Genetic diversity of rhizobial strains isolated from the relict legumes Gueldenstaedtia monophylla and G. verna growing in the republics of Altai and Buryatia (Russia)

Authors

  • Denis Karlov All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0002-9030-8820
  • Anna Sazanova All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0002-4808-320X
  • Polina Guro All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0001-5754-6926
  • Irina Kuznetsova All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0003-0260-7677
  • Alla Verkhozina Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, ul. Lermontova, 134, Irkutsk, 664033, Russian Federation https://orcid.org/0000-0002-0872-4455
  • Andrey Belimov All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0002-9936-8678
  • Vera Safronova All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0003-4510-1772

DOI:

https://doi.org/10.21638/spbu03.2022.301

Abstract

For the first time, bacteria were isolated and identified from the root nodules of relict legumes Gueldenstaedtia monophylla Fisch. and G. verna (Georgi) Boriss. growing in the republics of Altai and Buryatia. The taxonomic position of the 29 obtained isolates was determined by sequencing the 16S rRNA gene (rrs). Showing a significant biodiversity, the isolates from G. monophylla and G. verna belonged to five genera of the order Rhizobiales: Mesorhizobium and Phyllobacterium (family Phyllobacteriaceae), Rhizobium (family Rhizobiaceae), Bosea (family Boseaceae), Bradyrhizobium (family Bradyrhizobiaceae). Three isolates which belonged to the species Bradyrhizobium valentinum and Rhizobium alamii showed 100 % of rrs-similarity with the type strains B. valentinum LmjM3T and R. alamii GBV016T, respectively. Six isolates of the genera Bosea and Rhizobium had a low level of rrs-similarity with the closest type strains (less than 99.5 %), which indicates that they may be assigned to new species. The data obtained can be used to itemise taxonomy within the order Rhizobiales, as well as to reveal the mechanisms of the formation of specific plant-microbial relationships during the evolution of symbiosis by studying the intermediate link between the extinct and modern rhizobia-legume symbiotic systems.

Keywords:

relict legume plants, genus Gueldenstaedtia, root nodule bacteria, 16S rRNA genes

Downloads

Download data is not yet available.
 

References

Alami, Y., Achouak, W., Marol, C., and Heulin, T. 2000. Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Applied and Environmental Microbiology 66(8):3393–3398. https://doi.org/10.1128/AEM.66.8.3393-3398.2000

Berge, O., Lodhi, A., Brandelet, G., Santaella, C., Roncato, M. A., Christen, R., Heulin, T., and Achouak, W. 2009. Rhizobium alamii sp. nov., an exopolysaccharide-producing species isolated from legume and non-legume rhizospheres. International Journal of Systematic and Evolutionary Microbiology 59(2):367–372. https://doi.org/10.1099/ijs.0.000521-0

Bertrand, H., Nalin, R., Bally, R., and Cleyet-Marel, J.-C. 2001. Isolation and identification of the most efficient plant growth promoting bacteria associated with canola (Brassica napus). Biology and Fertility of Soils 33:152–156. https://doi.org/10.1007/s003740000305

Datta, A., Singh, R. K., Kumar, S., and Kumar, S. 2015. An effective and beneficial plant growth promoting soil bacterium “Rhizobium”. A Review. Annals of Plant Sciences 4:933–942.

De Meyer, S. E. and Willems, A. 2012. Multilocus sequence analysis of Bosea species and description of Bosea lupini sp. nov., Bosea lathyri sp. nov. and Bosea robiniae sp. nov., isolated from legumes. International Journal of Systematic and Evolutionary Microbiology 62(10):2505–2510. https://doi.org/10.1099/ijs.0.035477-0

Duan, L, Wen, J, Yang, X, Liu, P-L, Arslan, E, Ertuğrul, K, and Chang, Z. Y. 2015. Phylogeny of Hedysarum and tribe Hedysareae (Leguminosae: Papilionoideae) inferred from sequence data of ITS, matK, trnL-F and psbA-trnH. Taxon 64(1):49–64. https://doi.org/10.12705/641.26

Duran, D., Rey, L., Navarro, A., Busquets, A., Imperial, J., and Ruiz-Argueeso, T. 2014. Bradyrhizobium valentinum sp. nov., isolated from effective nodules of Lupinus mariae-josephae, a lupine endemic of basic-lime soils in Eastern Spain. Systematic and Applied Microbiology 37(5):336–341. https://doi.org/10.1016/j.syapm.2014.05.002

Flores-Félix, J. D., Carro, L., Velázquez, E., Valverde, Á., Cerda-Castillo, E., García-Fraile, P., and Rivas, R. 2013. Phyllobacterium endophyticum sp. nov., isolated from nodules of Phaseolus vulgaris. International Journal of Systematic and Evolutionary Microbiology 63(3):821–826. https://doi.org/10.1099/ijs.0.038497-0

