The influence of adrenaline on contractility and excitability of myocardium of rat right ventricle depending on phases of the estrous cycle and pregnancy

Authors

  • Yuliya Korotaeva Vyatka State University, 36, ul. Moskovskaya, Kirov, 610000, Russian Federation
  • Alexander Nozdrachev Saint Petersburg State University, 7–9, Universitetskaya nab., Saint Petersburg, 199034, Russian Federation
  • Viktor Tsirkin Kazan State Medical University, 49, ul. Butlerov, Kazan, 420012, Russian Federation

DOI:

https://doi.org/10.21638/11701/spbu03.2016.406

Abstract

Investigated the contractile activity of 34 myocardium strips of right ventricular of 17 nonpregnant rats, including with estrogen (9) and progesterone (8) background, and 17 pregnant rats — at the early (5–10 days; n = 7), middle (11–18 days; n = 7) and late (19–21 days; n = 3) stages. Contractions caused by electrostimuls (5 ms, 20 B, 1 Hz), and their registration was performed using the force transducer. Adrenoreactivity of strips were evaluated by the pattern of inotropic and batmotropic effects of adrenaline (10-9–10-5 g/ml). It has been established that contractility of myocardium is not changed during the estrous cycle. In pregnancy, it does not increase, and even decreases, which is typical for middle and late stages. Adrenoreactivity of myocardium, according to the inotropic effect of adrenaline, did not depend on the phase of the estrous cycle (PhEC), but depended on the presence of pregnancy — in early stages it remained relatively high, and in the middle and late stages — decreased. Excitability of intactmyocardium did not depend on PhEC and the presence of pregnancy. Adrenaline showed positive batmotropic effect. Its expression was dependent on the PhEC (it decreases with the dominance of progesterone background) and the presence of pregnancy (in early stage it increases, and in the middle and late stages — it decreases). It is assumed that changes of adrenoreactivity of the myocardium of the rat right ventricle during pregnancy are due by increasing of the expression of alpha1-, beta2- and beta3-adrenoceptors. Refs 58. Figs 5. Table 1.

Keywords:

rat myocardium, right ventricle, contractility, electroexcitability, estrous cycle, pregnancy

Downloads

Download data is not yet available.
 

References

Pérez-Schindler J., Philp A., Hernandez-Cascales J. Pathophysiological relevance of the cardiac β2-adrenergic receptor and its potential as a therapeutic target to improve cardiac function. Eur. J. Pharmacol., 2013, vol. 698, no. 1–3, pp. 39–47. PMID: 23183106. https://doi.org/10.1016/j.ejphar.2012.11.001" target="_blank">https://doi.org/10.1016/j.ejphar.2012.11.001

Odnoshivkina Iu. G., Petrov A. M., Zefirov A. L. Mehanizm oposreduemoj β2-adrenoreceptorami medlenno razvivajushhejsja polozhitel’noj inotropnoj reakcii predserdij myshi [Mechanism of the slow inotropic response of the mouse atrium mediated by the beta2-adrenoreceptor]. Ros. Fiziol. Zh. Im. I. M. Sechenova, 2011, vol. 97, no. 11, pp. 1223–1236. PMID: 22390078. (In Russian)

Liu H., Xing X., Huang L., Huang Z., Yuan H. The expression level of myocardial β1-adrenergic receptor affects metoprololantihypertensive effects: a novel mechanism for interindividual difference. Med. Hypotheses, 2013, vol. 81, no. 1, pp. 71–72. PMID: 23639286. https://doi.org/10.1016/j.mehy.2013.02.014" target="_blank">https://doi.org/10.1016/j.mehy.2013.02.014

Amanfu R. K., Saucerman J. J. Modeling the effects of β1-adrenergic receptor blockers and polymorphisms on cardiac myocyte Ca2+ handling. Mol. Pharmacol., 2014, vol. 86, no. 2, pp. 222–230. PMID: 24867460. https://doi.org/10.1124/mol.113.090951" target="_blank">https://doi.org/10.1124/mol.113.090951

Dessy C., Balligand J. L. Beta3-adrenergic receptors in cardiac and vascular tissues emerging concepts and therapeutic perspectives. Adv. Pharmacol., 2010, vol. 59, pp. 135–163. PMID: 20933201. https://doi.org/10.1016/S1054-3589(10)59005-7" target="_blank">https://doi.org/10.1016/S1054-3589(10)59005-7

