Rhizobial isolates in active layer samples of permafrost soil of Spitsbergen, Arctic

Authors

  • Denis Karlov All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0002-9030-8820
  • Anna Sazanova All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0002-4808-320X
  • Irina Kuznetsova All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0003-0260-7677
  • Nina Tikhomirova All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0001-8530-6698
  • Zhanna Popova All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0003-3558-7190
  • Yuriy Osledkin All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0002-4216-3372
  • Nikita Demidov Arctic and Antarctic Research Institute, ul. Beringa, 38, Saint Petersburg, 199397, Russian Federation https://orcid.org/0000-0002-3462-7747
  • Andrey Belimov All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0002-9936-8678
  • Vera Safronova All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0003-4510-1772

DOI:

https://doi.org/10.21638/spbu03.2021.109

Abstract

Twenty-nine strains were isolated from two samples of the permafrost active layer of the Spitsbergen archipelago. The estimated number of bacteria ranged from 4.0⋅104 to 1.7⋅107 CFU∙g-1. As a result of sequencing of the 16S rRNA (rrs) genes, the isolates were assigned to 13 genera belonging to the phyla Actinobacteria, Proteobacteria (classes α, β, and γ), Bacteroidetes, and Firmicutes. Six isolates belonged to the rhizobial genus Mesorhizobium (order Rhizobiales). A plant nodulation assay with seedlings of legume plants Astragalus norvegicus, A. frigidus, A. subpolaris and Oxytropis sordida, originated from Khibiny (Murmansk region, Russia) and inoculated with Mesorhizobium isolates, showed the inability of these strains to form nodules on plant roots. Symbiotic (sym) genes nodC and nodD were not detected in Mesorhizobium strains either.

Keywords:

legume plants, root nodule bacteria, 16S rRNA genes, permafrost soil, Spitsbergen

Downloads

Download data is not yet available.
 

References

Armas-Capote, N., Pérez-Yépez, J., Martínez-Hidalgo, P., Garzón-Machado, V., del Arco-Aguilar, M., Velázquez, E., and León-Barrios, M. 2014. Core and symbiotic genes reveal nine Mesorhizobium genospecies and three symbiotic lineages among the rhizobia nodulating Cicer canariense in its natural habitat (La Palma, Canary Islands). Systematic and Applied Microbiology 37(2):140–148. https://doi.org/10.1016/j.syapm.2013.08.004

Belonovskaya, E. A., Tishkov, A. A., Vaisfel’d, M. A., Glazov, P. M., Krenke-ml., A. N., Morozova, O. V., Pokrovskaya, I. V., Tsarevskaya, N. G., and Tertitskii, G. M. 2016. “Greening” of the Russian Arctic and the modern trends of transformation of its biota. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya 3:28–39. https://doi.org/10.15356/0373-2444-2016-3-28-39 (In Russian)

Caudry-Reznick, S., Prevost, D., and Schulman, H. M. 1986. Some properties of arctic rhizobia. Archives of Microbiology 146(1):12–18. https://doi.org/10.1007/BF00690151

Chung, E. J., Park, J. H., Park, T. S., Ahn, J. W., and Chung, Y. R. 2010. Production of a phytotoxic compound, 3-phenylpropionic acid by a bacterial endophyte, Arthrobacter humicola YC6002 isolated from the root of Zoysia japonica. The Plant Pathology Journal 26:245–252. https://doi.org/10.5423/PPJ.2010.26.3.245

Demidov, N., Wetterich, S., Verkulich, S., Ekaykin, A., Meyer, H., Anisimov, M., Schirrmeister, L., Demidov, V., and Hodson, A. J. 2019. Geochemical signatures of pingo ice and its origin in Grøndalen, West Spitsbergen. The Cryosphere 13:3155–3169. https://doi.org/10.5194/tc-13-3155-2019

Egorov, N. S. 1976. Workshop on Microbiology. Izdatelstvo Moskovskogo Universiteta, Moscow. 307 p. (In Russian)

