Contractility and electroexcitability of isolated myocardium of right ventricular of rat heart depending on estrous cycle and pregnancy

  • Yuliya Korotaeva Vyatka State University of Humanities, 122, ul. Svobody, Kirov, 610002, Russian Federation
  • Alexander Nozdrachev Saint Petersburg State University, 7–9, Universitetskaya nab., Saint Petersburg, 199034, Russian Federation
  • Viktor Tsyrkin Kazan State Medicine University, 49, ul. Butlerova, Kazan, 420012, Russian Federation

Abstract

It is known that women and rats have increased minute volume of blood flow (MV) during pregnancy. It is believed that this is due to an increase in heart rate. This remains unclear — whether pregnancy increases myocardial contractility (and consequently increases the stroke volume). There are no data on changes of myocardium electroexcitability during pregnancy. To clarify these issues, experiments were conducted on strips of right ventricular of 94 nonpregnant and 45 pregnant rats. The strips were perfused with Krebs solution at 37 °C, which is preenriched by pure oxygen, and after 30 minutes of adaptation evaluated force of contractions. They are caused by electrostimulation (5 ms, 1 Hz, 20 V) applied transmural. Then determined the excitation threshold, i.e, minimum voltage (V), wherein a single stimul (5 ms) induced contraction. It was found that the force of contraction (mN, mN/mg wet weight or mN/mg dry weight of strips ) and the excitation threshold do not depend on the phase of the estrous cycle, pregnancy, and the availability of its terms. This means that during pregnancy contractility of right ventricle of rats myocardial does not change, and even tends to decrease. Therefore, increasing of MV during pregnancy, most likely due to an increase in heart rate. It was also established that at the end of pregnancy water content increases (on 12 %) in the myocardium (perhaps by increasing the expression of aquaporins in cardiomyocytes) which is regarded as a reflection of adaptation. Refs 41. Figs 4.

Keywords:

rat myocardium, right ventricle, contractility, electroexcitability, estrous cycle, pregnancy

Downloads

Download data is not yet available.

References

Robson S., Hunter S., Boys R., Dunlop W. Serial study of factors influencing changes in cardiac output during human pregnancy. Am. J. Fisiol., 1989, vol. 256, pp. 1060–1065.

Bamfo J., Kametas N., Nicolaides K., Chambers J. Maternal left ventricular diastolic and systolic longaxis function during normal pregnancy. Eur. J. Echocardiogr., 2007, vol. 8, no. 5, pp. 360–368.

Shifman E. M., Khramchenko N. V., Tikhova G. P. Izmenenie funktsii serdtsa pri beremennosti [Changes in heart function during pregnancy]. Anasteziologiia i reanimatologiia [Anesthesiology and reanimatology], 2012, no. 10, pp. 4–9. (In Russian)

Costantine M. Physiologic and pharmacokinetic changes in pregnancy. Front Pharmacol., 2014, vol. 5, pp. 65.

Buttrick P., Schaible T., Malhotra A., Mattioli S., Scheuer J. Effects of pregnancy on cardiac function and myosin enzymology in the rat. Am. J. Physiol., 1987, vol. 252, no. 4, part 2, pp. 846–850.

Bassien-Capsa V., Fouron J., Comte B., Chorvatova A. Structural, functional and metabolic remodeling of rat left ventricular myocytes in normal and in sodium-supplemented pregnancy. Cardiovasc. Res., 2006, vol. 69, no. 2, pp. 423–431.

Virgen-Ortiz A., Marin J., Elizalde A., Castro E., Stefani E., Toro L., Musiz J. Passive mechanical properties of cardiac tissues in heart hypertrophy during pregnancy. J. Physiol., 2009, vol. 59, no. 5, pp. 391–396.

Matsuo H., Inoue K., Hapsari E., Kitano K., Shiotani H. Change of autonomic nervous activity during pregnancy and its modulation of labor assessed by spectral heart rate variability analysis. Clin. Exp. Obstet. Gynecol., 2007, vol. 34, no. 2, pp. 73–79.

Khlybova S. V., Tsirkin V. I., Dvorianskii S. A., Makarova I. A., Trukhin A. N. Variabel'nost' serdechnogo ritma u zhenshchin pri fiziologicheskom i oslozhnennom techenii beremennosti [Heart rate variability in women with physiological and complicated pregnancy]. Fiziologiia cheloveka [Human Physiology], 2008, vol. 34, no. 5, pp. 97–105. (In Russian)

Dmitrieva S. L., Khlybova S. V., Khodyrev G. N., Tsirkin V. I. Variabel'nost' serdechnogo ritma na razlichnykh etapakh gestatsionnogo protsessa [Heart rate variability at different stages of gestation]. Kirov, KOGUZ “Meditsinskii informatsionno-analiticheskii tsentr”, 2013. 132 p. (In Russian)

