Beneficial aluminium immobilizing microorganisms inhabiting the rhizosphere of pea

  • Alexander Shaposhnikov All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation
  • Oleg Yuzikhin All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation
  • Darya Syrova All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation
  • Denis Karlov All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation
  • Anna Sazanova All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation
  • Tatiana Azarova All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation
  • Edgar Sekste All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation
  • Vera Safronova All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation
  • Andrey Belimov All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation


Acid soils contain elevated concentrations of mobile aluminium (Al) ions which are toxic for plants. Plants form symbioses with the rhizosphere microorganisms stimulating plant growth and affecting Al availability. Here, for the first time the approach based on the ability to immobilize Al in soil was applied for initial selection of beneficial rhizosphere microorganisms. Al-Immobilizing yeast Rhodotorula sp. AL1 and 12 bacterial strains assigned to various genera and species were isolated from the rhizosphere of pea cultivated in acid soils. Immobilization of Al was related to the increased pH of the environment and the formation of insoluble Al phosphates in soil. The strains differed in possessing beneficial properties such as modulation of the nutrient element (Ca, Fe, K, Mg, Mn, P) concentrations in soil, production of phytohormones (auxins, abscisic and gibberellic acids, ethylene), utilization of 1-aminocyclopropane-1-carboxylic acid and organic components typical for root exudates, acetylene reduction and antifungal activities. Eight strains promoted root elongation of radish seedlings by 30÷50 % with a maximal effect exerted by Cupriavidus basilensis strain D39. Taking together, the selected microorganisms are promising models to study the mechanisms of plant-microbe interactions in the presence of toxic Al and improving Al tolerance of plants in acid soils.


acid soil, aluminium tolerance, immobilization, pea, PGPR, rhizosphere, yeast


Download data is not yet available.


Andam, C. P., Mondo, S. J., and Parker, M. A. 2007. Monophyly of nodA and nifH genes across Texan and costa rican populations of Cupriavidus nodule symbionts. Applied and Environmental Microbiology 73(14):4686–4690.

Arinushkina, E. V. 1970. Rukovodstvo po khimicheskomu analizu pochv. 487 pp. Lomonosov Moscow University Press. Moscow. (In Russian)

Arora, P., Singh, G., and Tiwari, A. 2017. Effect of microbial inoculation in combating the aluminium toxicity effect on growth of Zea mays. Cellular and Molecular Biology 63(6):79–82.

Arunakumara, K. K. I. U., Walpola, B. C., and Yoon, M. 2013. Aluminum toxicity and tolerance mechanism in cereals and legumes — A review. Journal of the Korean Society for Applied Biological Chemistry 56:1–9.

Banik, A., Mukhopadhaya, S. K., and Dangar, T. K. 2016. Characterization of N2-fixing plant growth promoting endophytic and epiphytic bacterial community of Indian cultivated and wild rice (Oryza spp.) genotypes. Planta 243(3):799–812.

Belimov, A. A., Kozhemyakov, A. P., and Chuvarliyeva, G. V. 1995. Interaction between barley and mixed cultures of nitrogen fixing and phosphate solubilizing bacteria. Plant and Soil 173:29–37.

Belimov, A. A., Kunakova, A. M., and Gruzdeva, E. V. 1998. Influence of soil pH on the interaction of associative bacteria with barley. Microbiologiya 67(4):463–469. (In Russian)

Belimov, A. A., Ivanchikov, A. Y., Yudkin, L. V., Khamova, O. F., Postavskaya, S. M., Popolzukhin, P. V., Shmakova, A. A., and Kozlova, G. Y. 1999. New strains of associative growth-stimulating bacteria dominating the rhizoplane of barley seedlings: characterization and introduction. Mikrobiologiya 68(3):337–342. (In Russian)

Belimov, A. A., Hontzeas, N., Safronova, V. I., Demchinskaya, S. V., Piluzza, G., Bullitta, S., and Glick, B. R. 2005. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biology and Biochemistry 37(2):241–250.