Gauthier C., Rozec B., Manoury B., Balligand J. L. Beta3-adrenoceptors as new therapeutic targets for cardiovascular pathologies. Curr. Heart Fail. Rep., 2011, vol. 8, no. 3, pp. 184–192. PMID: 21633786. https://doi.org/10.1007/s11897-011-0064-6" target="_blank">https://doi.org/10.1007/s11897-011-0064-6

Niu X., Watts V. L., Cingolani O. H., Sivakumaran V., Leyton-Mange J. S., Ellis C. L., Miller K. L., Vandegaer K., Bedja D., Gabrielson K. L., Paolocci N., Kass D. A., Barouch L. A. Cardioprotective effect of beta3-adrenergic receptor agonism: role of neuronal nitric oxide synthase. J. Am. Coll. Cardiol., 2012, vol. 59, no. 22, pp. 1979–1987. PMID: 22624839. https://doi.org/10.1016/j.jacc.2011.12.046" target="_blank">https://doi.org/10.1016/j.jacc.2011.12.046

Kaumann A. J., Engelhardt S., Hein L., Molenaar P., Lohse M. Abolition of CGP 12177-evoked cardiostimulation in double beta1/beta2-adrenoceptor knockout mice. Obligatory role of beta1-adrenoceptors forputative beta4-adrenoceptor pharmacolog. Naunyn. Schmiedebergs Arch. Pharmacol., 2001, vol. 363, no. 1, pp. 87–93. PMID: 11191841.

Bundkirchen A., Brixius K., Bölck B., Schwinger R. H. Bucindolol exerts agonisticactivity on the propranolol-insensitive state of beta1-adrenoceptors in human myocardium. J. Pharmacol. Exp. Ther., 2002, vol. 300, no. 3, pp. 794–801. PMID: 11861783.

Wang G. Y., McCloskey D. T., Turcato S., Swigart P. M., Simpson P. C., Baker A. J. Contrasting inotropic responses to alpha1-adrenergic receptor stimulation inleft versus right ventricular myocardium. Am. J. Physiol. Heart Circ. Physiol., 2006, vol. 291, no. 4, pp. H2013–H2017. PMID: 16731650.

Grimm M., Mahnecke N., Soja F., El-Armouche A., Haas P., Treede H., Reichenspurner H., Eschenhagen T. The MLCK-mediated alpha1-adrenergic inotropic effect in atrial myocardium is negatively modulated by PKCepsilonsignaling. Br. J. Pharmacol., 2006, vol. 148, no. 7, pp. 991–1000. PMID: 16783412.

Mohl M. C., Iismaa S. E., Xiao X. H., Friedrich O., Wagner S., Nikolova-Krstevski V., Wu J., Yu Z. Y., Feneley M., Fatkin D., Allen D. G., Graham R. M. Regulation of murine cardiac contractility by activation of α1A-adrenergic receptor-operated Ca2+ entry. Cardiovasc. Res., 2011, vol. 91, no. 2, pp. 310–319. PMID: 21546445. https://doi.org/10.1093/cvr/cvr081" target="_blank">https://doi.org/10.1093/cvr/cvr081

Chu C., Th ai K., Park K. W., Wang P., Makwana O., Lovett D. H., Simpson P. C., Baker A. J. Intraventricular and interventricular cellular heterogeneity of inotropic responses to α1-adrenergic stimulation. Am. J. Physiol. Heart Circ. Physiol., 2013, vol. 304, no. 7, pp. H946–H953. PMID: 23355341. https://doi.org/10.1152/ajpheart.00822.2012" target="_blank">https://doi.org/10.1152/ajpheart.00822.2012

O’Connell T. D., Jensen B. C., Baker A. J., Simpson P. C. Cardiac alpha1-adrenergic receptors: novel aspects of expression, signaling mechanisms, physiologic function, and clinical importance. Pharmacol. Rev., 2013, vol. 66, no. 1, pp. 308–333. PMID: 24368739. https://doi.org/10.1124/pr.112.007203" target="_blank">https://doi.org/10.1124/pr.112.007203

El Amrani A., Riou B., Pourny J. C., Lecarpentier Y. Effects of alpha adrenergic stimulation on the mechanical properties of the myocardium. Arch. Mal. Coeur. Vaiss., 1990, vol. 83, no. 11, pp. 1751–1755. PMID: 1978652.