Fagerli, I. L. and Svenning, M. M. 2005. Arctic and subarctic soil populations of Rhizobium leguminosarum biovar trifolii nodulating three different clover species: characterisation by diversity at chromosomal and symbiosis loci. Plant and Soil 275(1–2):371–381. https://doi.org/10.1007/s11104-005-3103-9

Ganzert, L., Bajerski, F., and Wagner, D. 2014. Bacterial community composition and diversity of five different permafrost-affected soils of Northeast Greenland. FEMS Microbiology Ecology 89(2):426–441. https://doi.org/10.1111/1574-6941.12352

Han, T. X., Han, L. L., Wu, L. J., Chen, W. F., Sui, X. H., Gu, J. G., Wang, E. T., and Chen, W. X. 2008. Mesorhizobium gobiense sp. nov. and Mesorhizobium tarimense sp. nov., isolated from wild legumes growing in desert soils of Xinjiang, China. International Journal of Systematic and Evolutionary Microbiology 58(11):2610–2618. https://doi.org/10.1099/ijs.0.2008/000125-0

Hansen, A. A., Herbert, R. A., Mikkelsen, K., and Jensen, L. L. 2007. Viability, diversity and composition of the bacterial community in a high Arctic permafrost soil from Spitsbergen, Northern Norway. Environmental Microbiology 9:2870–2884. https://doi.org/10.1111/j.1462-2920.2007.01403.x

Helene, L. C. F., Dall’Agnol, R. F., Delamuta, J. R. M., and Hungria, M. 2019. Mesorhizobium atlanticum sp. nov., a new nitrogen-fixing species from soils of the Brazilian Atlantic Forest biome. International Journal of Systematic and Evolutionary Microbiology 69(6):1800–1806. https://doi.org/10.1099/ijsem.0.003397

Ji, Z., Yan, H., Cui, Q., Wang, E., Chen, W., and Chen, W. 2015. Genetic divergence and gene flow among Mesorhizobium strains nodulating the shrub legume Caragana. Systematic and Applied Microbiology 38(3):176–183. https://doi.org/10.1016/j.syapm.2015.02.007

Kageyama, A., Morisaki, K., Ōmura, S., and Takahashi, Y. 2008. Arthrobacter oryzae sp. nov. and Arthrobacter humicola sp. nov. International Journal of Systematic and Evolutionary Microbiology 58(1):53–56. https://doi.org/10.1099/ijs.0.64875-0

Kudryashova, E. B., Chernousova, E. Y., Suzina, N. E., Ariskina, E. V., and Gilichinsky, D. A. 2013. Microbial diversity of Late Pleistocene Siberian permafrost samples. Microbiology 82(3):341–351. https://doi.org/10.1134/S0026261713020082

Laguerre, G., Nour, S. M., Macheret, V., Sanjuan, J., Drouin, P., and Amarger, N. 2001. Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 147(4):981–993. https://doi.org/10.1099/00221287-147-4-981

Li, W. J., Chen, H. H., Zhang, Y. Q., Kim, C. J., Park, D. J., Lee, J. C., Xu, L.-H., and Jiang, C. L. 2005. Citricoccus alkalitolerans sp. nov., a novel actinobacterium isolated from a desert soil in Egypt. International Journal of Systematic and Evolutionary Microbiology 55(1):87–90. https://doi.org/10.1099/ijs.0.63237-0

Lu, Y. L., Chen, W. F., Wang, E. T., Han, L. L., Zhang, X. X., Chen, W. X., and Han, S. Z. 2009. Mesorhizobium shangrilense sp. nov., isolated from root nodules of Caragana species. International Journal of Systematic and Evolutionary Microbiology 59(12):3012–3018. https://doi.org/10.1099/ijs.0.007393-0