Dyban A. P., Puchkov V. F., Baranov V. S. Laboratornye mlekopitaiushchie: mysh' (Mus musculus), krysa (Rattus norvegicu), krolik (Oryctolagus cuniculus), khomiachok (Cricetus grisous). [Laboratory mammals: the mouse (Mus musculus), rat (Rattus norvegicu), rabbit (Oryctolagus cuniculus), hamster (Cricetus grisous)]. Ob"ekty biologii razvitiia [Objects of developmental biology]. Moscow, Nauka Publ., 1975, pp. 505–566. (In Russian)

Halphen C., Leguludec D., Valent R., Hapat R. Electrocardiographic study of left ventricular performance in normal pregnancy. Arch. Mal Coeur Vaiss. 1984, vol. 77, no. 2, pp. 212–217.

Heilmann L., Lohr D., Hintereicher M., von Tempelhoff G., Ose C. Changes in central hemodynamics and peripheral circulation in pregnancy. Geburtshilfe Frauenheilkd. 1993, vol. 53, no. 7, pp. 472–478.

Geva T., Mauer M., Striker L., Kirshon B., Pivarnik J. Effects of physiologic load of pregnancy on left ventricular contractility and remodeling. Am. Heart J. 1997, vol. 133, no. 1, pp. 53–59.

Okli S., Uornes K. A. Zabolevaniia serdtsa pri beremennosti [Heart disease during pregnancy]. Moscow, BINOM Publ., 2010. 368 p. (In Russian)

Joglar J., Page R. Management of arrhythmia syndromes during pregnancy. Curr. Opin. Cardiol., 2014, vol. 29, no. 1, pp. 36–44.

Shekhtman M. M. Rukovodstvo po ekstragenital'noi patologii u beremennykh [Guide for extragenital pathology in pregnant women]. Moscow, Triada Publ., 2011. 896 p. (In Russian)

Ailamazian E. K., Kulakov V. I., Radzinskii V. E., Savel'eva G. M. Akusherstvo. Natsional'noe rukovodstvo [Obstetrics. National Guide]. Moscow, GEOTAR-Media Publ., 2009. 1218 p. (In Russian)

Penkina Iu. A., Nozdrachev A. D., Tsirkin V. I. Vliianie syvorotki krovi cheloveka, gistidina, triptofana, tirozina, mildronata i lizofosfatidilkholina na inotropnyi eff ekt adrenalina v opytakh s miokardom liagushki i krysy [Effect of human serum, histidine, tryptophan, tyrosine, mildronat and lysophosphatidylcholine on inotropic effect of adrenaline in experiments with frogs and rat myocardium]. Vestnik of Saint-Petersburg University. Series 3. Biology, 2008, issue 1, pp. 551. (In Russian)

Flores A., Velasco J., Gallegos A., Mendoza F., Everardo P., Cruz M., Domínguez R. Acute effects of unilateral sectioning the superior ovarian nerve of rats with unilateral ovariectomy on ovarian hormones (progesterone, testosterone and estradiol) levels vary during the estrous cycle. Reprod. Biol. Endocrinol., 2011, vol. 9, pp. 34.

Kirshenblat Ia. D. Praktikum po endokrinologii [Workshop on endocrinology]. Moscow, 1969. 256 p. (In Russian)

Bryndina I. G., Vasil'eva N. N., Krivonogova Iu. A., Baranov V. M. Vliianie dlitel'noi modelirovannoi nevesomosti na surfaktant i vodnyi balans legkikh myshei [Effect of prolonged simulated weightlessness on surfactant and water balance of the lungs of mice]. Biul. eksperim. biologii i meditsiny [Bul. experimental. biology and medicine], 2013, vol. 155, no. 3, pp. 279–281. (In Russian)

Yan Y., Huang J., Ding F., Mei J., Zhu J., Liu H., Sun K. Aquaporin 1 plays an important role in myocardial edema caused by cardiopulmonary bypass surgery in goat. Int. J. Mol. Med., 2013, vol. 31, no. 3, pp. 637–643.

Glants S. Mediko-biologicheskaia statistika [Biomedical statistics]. Moscow, Praktika Publ., 1999. 459 p. (In Russian)

Krysova A. V., Tsirkin V. I., Kunshin A. A. Rol' akvaporinov v transporte vody cherez biologicheskie membrany (obzor literatury) [The role of aquaporins in water transport through biological membranes (review)]. Viatskii meditsinskii vestnik [Vyatsky Medical Vestnik], 2012, no. 2, pp. 50–58. (In Russian)

Butler T., Au C., Yang B., Egan J., Tan Y., Hardeman E., North K., Verkman A., Winlaw D. Cardiac aquaporin expression in humans, rats, and mice. Am. J. Physiol. Heart Circ. Physiol., 2006, vol. 291, pp. 705–713.