Jiao, Y. S., Yan, H., Ji, Z. J., Liu, Y. H., Sui, X. H., Zhang, X. X., Wang, E. T., Chen, W. X., and Chen, W. F. 2015. Phyllobacterium sophorae sp. nov., a symbiotic bacterium isolated from root nodules of Sophora flavescens. International Journal of Systematic and Evolutionary Microbiology 65(2):399–406. https://doi.org/10.1099/ijs.0.067017-0

Kumar, S., Stecher, G., and Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

Larcher, M., Muller, B., Mantelin, S., Rapior, S., and Cleyet-Marel, J.-C. 2003. Early modifications of Brassica napus root system architecture induced by a plant growth-promoting Phyllobacterium strain. New Phytologist 160(1):119–125. https://doi.org/10.1046/j.1469-8137.2003.00862.x

La Scola, B., Mallet, M. N., Grimont, P. A., and Raoult, D. 2003. Bosea eneae sp. nov., Bosea massiliensis sp. nov. and Bosea vestrisii sp. nov., isolated from hospital water supplies, and emendation of the genus Bosea (Das et al. 1996). International Journal of Systematic and Evolutionary Microbiology 53(1):15–20. https://doi.org/10.1099/ijs.0.02127-0

Mantelin, S., Fischer-Le Saux, M., Zakhia, F., Béna, G., Bonneau, S., Jeder, H., de Lajudie, P., and Cleyet-Marel, J. C. 2006a. Emended description of the genus Phyllobacterium and description of four novel species associated with plant roots: Phyllobacterium bourgognense sp. nov., Phyllobacterium ifriqiyense sp. nov., Phyllobacterium leguminum sp. nov. and Phyllobacterium brassicacearum sp. nov. International Journal of Systematic and Evolutionary Microbiology 56(4):827–839. https://doi.org/10.1099/ijs.0.63911-0

Mantelin, S., Desbrosses, G., Larcher, M., Tranbarger, T. J., Cleyet-Marel, J.-C. and Touraine, B. 2006b. Nitrate-dependent control of root architecture and N nutrition are altered by a plant growth promoting Phyllobacterium sp. Planta 223(3):591–603. https://doi.org/10.1007/s00425-005-0106-y

Mohamad, R., Willems, A., Le Quéré, A., Maynaud, G., Pervent, M., Bonabaud, M., Dubois, E., Cleyet-Marel, J. C., and Brunel, B. 2017. Mesorhizobium delmotii and Mesorhizobium prunaredense are two new species containing rhizobial strains within the symbiovar anthyllidis. Systematic and Applied Microbiology 40(3):135–143. https://doi.org/10.1016/j.syapm.2017.01.004

Namzalov, B. 1986. Gueldenstaedtia monophylla Fisch. Biological features of plants in Siberia, in need of protection. Novosibirsk, Nauka. pp. 77–83. (In Russian)

Novikova, N. and Safronova, V. 1992. Transconjugants of Agrobacterium radiobacter harbouring sym genes of Rhizobium galegae can form an effective symbiosis with Medicago sativa. FEMS Microbiology Letters 93(3):261–268. https://doi.org/10.1016/0378-1097(92)90472-z

Ouattara, A. S., Assih, E. A., Thierry, S., Cayol, J. L., Labat, M., Monroy, O., and Macarie, H. 2003. Bosea minatitlanensis sp. nov., a strictly aerobic bacterium isolated from an anaerobic digester. International Journal of Systematic and Evolutionary Microbiology 53(5):1247–1251. https://doi.org/10.1099/ijs.0.02540-0

Polozhiy, A. 2001. To the knowledge of genesis of the steppe flora in the south of Yenisei Siberia. Krylovia 3(2):58–62. (In Russian)

Provorov, N. and Vorobyev, N. 2011. Evolution of legume-rhizobium symbiosis for an improved ecological efficiency and genotypic specificity of partner interactions. Genetika 47(3):417–424. (In Russian)

Pyak, A. 2003. Petrophytes in Russian Altai. pp. 202. Tomsk. (In Russian)

Riker, A., Banfield, W., Wright, W., Keitt, G., and Sagen, H. 1930. Studies on infectious hairy-root of nursery apple trees. Journal of Agricultural Research 41:507–540.