Belimov, A. A., Safronova, V. I., Tsyganov, V. E., Borisov, A. Y., Kozhemyakov, A. P., Stepanok, V. V., Martenson, A. M., Gianinazzi-Pearson, V., and Tikhonovich, I. A. 2003. Genetic variability in tolerance to cadmium and accumulation of heavy metals in pea (Pisum sativum L.). Euphytica 131:25–35.

Belimov, A. A., Dodd, I. C., Safronova, V. I., Shaposhnikov, A. I., Azarova, T. S., Makarova, N. M., Davies, W. J., and Tikhonovich, I. A. 2015. Rhizobacteria that produce auxins and contain ACC deaminase decrease amino acid concentrations in the rhizosphere and improve growth and yield of well-watered and water-limited potato (Solanum tuberosum). Annals of Applied Biology 167:11–25.

Belimov, A. A., Shaposhnikov, A. I., Syrova, D. S., Kichko, A. A., Guro, P. V., Yuzikhin, O. S., Azarova, T. S., Sazanova, A. L., Sekste, E. A., Litvinskiy, V. A., Nosikov, V. V., Zavalin, A. A., Andronov, E. E., and Safronova, V. I. 2020. The role of symbiotic microorganisms, nutrient uptake and rhizosphere bacterial community in response of pea (Pisum sativum L.) genotypes to elevated Al concentrations in soil. Plants 9(12):1801.

Belimov, A. A., Shaposhnikov, A. I., Azarova, T. S., Syrova, D. S., Kitaeva, A. B., Ulyanich, P. S., Yuzikhin, O. S., Sekste, E. A., Safronova, V. I., Vishnyakova, M. A., Tsyganov, V. E., and Tikhonovich, I. A. 2022. Rhizobacteria mitigate the negative effect of aluminum on pea growth by immobilizing the toxicant and modulating root exudation. Plants 11:2416.

Brazhnikova, Y. V., Shaposhnikov, A. I., Sazanova, A. L., Belimov, A. A., Mukasheva, T. D., and Ignatova, L. V. 2022. Phosphate mobilization by culturable fungi and their capacity to increase soil P availability and promote barley growth. Current Microbiology 79(8):240.

Bukhat, S., Imran, A., Javaid, S., Shahid, M., Majeed, A., and Naqqash, T. 2020. Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling. Microbiological Research 238:126486.

Cavalcante, V. and Dobereiner, J. 1988. A new acid-tolerant nitrogen fixing bacterium associated with sugarcane. Plant and Soil 108:23–31.

Döbereiner, J. 1988. Isolation and identification of root associated diazotrophs. Plant and Soil 110:207–212.

Estrada-De Los Santos, P., Bustillos-Cristales, R., and Caballero-Mellado, J. 2001. Burkholderia, a genus rich in plantassociated nitrogen fixers with wide environmental and geographic distribution. Applied and Environmental Microbiology 67(6):2790–2798.

Frankenberger, W. T. and Arshad, M. 1995. Phytohormones in soils: production and function. 503 pp. Marcel Dekker, Inc. New York.

Glick, B. R., Karaturovic, D. M., and Newell, P. C. 1995. A novel procedure for rapid isolation of plant growth promoting pseudomonads. Canadian Journal of Microbiology 41(6):533–536.

Gupta, N., Gaurav, S. S., and Kumar, A. 2013. Molecular basis of aluminium toxicity in plants: A review. American Journal of Plant Sciences 4(12C):21–37.

Jacobson, C. B., Pasternak, J. J., and Glick, B. R. 1994. Partial purification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the plant growth promoting rhizobacterium Pseudomonas putida GR12‑2. Canadian Journal of Microbiology 40(12):1019–1025.

Jing, Y.-D., He, Z. L., and Yang, X.-E. 2007. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. Journal of Zhejiang University SCIENCE B 8(3):192–207.