Nielsen, M. B., Kjeldsen, K. U., and Ingvorsen, K. 2011. Description of Citricoccus nitrophenolicus sp. nov., a para-nitrophenol degrading actinobacterium isolated from a wastewater treatment plant and emended description of the genus Citricoccus Altenburger et al. 2002. Antonie van Leeuwenhoek 99(3):489–499. https://doi.org/10.1007/s10482-010-9513-6

Novikova, N. and Safronova, V. 1992. Transconjugants of Agrobacterium radiobacter harbouring sym genes of Rhizobium galegae can form an effective symbiosis with Medicago sativa. FEMS Microbiology Letters 93:261–268. https://doi.org/10.1111/j.1574-6968.1992.tb05107.x

Palaniappan, P., Chauhan, P. S., Saravanan, V. S., Anandham, R., and Sa, T. 2010. Isolation and characterization of plant growth promoting endophytic bacterial isolates from root nodule of Lespedeza sp. Biology and Fertility of Soils 46(8):807–816. https://doi.org/10.1007/s00374-010-0485-5

Parahin, N. V. and Petrova, S. N. 2009. Symbiotically fixed nitrogen in agroecosystems. Bulletin of Agrarian Science 18(3):41–45. (In Russian)

Pryadilshchikova, E. N., Kalabashkin, P. N, and Konovalova, S. S. 2018. Formation of pasture phytocenoses on the basis of new varieties of leguminous grasses under conditions of the European North of Russia. Vladimir Agricolist 1(83):32–35. https://doi.org/10.24411/2225-2584-2018-00008 (In Russian)

Safronova, V. and Tikhonovich, I. 2012. Automated cryobank of microorganisms: Unique possibilities for long-term authorized depositing of commercial microbial strains; pp. 331–334 in Microbes in applied research: current advances and challenges. https://doi.org/10.1142/9789814405041_0066

Safronova, V. I., Kuznetsova, I. G., Sazanova, A. L., Kimeklis, A. K., Belimov, A. A., Andronov, E. E., Pinaev, A. G., Chizhevskaya, E. P., Pukhaev, A. R., Popov, K. P., Willems, A., and Tikhonovich, I. A. 2015. Bosea vaviloviae sp. nov., a new species of slow-growing rhizobia isolated from nodules of the relict species Vavilovia formosa (Stev.) Fed. Antonie van Leeuwenhoek 107(4):911–920. https://doi.org/10.1007/s10482-015-0383-9

Safronova, V. I., Belimov, A. A., Sazanova, A. L., Chirak, E. R., Verkhozina, A. V., Kuznetsova, I. G., Andronov, E. E., Puhalsky, J. V., and Tikhonovich, I. A. 2018. Taxonomically different co-microsymbionts of a relict legume, Oxytropis popoviana, have complementary sets of symbiotic genes and together increase the efficiency of plant nodulation. Molecular Plant-Microbe Interactions 31(8):833–841. https://doi.org/10.1094/MPMI-01-18-0011-R

Safronova, V., Belimov, A., Sazanova, A., Chirak, E., Kuznetsova, I., Andronov, E., Pinaev, A., Tsyganova, A., Seliverstova, E., Kitaeva, A., Tsyganov, V., and Tikhonovich, I. 2019. Two broad host range rhizobial strains isolated from relict legumes have various complementary effects on symbiotic parameters of co-inoculated plants. Frontiers in Microbiology 10:514. https://doi.org/10.3389/fmicb.2019.00514

Schostag, M., Stibal, M., Jacobsen, C. S., Bælum, J., Taş, N., Elberling, B., Jansson, J. K., Semenchuk, P., and Priemé, A. 2015. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA-and RNA-based analyses. Frontiers in Microbiology 6:399. https://doi.org/10.3389/fmicb.2015.00399

Singh, P., Singh, S. M., Singh, R. N., Naik, S., Roy, U., Srivastava, A., and Bölter, M. 2017. Bacterial communities in ancient permafrost profiles of Svalbard, Arctic. Journal of Basic Microbiology 57(12):1018–1036. https://doi.org/10.1002/jobm.201700061