Chinkin A. S. Al’fa1-adrenergicheskie receptory serdca [Alpha1-adrenergic receptors of the heart]. Pedagogiko-psikhologicheskie i mediko-biologicheskie problemy fizicheskoi kul’tury i sporta [Pedagogicalpsychological and medical-biological problems of physical training and sports], 2006, no. 1/1, pp. 1–30. (In Russian)

Tavernier G., Toumaniantz G., Erfanian M., Heymann M. F., Laurent K., Langin D., Gauthier C. Beta3-Adrenergic stimulation produces decrease of cardiac contractility ex vivo in mice overexpressing the human beta3-adrenergic receptor. Cardiovasc. Res., 2003, vol. 59, no. 2, pp. 288–296. PMID: 12909312.

Skeberdis V. A. Structure and function of beta3-adrenergic receptors. Medicina (Kaunas), 2004, vol. 40, no. 5, pp. 407–413. PMID: 15170407.

Skeberdis V. A., Gendviliene V., Zablockaite D., Treinys R., Macianskiene R., Bogdelis A., Jurevicius J., Fischmeister R. Beta3-adrenergic receptor activation increases human atrial tissue contractility and stimulates the L-type Ca2+ current. J. Clin. Invest., 2008, vol. 118, no. 9, pp. 3219–3227. PMID: 18704193. https://doi.org/10.1172/JCI32519" target="_blank">https://doi.org/10.1172/JCI32519

Porter A. C., Svensson S. P., Stamer W. D., Bahl J. J., Richman J. G., Regan J. W. Alpha2-adrenergic receptors stimulate actin organization in developing fetal rat cardiac myocytes. Life Sci., 2003, vol. 72, no. 13, pp. 1455–1466. PMID: 12535714.

Sinclair M. D. A review of the physiological effects of alpha2-agonists related to the clinical use of medetomidine in small animal practice. Can. Vet. J., 2003, vol. 44, no. 11, pp. 885–897. PMID: 14664351.

Leblais V., Jo S. H., Chakir K., Maltsev V., Zheng M., Crow M. T., Wang W., Lakatta E. G., Xiao R. P. Phosphatidylinositol 3-kinase off sets cAMP-mediated positive inotropic effect via inhibiting Ca2+ influx in cardiomyocytes. Circ. Res., 2004, vol. 95, no. 12, pp. 1183–1190. PMID: 15539636.

Paur H., Wright P. T., Sikkel M. B., Tranter M. H., Mansfield C., O’Gara P., Stuckey D. J., Nikolaev V. O., Diakonov I., Pannell L., Gong H., Sun H., Peters N. S., Petrou M., Zheng Z., Gorelik J., Lyon A. R., Harding S. E. High levels of circulating epinephrin trigger apical cardiodepression in a β2-adrenergic receptor/Gi-dependent manner: new model of Takotsuboardiomyopathy. Circulation, 2012, vol. 126, no. 6, pp. 697–706. PMID: 22732314. https://doi.org/10.1161/CIRCULATIONAHA.112.111591" target="_blank">https://doi.org/10.1161/CIRCULATIONAHA.112.111591

Schaff er W., Williams R. S. Age-dependent changes in expression of alpha1-adrenergic receptors in rat myocardium. Biochem. Biophys. Res. Commun., 1986, vol. 138, no. 1, pp. 387–391. PMID: 3017323.

Dangel V., Giray J., Ratge D., Wisser H. Regulation of beta-adrenoceptor density and mRNA levels in the rat heart cell-line H9c2. Biochem. J., 1996, vol. 317, pt. 3, pp. 925–931. PMID: 8760384.

Kemi O. J., MacQuaide N., Hoydal M. A., Ellingsen O., Smith G. L., Wisloff U. Exercise training corrects control of spontaneous calcium waves inhearts from myocardial infarction heart failure rats. J. Cell. Physiol., 2012, vol. 227, no. 1, pp. 20–26. PMID: 21465470. https://doi.org/10.1002/jcp.22771" target="_blank">https://doi.org/10.1002/jcp.22771

Petriz B. A., Franco O. L. Effects of hypertension and exercise on cardiac proteome remodelling. Biomed. Res. Int., 2014, vol. 2014, article ID 634132. PMID: 24877123. https://doi.org/10.1155/2014/634132" target="_blank">https://doi.org/10.1155/2014/634132

Dash R., Chung J., Chan T., Yamada M., Barral J., Nishimura D., Yang P. C., Simpson P. C. A molecular MRI probe to detect treatment of cardiac apoptosis in vivo. Magn. Reson. Med., 2011, vol. 66, no. 4, pp. 1152–1162. PMID: 21360750. https://doi.org/10.1002/mrm.22876" target="_blank">https://doi.org/10.1002/mrm.22876

Bristow M. R., Ginsburg R., Minobe W., Cubicciotti R. S., Sageman W. S., Lurie K., Billingham M. E., Harrison D. C., Stinson E. B. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N. Engl. J. Med., 1982, vol. 307, no. 4, pp. 205–211. PMID: 6283349.