Rutkovskiy A., Mariero L., Nygård S., Stensløkken K. , Valen G., Vaage J. Transient hyperosmolality modulates expression of cardiac aquaporins. Biochem. Biophys. Res. Commun., 2012, vol. 425, no. 1, pp. 70–75.

Rutkovskiy A., Valen G., Vaage J. Cardiac aquaporins. Basic Res. Cardiol., 2013, vol. 108, no. 6, pp. 393.

Li X., Yang Y., Geng Y., Cheng Y., Zhang H., Zhao J., Yuan J., Gao R. The cardioprotection of simvastatin in reperfused swine hearts relates to the inhibition of myocardial edema by modulating aquaporins via the PKA pathway. Int. J. Cardiol., 2013, vol. 167, no. 6, pp. 2657–2666.

Skowronski M., Lebeck J., Rojek A., Praetorius J., Füchtbauer E., Frøkiaer J., Nielsen S. AQP7 is localized in capillaries of adipose tissue, cardiac and striated muscle: implications in glycerol metabolism. Am. J. Physiol. Renal Physiol., 2007, vol. 292, no. 3, pp. 956–965.

Krysova A. V., Kunshin A. A., Tsirkin V. I. Polovye osobennosti osmoticheskoi rezistentnosti eritrotsitov cheloveka, vyiavliaemye pri ekspozitsii eritrotsitov v distillirovannoi vode [Sexual peculiarities of human erythrocyte osmotic resistance elicited by exposure of erythrocytes in distilled water]. Vestn. Nizhegorodskogo un-ta im. N. I. Lobachevskogo [Vestnik of N. I. Lobachevsky Nizhny Novgorod University]. 2011, no. 2 (2), pp. 266–272. (In Russian)

Zeidel M., Nielsen S., Smith B., Ambudkar S., Maunsbach A., Agre P. Ultrastructure, pharmacologic inhibition, and transport selectivity of aquaporin channel-forming integral protein in proteoliposomes. Biochemistry, 1994, vol. 33, no. 6, pp. 1606–1615.

Zelenina M., Tritto S., Bondar A., Zelenin S., Aperia A. Copper inhibits the water and glycerol permeability of aquaporin-3. J. Biol. Chem., 2004, vol. 279, no. 50, pp. 51939–51943.

Chen L., Zhao J., Musa-Aziz R., Pelletier M., Drummond I., Boron W. Cloning and characterization of a zebrafish homologue of human AQP1: a bifunctional water and gas channel. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2010, vol. 299, no. 5, pp. 1163–1174.

Savu O., Jurcuţ R., Giuşcǎ S., van Mieghem T., Gussi I., Popescu B., Ginghinǎ C., Rademakers F., Deprest J., Voigt J. Morphological and functional adaptation of the maternal heart during pregnancy. Circ. Cardiovasc. Imaging, 2012, vol. 5, no. 3, pp. 289–297.

Eghbali M., Deva R., Alioua A., Minosyan T., Ruan H., Wang Y., Toro L., Stefani E. Molecular and functional signature of heart hypertrophy during pregnancy. Circ. Res., 2005, vol. 96, no. 11, pp. 1208–1216.

Umar S., Nadadur R., Iorga A., Amjedi M., Matori H., Eghbali M. Cardiac structural and hemodynamic changes associated with physiological heart hypertrophy of pregnancy are reversed postpartum. J. Appl. Physiol., (1985). 2012, vol. 113, no. 8, pp. 1253–1259.

Jankowski M., Wang D., Mukaddam-Daher S., Gutkowska J. Pregnancy alters nitric oxide synthase and natriuretic peptide systems in the rat left ventricle. J. Endocrinol., 2005, vol. 184, no. 1, pp. 209–217.

Pott C., Steinritz D., Napp A., Bloch W., Schwinger R., Brixius K. On the function of beta3-adrenoceptors in the human heart: signal transduction, inotropic eff ect and therapeutic prospects. Wien. Med. Wochenschr., 2006, vol. 156, no. 15–16, pp. 451–458.

Odnoshivkina Iu. G., Petrov A. M., Zefirov A. L. Vliianie aktivatsii β2-adrenoretseptorov v predserdiiakh myshi na silu sokrashcheniia, Sa-signaly i produktsiiu oksida azota [Effect of β2-adrenergic receptor activation on the contraction force of mice atrium, Ca-signals and the production of nitric oxide]. Acta Naturae, 2011, vol. 3, no. 1, pp. 85–94. (In Russian)

Joglar J., Page R. Management of arrhythmia syndromes during pregnancy. Curr. Opin. Cardiol., 2014, vol. 29, no. 1, pp. 36–44.
Published
2015-12-25
How to Cite
Korotaeva, Y., Nozdrachev, A., & Tsyrkin, V. (2015). Contractility and electroexcitability of isolated myocardium of right ventricular of rat heart depending on estrous cycle and pregnancy. Biological Communications, (4), 66–78. Retrieved from https://biocomm.spbu.ru/article/view/689
Section
Full communication