Safronova, V. and Tikhonovich I. 2012. Automated cryobank of microorganisms: Unique possibilities for long-term authorized depositing of commercial microbial strains. pp. 331–334 in A. Mendez-Vilas (ed.), Microbes in applied research: current advances and challenges. World Scientific Publishing Co., Singapore. https://doi.org/10.1142/9789814405041_0066

Safronova, V. I., Kimeklis, A. K., Chizhevskaya, E. P., Belimov, A. A., Andronov, E. E., Pinaev, A. G., Pukhaev, A. R., Popov, K. P., and Tikhonovich, I. A. 2014. Genetic diversity of rhizobia isolated from nodules of the relict species Vavilovia formosa (Stev.) Fed. Antonie van Leeuwenhoek 105(2):389–399. https://doi.org/10.1007/s10482-013-0089-9

Safronova, V. I., Kuznetsova, I. G., Sazanova, A. L., Kimeklis, A. K., Belimov, A. A., Andronov, E. E., Pinaev, A. G., Chizhevskaya, E. P., Pukhaev, A. R., Popov, K. P., Willems, A., and Tikhonovich, I. A. 2015a. Bosea vaviloviae sp. nov., a new species of slow growing rhizobia isolated from nodules of the relict species Vavilovia formosa (Stev.) Fed. Antonie van Leeuwenhoek 107(4):911–920. https://doi.org/10.1007/s10482-015-0383-9

Safronova, V. I., Kuznetsova, I. G., Sazanova, A. L., Kimeklis, A. K., Belimov, A. A., Andronov, E. E., Pinaev, A. G., Pukhaev, A. R., Popov, K. P., Akopian, J. A., Willems, A., and Tikhonovich, I. A. 2015b. Extra slow-growing Tardiphaga strains isolated from nodules of Vavilovia formosa (Stev.) Fed. Archives of Microbiology 197(7):889–898. https://doi.org/10.1007/s00203-015-1122-3

Safronova, V., Belimov, A., Andronov, E., Popova, J., Tikhomirova, N., Orlova, O., Verkhozina, A., Chimitov, D., and Tikhonovich, I. 2017a. Method for obtaining root nodules of the Baikal relict legumes in laboratory pot experiments. International Journal of Environmental Studies 74(5):700–705. https://doi.org/10.1080/00207233.2017.1283948

Safronova, V., Belimov, A., Sazanova, A., Kuznetsova, I., Popova, J., Andronov, E., Verkhozina, A., and Tikhonovich, I. 2017b. Does the Miocene-Pliocene relict legume Oxytropis triphylla form nitrogen-fixing nodules with a combination of bacterial strains? International Journal of Environmental Studies 74(5):706–714. https://doi.org/10.1080/00207233.2017.1283947

Safronova, V. I., Belimov, A. A., Sazanova, A. L., Chirak, E. R., Verkhozina, A. V., Kuznetsova, I. G., Andronov, E. E., Puhalsky, J. V., and Tikhonovich, I. A. 2018a. Taxonomically different co-microsymbionts of a relict legume, Oxytropis popoviana, have complementary sets of symbiotic genes and together increase the efficiency of plant nodulation. Molecular Plant-Microbe Interactions 31(8):833–841. https://doi.org/10.1094/MPMI-01-18-0011-R

Safronova, V. I., Sazanova, A. L., Kuznetsova, I. G., Belimov, A. A., Andronov, E. E., Chirak, E. R., Popova, J. P., Verkhozina, A. V., Willems, A., and Tikhonovich, I. A. 2018b. Phyllobacterium zundukense sp. nov., a novel species of rhizobia isolated from root nodules of the legume species Oxytropis triphylla (Pall.) Pers. International Journal of Systematic and Evolutionary Microbiology 68(5):1644–1651. https://doi.org/10.1099/ijsem.0.002722

Safronova, V., Belimov, A., Sazanova, A., Chirak, E., Kuznetsova, I., Andronov, E., Pinaev, A., Tsyganova, A., Seliverstova, E., Kitaeva, A., Tsyganov, V., and Tikhonovich, I. 2019. Two broad host range rhizobial strains isolated from relict legumes have various complementary effects on symbiotic parameters of co-inoculated plants. Frontiers in Microbiology 10:514. https://doi.org/10.3389/fmicb.2019.00514

Sanchez, M., Ramírez-Bahena, M. H., Peix, A., Lorite, M. J., Sanjuan, J., Velazquez, E., and Monza, J. 2014. Phyllobacterium loti sp. nov. isolated from nodules of Lotus corniculatus. International Journal of Systematic and Evolutionary Microbiology 64(3):781–786. https://doi.org/10.1099/ijs.0.052993-0

Sazanova, A. L., Safronova, V. I., Kuznetsova, I. G., Karlov, D. S., Belimov, A. A., Andronov, E. E., Chirak, E. R., Popova, J. P., Verkhozina, A. V., Willems, A., and Tikhonovich, I. A. 2019. Bosea caraganae sp. nov., a new species of slow-growing bacteria isolated from root nodules of the relict species Caragana jubata (Pall.) Poir. originating from Mongolia. International Journal of Systematic and Evolutionary Microbiology 69(9):2687–2695. https://doi.org/10.1099/ijsem.0.003509

Selyutina, I. Yu., Konichenko, E. S., and Karnauhova, N. A. 2014. The anatomical features of Gueldenstaedtia monophylla (Fabaceae) in the central Altai. Flora and Vegetation of Asian Russia 4(16):9–14.