Jurelevicius, D., Korenblum, E., Casella, R., Vital, R. L., and Seldin, L. 2010. Polyphasic analysis of the bacterial community in the rhizosphere and roots of Cyperus rotundus L. grown in a petroleum-contaminated soil. Journal of Microbiology and Biotechnology 20(5):862–870.

Khan, A. G. 2005. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. Journal of Trace Elements in Medicine and Biology 18(4):355–364.

Kichigina, N. E., Puhalsky, J. V., Shaposhnikov, A. I., Azarova, T. S., Makarova, N. M., Loskutov, S. I., Safronova, V. I., Tikhonovich, I. A., Vishnyakova, M. A., Semenova, E. V., Kosareva, I. A., and Belimov, A. A. 2017. Aluminum exclusion from root zone and maintenance of nutrient uptake are principal mechanisms of Al tolerance in Pisum sativum L. Physiology and Molecular Biology of Plants 23(4):851–863.

Kochian, L. V., Piñeros, M. A., Liu, J., and Magalhaes, J. V. 2015. Plant adaptation to acid soils: The molecular basis for crop aluminum resistance. Annual Review of Plant Biology 66:571–598.

Kravchenko, L. V., Makarova, N. M., Azarova, T. S., Provorov, N. A., and Tikhonovich, I. A. 2002. Isolation and phenotypic characterization of plant growth-promoting rhizobacteria with high antiphytopathogenic activity and root-colonizing ability. Microbiology 71(4):444–448.

Kumar, M., Giri, V. P., Pandey, S., Gupta, A., Patel, M. K., Bajpai, A. B., Jenkins, S., and Siddique, K. H. M. 2021. Plant-growth-promoting Rhizobacteria emerging as an effective bioinoculant to improve the growth, production, and stress tolerance of vegetable crops. International Journal of Molecular Sciences 22(22):12245.

Kuzmicheva, Y. V., Shaposhnikov, A. I., Petrova, S. N., Makarova, N. M., Tychinskaya, I. L., Puhalsky, J. V., Parahin, N. V., Tikhonovich, I. A., and Belimov, A. A. 2017. Variety specific relationships between effects of rhizobacteria on root exudation, growth and nutrient uptake of soybean. Plant and Soil 419:83–96.

Lazof, D. B. and Holland, M. J. 1999. Evaluation of the aluminium-induced root growth inhibition in isolation from low pH effects in Glycine max, Pisum sativum and Phaseolus vulgaris. Australian Journal of Plant Physiology 26(2):147–157.

Ma, J. F., Ryan, P. R., and Delhaize, E. 2001. Aluminium tolerance in plants and the complexing role of organic acids. Trends in Plant Science 6(6):273–278.

Marchetti, M., Catrice, O., Batut, J., and Masson-Boivin, C. 2011. Cupriavidus taiwanensis bacteroids in Mimosa pudica indeterminate nodules are not terminally differentiated. Applied and Environmental Microbiology 77(6):2161–2164.

Meena, V., Meena, S. K., Verma, J. P., Kumar, A., Aeron, A., Mishra, P. K., Bisht, J. K., Pattanayak, A., Naveed, M., and Dotaniya, M. L. 2017. Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: A review. Ecological Engineering 107:8–32.

Mora, M. L., Demanet, R., Acuna, J. J., Viscardi, S., Jorquera, M., Rengel, Z., and Duran, P. 2017. Aluminum-tolerant bacteria improve the plant growth and phosphorus content in ryegrass grown in a volcanic soil amended with cattle dung manure. Applied Soil Ecology 115:19–26.

Munns, D., Keyser, H., Fogle, V., Hohenberg, J., Righetti, T., Lauter, D., Zaroug, M., Clarkin, K., and Whitacre, K. 1979. Tolerance of soil acidity in symbioses of mung bean with rhizobia. Agronomy Journal 71(2):256–260.

