at inhibiting and stimulating growth and legume–rhizobia symbiosis can be caused by the ABA-utilizing bacteria.

Keywords:

abscisic acid, cadmium, nitrogen fixation, nodulation, Novosphingobium, Rhodococcus, pea, phytohormones, PGPR, symbiosis

Downloads

Download data is not yet available.
 

References

Belimov, A. A, Dodd, I. C., Safronova, V. I., Dumova, V. A., Shaposhnikov, A. I., Ladatko, A. G., and Davies, W. J. 2014. Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth. Plant Physiology and Biochemistry 74:84–91. https://doi.org/10.1016/j.plaphy.2013.10.032

Belimov, A. A., Dodd, I. C., Safronova, V. I., Malkov, N. V., Davies, W. J., and Tikhonovich, I. A. 2015. The cadmium tolerant pea (Pisum sativum L.) mutant SGECdt is more sensitive to mercury: assessing plant water relations. Journal of Experimental Botany 66(8):2359–2369. https://doi.org/10.1093/jxb/eru536

Belimov, A. A. and Safronova, V. I. 2011. ACC deaminase and plant-microbe interactions (review). Sel’skokhozyaistvennaya biologiya 3:23–28. (In Russian)

Belimov, A. A., Zinovkina, N. Y., Safronova, V. I., Litvinsky, V. A., Nosikov, V. V., Zavalin, A. A., and Tikhonovich, I. A. 2019. Rhizobial ACC deaminase contributes to efficient symbiosis with pea (Pisum sativum L.) under single and combined cadmium and water deficit stress. Environmental and Experimental Botany 167:103859. https://doi.org/10.1016/j.envexpbot.2019.103859

Cassan, F., Bottini, R., Schneider, G., and Piccoli, P. 2001. Azospirillum brasilense and Azospirillum lipoferum hydrolyze conjugates of GA(20) and metabolize the resultant aglycones to GA(1) in seedlings of rice dwarf mutants. Plant Physiology 125(4):2053–2058. https://doi.org/10.1104/pp.125.4.2053

Cohen, A. C., Travaglia, C. N., Bottini, R., and Piccoli, P. N. 2009. Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87(5):455–462. https://doi.org/10.1139/B09-023

Ding, Y., Kalo, P., Yendrek, C., Sun, J., Liang, Y., Marsh, J. F., Harris, J. M., and Oldroyd, G. E. 2008. Abscisic acid coordinates nod factor and cytokinin signaling during the regulation of nodulation in Medicago truncatula. Plant Cell 20(10):2681–2695. https://doi.org/10.1105/tpc.108.061739

Dodd, I. C., Zinovkina, N. Y., Safronova, V. I., and Belimov, A. A. 2010. Rhizobacterial mediation of plant hormone status. Annals of Applied Biology 157(3):361–379. https://doi.org/10.1111/j.1744-7348.2010.00439.x

Forchetti, G., Masciarelli, O., Alemano, S., Alvarez, D., and Abdala, G. 2007. Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Applied Microbiology and Biotechnology 76(5):1145–1152. https://doi.org/10.1007/s00253-007-1077-7

Frankenberger, W. T., and Arshad, M. 1995. Phytohormones in soils: production and function. Marcel Dekker, Inc. N.Y. 503 pp.

Glick, B. R., Cheng, Z., Czarny, J., and Duan, J. 2007. Promotion of plant growth by ACC deaminase-producing soil bacteria. European Journal of Plant Pathology 119:329–339. https://doi.org/10.1007/s10658-007-9162-4

Hasegawa, S., Poling, S. M., Mayer, V. P., and Bennett, R. D. 1984. Metabolism of abscisic acid: bacterial conversion to dehydrovomifoliol and vomifoliol dehydrogenase activity. Phytochemistry 23(12):2769–2771. https://doi.org/10.1016/0031-9422(84)83012-5

Liu, H., Zhang, C., Yang, J., Yu, N., and Wang, E. 2018. Hormone modulation of legume-rhizobial symbiosis. Journal of Integrative Plant Biology 60(8):632–648. https://doi.org/10.1111/jipb.12653

Malkov, N. V., Zinovkina, N. Y., Safronova, V. I., and Belimov, A. A. 2012. Increase in resistance of legume-rhizobial complex to cadmium using rhizosphere bacteria containing ACC deaminase. Dostigeniya nauki i tekhniki APK 9:53–57. (In Russian)

Nascimento, F. X., Rossi, M. J., Soares, C.R.F.S., McConkey, B., and Glick, B. R. 2014. New insights into 1-aminocyclopropane-1-carboxylate (ACC) deaminase phylogeny, evolution and ecological significance. PLoS ONE 9(6):e99168. https://doi.org/10.1371/journal.pone.0099168