Khodyrev G. N., Nozdrachev A. D., Dmitrieva S. L., Khlybova S. V., Tsirkin V. I., Novoselova A. V. Variabel’nost’ serdechnogo ritma u zhenshchin na razlichnykh etapakh reproduktivnogo protsessa [Heart rate variability in women at different stages of the reproductive process]. Vestnik of Saint Petersburg University. Series 3. Biology, 2013, issue 2, pp. 70–86. (In Russian)

Flores A., Velasco J., Gallegos A. I., Mendoza F. D., Everardo P. M., Cruz M. E., Domínguez R. Acute effects of unilateral sectioning the superior ovarian nerve of rats with unilateral ovariectomy on ovarian hormones (progesterone, testosterone andestradiol) levels vary during the estrous cycle. Reprod. Biol. Endocrinol., 2011, vol. 9, article 34. PMID: 21414235. https://doi.org/10.1186/1477-7827-9-34" target="_blank">https://doi.org/10.1186/1477-7827-9-34

Kirshenblat Ya. D. Praktikum po endokrinologii [Workshop on endocrinology]. Moscow, Higher School Publ., 1969. 256 p. (In Russian)

Dyban A. P., Puchkov V. F., Baranov V. S. Laboratornye mlekopitaiushchie: mysh’ (Mus musculus), krysa (Rattus norvegicus), krolik (Oryctolagus cuniculus), khomiachok (Cricetus grisous) [Laboratory mammals: mouse (Mus musculus), rat (Rattus norvegicus), rabbit (Oryctolagus cuniculus), hamster (Cricetus grisous)]. Ob’ekty biologii razvitiia [Objects of biological developmental]. Moscow, Nauka Publ., 1975, pp. 505–566. (In Russian)

Bryndina I. G., Vasilieva N. N., Krivonogova Y. A., Baranov V. M. Vliianie dlitel’noi modelirovannoi nevesomosti na surfaktant i vodnyi balans legkikh myshei [Effect of long-term simulated weightlessness on surfactant and water balance in mouse lungs]. Biull. eksperiment. biologii i meditsiny [Bull. Exp. Biol. Med.], 2013, vol. 155, no. 3, pp. 306–30. PMID: 24137589. (In Russian)

Yan Y., Huang J., Ding F., Mei J., Zhu J., Liu H., Sun K. Aquaporin 1 plays an important role in myocardial edema caused by cardiopulmonary bypass surgery in goat. Int. J. Mol. Med., 2013, vol. 31, no. 3, pp. 637–643. PMID: 23292298. https://doi.org/10.3892/ijmm.2013.1228" target="_blank">https://doi.org/10.3892/ijmm.2013.1228

Penkina Yu. A., Nozdrachev A. D., Tsirkin V. I. Vliianie syvorotki krovi cheloveka, gistidina, triptofana, tirozina, mildronata i lizofosfatidilkholina na inotropnyi effekt adrenalina v opytakh s miokardom liagushki i krysy [Effect of human blood serum, histidine, tryptophan, tyrosine, mildronat and lysophosphatidylcholine on inotropic effect of adrenaline in the experiments with the frog and rat myocardium]. Vestnik of Saint-Petersburg University. Series 3. Biology, 2008, issue 1, pp. 55–68. (In Russian)

Glantz S. Mediko-biologicheskaia statistika [Biomedical Statistics]. Moscow, Practice Publ., 1999. 459 p. (In Russian)

Schümann H. J. What role do alpha- and beta-adrenoceptors play in the regulation of the heart? Eur. Heart J., 1983, vol. 4, suppl. A, pp. 55–60. PMID: 6301837.

Eghbali M., Deva R., Alioua A., Minosyan T. Y., Ruan H., Wang Y., Toro L., Stefani E. Molecular and functional signature of heart hypertrophy during pregnancy. Circ. Res., 2005, vol. 96, no. 11, pp. 1208–1216. PMID: 15905459.