Munns, D. N., Hohenberg, J. S., Righetti, T. L., and Lauter, D. J. 1981. Soil acidity tolerance of symbiotic and nitrogenfertilized soybeans. Agronomy Journal 73(3):407–410.

Pii, Y., Mimmo, T., Tomasi, N., Terzano, R., Cesco, S., and Crecchio, C. 2015. Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. Biology and Fertility of Soils 51:403–415.

Rai, R. 1986. Manganese-mediated resistance to aluminium and antibiotics in strains of Azospirillum brasilense and their interaction with rice genotypes in acid soil. The Journal of Agricultural Science 106(2):279–285.

Rai, R. 1991. Aluminium-tolerant strains of Azospirillum brasilense and their associative nitrogen fixation with finger miller (Eleusine coracana) genotypes in an acid soil. Journal of General and Applied Microbiology 37:9–24.

Rennie, R. J. 1981. A single medium for the isolation of acetylene-reducing (nitrogen-fixing) bacteria from soils. Canadian Journal of Microbiology 27(1):8–14.

Sessitsch, A., Kuffner, M., Kidd, P., Vangronsveld, J., Wenzel, W. W., Fallmann, K., and Puschenreiter, M. 2013. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biology and Biochemistry 60:182–194.

Shaposhnikov, A. I., Vishnevskaya, N. A., Shakhnazarova, V. Y., Belimov, A. A., and Strunnikova, O. K. 2019. The role of barley root exudates as a food source in the relationship between Fusarium culmorum and Pseudomonas fluorescens. Mycologiya i Phytopathologiya 53(5):311–318. (In Russian)

Silambarasan, S., Logeswari, P., Valentine, A., and Cornejo, P. 2019a. Role of Curtobacterium herbarum strain CAH5 on aluminum bioaccumulation and enhancement of Lactuca sativa growth under aluminum and drought stresses. Ecotoxicology and Environmental Safety 183:109573.

Silambarasan, S., Logeswari, P., Cornejo, P., Abraham, J., and Valentine, A. 2019b. Simultaneous mitigation of aluminum, salinity and drought stress in Lactuca sativa growth via formulated plant growth promoting Rhodotorula mucilaginosa CAM4. Ecotoxicology and Environmental Safety 180:63–72.

Silambarasan, S., Logeswari, P., Cornejo, P., and Kannan, V. R. 2019c. Role of plant growth-promoting rhizobacterial consortium in improving the Vigna radiate growth and alleviation of aluminum and drought stresses. Environmental Science and Pollution Research 26(27):27647–27659.

Silambarasan, S., Logeswari, P., Sivaramakrishnan, R., Cornejo, P., Sipahutar, M. K., and Pugazhendhi, A. 2022. Amelioration of aluminum phytotoxicity in Solanum lycopersicum by co-inoculation of plant growth promoting Kosakonia radicincitans strain CABV2 and Streptomyces corchorusii strain CASL5. Science of the Total Environment 832:154935.

Singh, N. B., Yadav, K., and Amist, N. 2011. Phytotoxic effects of aluminum on growth and metabolism of Pisum sativum L. International Journal of Innovations in Biological and Chemical Sciences 2:10–21.

Taylor, G. J. 1991. Current views of the aluminum stress response: The physiological basis of tolerance. Current Topics in Plant Biochemistry and Physiology 10:57–93.

Thakur, R., Sharma, K. C., Gulati, A., Sud, R. K., and Gulati, A. 2017. Stress-tolerant Viridibacillus arenosi strain IHB B 7171 from tea rhizosphere as a potential broad-spectrum microbial inoculant. Indian Journal of Microbiology 57:195–200.

How to Cite
Shaposhnikov, A., Yuzikhin, O., Syrova, D., Karlov, D., Sazanova, A., Azarova, T., Sekste, E., Safronova, V., & Belimov, A. (2023). Beneficial aluminium immobilizing microorganisms inhabiting the rhizosphere of pea. Biological Communications, 68(2), 74–85.
Full communications

Most read articles by the same author(s)