Selyutina, I. Yu., Konichenko, E. S., and Dorogina, O. V. 2017. Variability and interpopulation differentiation of the rare species Gueldenstaedtia monophylla Fisch. (Fabaceae). Vavilov Journal of Genetics and Breeding 21(3):354–359. https://doi.org/10.18699/18699/VJ16.15-o (In Russian)

Stupnikova, T. V. 2018. Growth and development of Gueldenstaedtia verna (Fabaceae) in nature and culture in the south of the Amur region. Rastitel'nye Resursy 54(2):246–259. (In Russian)

The Red Data Book of the Russian Federation (Plants and Fungi). 2008. Moscow, Tovarishchestvo nauch. izd. KMK. (In Russian)

Tikhonovich, I. A. and Provorov, N. A. 2009. From plant-microbe interactions to symbiogenetics: a universal paradigm for the inter-species genetic integration. Annals of Applied Biology 154(3):341–350. https://doi.org/10.1111/j.1744-7348.2008.00306.x

Valverde, A., Velazquez, E., Fernandez-Santos, F., Vizcaíno, N., Rivas, R., Mateos, P. F., Martínez-Molina, E., Igual, J. M., and Willems, A. 2005. Phyllobacterium trifolii sp. nov., nodulating Trifolium and Lupinus in Spanish soils. International Journal of Systematic and Evolutionary Microbiology 55(5):1985–1989. https://doi.org/10.1099/ijs.0.63551-0

Valverde, A., Igual, J. M., Peix, A., Cervantes, E., and Velazquez, E. 2006. Rhizobium lusitanum sp. nov., a bacterium that nodulates Phaseolus vulgaris. International Journal of Systematic and Evolutionary Microbiology 56(11):2631–2637. https://doi.org/10.1099/ijs.0.64402-0

Velázquez, E., Peix, A., Zurdo-Piñiro, J. L., Palomo, J. L., Mateos, P. F., Rivas, R., Muñoz-Adelantado, E., Toro, N., García-Benavides, P., and Martínez-Molina, E. 2005. The coexistence of symbiosis and pathogenicity-determining genes in Rhizobium rhizogenes strains enables them to induce nodules and tumors or hairy roots in plants. Molecular Plant-Microbe Interactions 18(12):1325–1332. https://doi.org/10.1094/MPMI-18-1325

Vincent, J. M. 1970. A manual for the practical study of root nodule bacteria. Handbook IBP. Blackwell Scientific Publications, Oxford and Edinburgh, pp. 73–97.

Weisburg, W. G., Barns, S. M., Pelletier, D. A., and Lane, D. J. 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology 173(2):697–703. https://doi.org/10.1128/jb.173.2.697-703.1991

Xie, Y. P., Meng, Y., Sun, H., and Nie, Z. L. 2016. Molecular phylogeny of Gueldenstaedtia and Tibetia (Fabaceae) and their biogeographic differentiation within Eastern Asia. PloS One 11(9):e0162982. https://doi.org/10.1371/journal.pone.0162982

Zhu, X.-Y. 2004. A revision of the genus Gueldenstaedtia (Fabaceae). Annales Botanici Fennici 41(4):283–291.

Zhang, J. J., Liu, T. Y., Chen, W. F., Wang, E. T., Sui, X. H., Zhang, X. X., Li, Y., Li, Y., and Chen, W. X. 2012. Mesorhizobium muleiense sp. nov., nodulating with Cicer arietinum L. International Journal of Systematic and Evolutionary Microbiology 62(11):2737–2742. https://doi.org/10.1099/ijs.0.038265-0

Downloads

Published

2022-10-10

How to Cite

Karlov, D., Sazanova, A., Guro, P., Kuznetsova, I., Verkhozina, A., Belimov, A., & Safronova, V. (2022). Genetic diversity of rhizobial strains isolated from the relict legumes <em>Gueldenstaedtia monophylla</em> and <em>G. verna</em> growing in the republics of Altai and Buryatia (Russia). Biological Communications, 67(3), 141–151. https://doi.org/10.21638/spbu03.2022.301

Issue

Section

Full communications

Categories

Most read articles by the same author(s)