Perrig, D., Boiero, M. L., Masciarelli, O. A., Penna, C., Ruiz, O. A., Cassan, F. D., and Luna, M. V. 2007. Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Applied Microbiology and Biotechnology 75(5):1143–1150. https://doi.org/10.1007/s00253-007-0909-9

Phillips, D. A. 1971. Abscisic acid inhibition of root nodule initiation in Pisum sativum. Planta 100(3):181–190. https://doi.org/10.1007/BF00387034

Pii, Y., Mimmo, T., Tomasi, N., Terzano R., Cesco S., and Crecchio C. 2015. Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biology and Fertility of Soils 51:403–415. https://doi.org/10.1007/s00374-015-0996-1

Poschenrieder, C., Gunse, B., and Barcelo, J. 1989. Influence of cadmium on water relations, stomatal resistance and abscisic acid content in expanding bean leaves. Plant Physiology 90(4):1365–1371. https://doi.org/10.1104/pp.90.4.1365

Sgroy, V., Cassan, F., Masciarelli, O., Del Papa, M. F., Lagares, A., and Luna, V. 2009. Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Applied Microbiology and Biotechnology 85(2):371–381. https://doi.org/10.1007/s00253-009-2116-3

Spaepen, S., Vanderleyden, J., and Remans, R. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews 31(4):425–448. https://doi.org/10.1111/j.1574-6976.2007.00072.x

Suzuki, A., Akune, M., Kogiso, M., Imagama, Y., Osuki, K., Uchiumi, T., Higashi, S., Han, S.Y., Yoshida, S., Asami, T., and Abe, M. 2004. Control of nodule number by the phytohormone abscisic acid in the roots of two leguminous species. Plant and Cell Physiology 45(7):914–922. https://doi.org/10.1093/pcp/pch107

Syrova, D. S., Shaposhnikov, A. I., Makarova, N. M., Gagkaeva, T. Y., Khrapalova, I. A., Emelyanov, V. V., Gogolev, Y. V., Gannibal, Ph. B., and Belimov, A. A. 2019. The ability of some species of phytopathogenic fungi to produce abscisic acid. Mycology and Phytopathology 53(5):301–310. https://doi.org/10.1134/S0026364819050064

Taylor, J. L., Zaharia, L. I., Chen, H., Anderson, E., and Abrams, S. R. 2006. Biotransformation of adenine and cytokinins by the rhizobacterium Serratia proteamaculans. Phytochemistry 67(17):1887–1894. https://doi.org/10.1016/j.phytochem.2006.06.016

Tominaga, A., Nagata, M., Futsuki, K., Abe, H., Uchiumi, T., Abe, M., Kucho, K., Hashiguchi, M., Akashi, R., Hirsch, A., Arima, S., and Suzuki, A. 2010. Effect of abscisic acid on symbiotic nitrogen fixation activity in the root nodules of Lotus japonicus. Plant Signaling and Behavior 5(4):440–443. https://doi.org/10.4161/psb.5.4.10849

Tsyganov, V. E., Belimov, A. A., Borisov, A. Y., Safronova, V. I., Georgi, M., Dietz, K.-J., and Tikhonovich, I. A. 2007. A chemically induced new pea (Pisum sativum L.) mutant SGECdt with increased tolerance to and accumulation of cadmium. Annals of Botany 99(2):227–237. https://doi.org/10.1093/aob/mcl261

Turner, G. L. and Gibson, A. H. 1980. Measurement of nitrogen fixation by indirect means; pp. 111–138 in: Bergensen, F. J. (ed.), Methods for Evaluating Biological Nitrogen Fixation. Wiley, Toronto.

Vincent, J. M. 1970. A manual for the practical study of root nodule bacteria. IBP Handbook No 15. Blackwell Scientific Publishers, Oxford. 164 pp. https://doi.org/10.1002/jobm.19720120524

Yen, K. M. and Serdar, C. M. 1988. Genetics of naphthalene catabolism in pseudomonads. Critical Reviews in Microbiology 15(3):247–268. https://doi.org/10.3109/10408418809104459

Downloads

Published

2020-12-30

How to Cite

Belimov, A., Shaposhnikov, A., Safronova, V., & Gogolev, Y. (2020). Abscisic acid utilizing rhizobacteria disturb nitrogen-fixing symbiosis of pea <em>Pisum sativum</em> L. Biological Communications, 65(4), 283–287. https://doi.org/10.21638/spbu03.2020.401

Issue

Section

Full communications

Categories

Most read articles by the same author(s)