Umar S., Nadadur R., Iorga A., Amjedi M., Matori H., Eghbali M. Cardiac structural and hemodynamic changes associated with physiological heart hypertrophy of pregnancy are reversed postpartum. J. Appl. Physiol., 2012, vol. 113, no. 8, pp. 1253–1259. PMID: 22923507. https://doi.org/10.1152/japplphysiol.00549.2012" target="_blank">https://doi.org/10.1152/japplphysiol.00549.2012

Buttrick P. M., Schaible T. F., Malhotra A., Mattioli S., Scheuer J. Effects of pregnancy on cardiac function and myosin enzymology in the rat. Am. J. Physiol., 1987, vol. 252, no. 4, pt. 2, pp. H846–H850. PMID: 2952023.

Elzwiei F., Bassien-Capsa V., St.-Louis J., Chorvatova A. Regulation of the sodium pump during cardiomyocyte adaptation to pregnancy. Exp. Physiol., 2013, vol. 98, no. 1, pp. 183–192. PMID: 22848078. https://doi.org/10.1113/expphysiol.2012.066282" target="_blank">https://doi.org/10.1113/expphysiol.2012.066282

Galougahi K. K., Liu C. C., Garcia A., Fry N. A., Hamilton E. J., Rasmussen H. H., Figtree G. A. Protein kinase-dependent oxidative regulation of the cardiac Na+-K+ pump: evidence from in vivo and in vitro modulation of cell signalling. J. Physiol., 2013, vol. 591, no. 12, pp. 2999–3015. PMID: 23587884. https://doi.org/10.1113/jphysiol.2013.252817" target="_blank">https://doi.org/10.1113/jphysiol.2013.252817

Castaldi A., Zaglia T., Di Mauro V., Carullo P., Viggiani G., Borile G., Di Stefano B., Schiattarella G. G., Gualazzi M. G., Elia L., Stirparo G. G., Colorito M. L., Pironti G., Kunderfranco P., Esposito G., Bang M. L., Mongillo M., Condorelli G., Catalucci D. MicroRNA-133 modulates the β1-adrenergic receptor transduction cascade. Circ. Res., 2014, vol. 115, no. 2, pp. 273–283. PMID: 24807785. https://doi.org/10.1161/CIRCRESAHA.115.303252" target="_blank">https://doi.org/10.1161/CIRCRESAHA.115.303252

Fu Q., Kim S., Soto D., De Arcangelis V., DiPilato L., Liu S., Xu B., Shi Q., Zhang J., Xiang Y. K. A long lasting β1-adrenergic receptor stimulation of cAMP/protein kinase A (PKA) signal in cardiac myocytes. J. Biol. Chem., 2014, vol. 289, no. 21, pp. 14771–14781. PMID: 24713698. https://doi.org/10.1074/jbc.M113.542589" target="_blank">https://doi.org/10.1074/jbc.M113.542589

Woo A. Y., Song Y., Xiao R. P., Zhu W. Biased β2-adrenoceptor signaling in heart failure: pathophysiology and drug discovery. Br. J. Pharmacol., 2015, vol. 172, no. 23, pp. 5444–5456. PMID: 25298054. https://doi.org/10.1111/bph.12965" target="_blank">https://doi.org/10.1111/bph.12965

Blagova O. V., Nedostup A. V., Morozova N. S., Kogan E. A., Gagarina N. V., Sedov V. P., Zakliaz’minskaia E. V., Frolova Iu. V., Dzemeshkevich S. L., Aleksandrova S. A. Aritmogennaia displaziia pravogo zheludochka: polimorfizm klinicheskikh proiavlenii [Arrhythmogenic right ventricular dysplasia: polymorphism of clinical manifestations]. Kardiologiia [Kardiologу], 2012, vol. 52, no. 4, pp. 85–94. PMID: 22839522. (In Russian)

Fajardo G., Zhao M., Urashima T., Farahani S., Hu D. Q., Reddy S., Bernstein D. Deletion of the β2-adrenergic receptor prevents. The development of cardiomyopathy in mice. J. Mol. Cell. Cardiol., 2013, vol. 63, pp. 155–164. PMID: 23920331. https://doi.org/10.1016/j.yjmcc.2013.07.016" target="_blank">https://doi.org/10.1016/j.yjmcc.2013.07.016

Lipsky R., Potts E. M., Tarzami S. T., Puckerin A. A., Stocks J., Schecter A. D., Sobie E. A., Akar F. G., Diversé-Pierluissi M. A. Beta-Adrenergic receptor activation induces internalization of cardiac Cav1.2 channel complexes through a beta-arrestin1-mediated pathway. J. Biol. Chem., 2008, vol. 283, no. 25, pp. 17221–17226. PMID: 18458091. https://doi.org/10.1074/jbc.C800061200" target="_blank">https://doi.org/10.1074/jbc.C800061200