Stackebrandt, E., Koch, C., Gvozdiak, O., and Schumann, P. 1995. Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. International Journal of Systematic and Evolutionary Microbiology 45(4):682–692. https://doi.org/10.1099/00207713-45-4-682

Svenning, M. M., Røsnes, K., Lund, L., and Junttila, O. 2001. Vegetative growth and freezing tolerance of white clover (Trifolium repens L.) genotypes from Svalbard. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science 51(1):10–16. https://doi.org/10.1080/090647101317187843

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28(10):2731–2739. https://doi.org/10.1093/molbev/msr121

Tikhonovich, I. A. and Provorov, N. A. 2009. Symbioses of plants and microorganisms: molecular genetics of agrosystems of the future. Izdatelstvo Sankt-Peterburgskogo Universiteta, Saint Petersburg. 210 p. (In Russian)

Trubitsyn, V. E., Rhyzhmanova, Y. V., Zaharuk, A. G., Oshurkova, V. I., Laurinavichius, K. S., Spirina, E. V., Shcherbakova, V. A., and Rivkina, E. M. 2019. Permafrost sediments, West Spitsbergen, microbial communities, psychrophilic microorganisms, anaerobic prokaryotes. Earth 23(6):31–38. https://doi.org/10.21782/EC2541-9994-2019-6(31-38)

Vincent, J. M. 1970. A manual for the practical study of root nodule bacteria; pp. 73–97 in IBP Handbook. Oxford and Edinburgh: Blackwell Scientific Publications.

Vinuesa, P., León-Barrios, M., Silva, C., Willems, A., Jarabo-Lorenzo, A., Pérez-Galdona, R., Werner, D., and Martínez-Romero, E. 2005. Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. International Journal of Systematic and Evolutionary Microbiology 55(2):569–575. https://doi.org/10.1099/ijs.0.63292-0

Vishnivetskaya, T., Kathariou, S., McGrath, J., Gilichinsky, D., and Tiedje, J. M. 2000. Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles 4(3):165–173. https://doi.org/10.1007/s007920070031

Wei, G., Chen, W., Young, J. P. W., and Bontemps, C. 2009. A new clade of Mesorhizobium nodulating Alhagi sparsifolia. Systematic and Applied Microbiology 32(1):8–16. https://doi.org/10.1016/j.syapm.2008.11.003

Wilhelm, R. C., Niederberger, T. D., Greer, C., and Whyte, L. G. 2011. Microbial diversity of active layer and permafrost in an acidic wetland from the Canadian High Arctic. Canadian Journal of Microbiology 57(4):303–315. https://doi.org/10.1139/w11-004

Willems, A. 2014. The family Phyllobacteriaceae; pp. 355–418 in Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E., Thompson, F. (Eds). The Prokaryotes: Alphaproteobacteria and Betaproteobacteria 4th edn. Springer: Berlin, Germany. https://doi.org/10.1007/978-3-642-30197-1_298

Zheng, W. T., Li Jr, Y., Wang, R., Sui, X. H., Zhang, X. X., Zhang, J. J., Wang, E. T., and Chen, W. X. 2013. Mesorhizobium qingshengii sp. nov., isolated from effective nodules of Astragalus sinicus. International Journal of Systematic and Evolutionary Microbiology 63(6):2002–2007. https://doi.org/10.1099/ijs.0.044362-0

Downloads

Published

2021-03-31

How to Cite

Karlov, D., Sazanova, A., Kuznetsova, I., Tikhomirova, N., Popova, Z., Osledkin, Y., … Safronova, V. (2021). Rhizobial isolates in active layer samples of permafrost soil of Spitsbergen, Arctic. Biological Communications, 66(1), 73–82. https://doi.org/10.21638/spbu03.2021.109

Issue

Section

Full communications

Categories

Most read articles by the same author(s)