Gregg C. J., Steppan J., Gonzalez D. R., Champion H. C., Phan A. C., Nyhan D., Shoukas A. A., Hare J. M., Barouch L. A., Berkowitz D. E. β2-adrenergic receptor-coupled phosphoinositide 3-kinase constrains cAMP-dependent increases in cardiac inotropy through phosphodiesterase 4 activation. Anesth. Analg., 2010, vol. 111, no. 4, pp. 870–877. PMID: 20705779. https://doi.org/10.1213/ANE.0b013e3181ee8312" target="_blank">https://doi.org/10.1213/ANE.0b013e3181ee8312

Napp A., Brixius K., Pott C., Ziskoven C., Boelck B., Mehlhorn U., Schwinger R. H., Bloch W. Effects of the beta3-adrenergic agonist BRL 37344 on endothelial nitric oxide synthase phosphorylation and force of contraction in human failing myocardium. J. Card. Fail., 2009, vol. 15, no. 1, pp. 57–67. PMID: 19181295. https://doi.org/10.1016/j.cardfail.2008.08.006" target="_blank">https://doi.org/10.1016/j.cardfail.2008.08.006

Khlybova S. V., Tsirkin V. I., Dvoryanskij S. A., Makarova I. A., Trukhin A. N. Variabel’nost’ serdechnogo ritma u zhenshhin pri fi ziologicheskom i oslozhnennom techenii beremennosti [Heart rate variability in normal and complicated pregnancies]. Fiziologiia cheloveka, 2008, vol. 34, no. 5, pp. 97–105. PMID: 18956567. (In Russian)

Bai X., Li J., Zhou L., Li X. Influence of the menstrual cycle on nonlinear properties of heart rate variability in young women. Am. J. Physiol. Heart Circ. Physiol., 2009, vol. 297, no. 2, pp. H765–H774. PMID: 19465541. https://doi.org/10.1152/ajpheart.01283.2008" target="_blank">https://doi.org/10.1152/ajpheart.01283.2008

Pöyhönen-Alho M., Viitasalo M., Nicholls M. G., Lindström B. M., Väänänen H., Kaaja R. Imbalance of the autonomic nervous system at night in women with gestational diabetes. Diabet. Med., 2010, vol. 27, no. 9, pp. 988–994. PMID: 20722671. https://doi.org/10.1111/j.1464-5491.2010.03062" target="_blank">https://doi.org/10.1111/j.1464-5491.2010.03062

Dmitrieva S. L., Khlybova S. V., Khodyrev G. N., Tsirkin V. I. Sostoianie vegetativnoi nervnoi sistemy u zhenshchin nakanune srochnykh rodov, v latentnoi faze rodov i v poslerodovom periode i kharakter rodovoi deiatel’nosti [Condition of the autonomic nervous system in women on the eve of term labor, in the latent phase of labor and the postpartum period and the pattern of labor contractile activity]. Rossiiskii vestnik akushera-ginekologa [Russian Gazette of obstetrician-gynecologist], 2012, no. 2, pp. 12–17. (In Russian)

Oakley C., Wuornes K. A. Zabolevaniia serdtsa u beremennykh [Heart disease in pregnant women]. Мoscow, Binom Publ., 2010. 368 p. (In Russian)

Gałczyński K., Marciniak B., Kudlicki J., Kimber-Trojnar Z., Leszczyńska-Gorzelak B., Oleszczukz J. Electrical cardioversion in the treatment of cardiac arrhythmias during pregnancy — case report and review of literature. Ginekol. Pol., 2013, vol. 84, no. 10, pp. 882–887. PMID: 24273912.

Joglar J. A., Page R. L. Management of arrhythmia syndromes during pregnancy. Curr. Opin. Cardiol., 2014, vol. 29, no. 1, pp. 36–44. PMID: 24300567. https://doi.org/10.1097/HCO.0000000000000020" target="_blank">https://doi.org/10.1097/HCO.0000000000000020

Downloads

Published

2016-12-26

How to Cite

Korotaeva, Y., Nozdrachev, A., & Tsirkin, V. (2016). The influence of adrenaline on contractility and excitability of myocardium of rat right ventricle depending on phases of the estrous cycle and pregnancy. Biological Communications, (4), 76–98. https://doi.org/10.21638/11701/spbu03.2016.406

Issue

Section

Full communications