Is the hormone a protease? Proteolytic properties of human recombinant anti-mullerian hormone

Authors

  • Alexandra Rak State Research Institute for Highly Pure Biopreparations, Pudozhskaya Str., 7, Saint Petersburg, 197110, Russian Federation; Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0001-5552-9874
  • Alexander Trofimov State Research Institute for Highly Pure Biopreparations, Pudozhskaya Str., 7, Saint Petersburg, 197110, Russian Federation
  • Vasily Stefanov Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-7407-8236
  • Alexander Ischenko State Research Institute for Highly Pure Biopreparations, Pudozhskaya Str., 7, Saint Petersburg, 197110, Russian Federation

DOI:

https://doi.org/10.21638/spbu03.2019.304

Abstract

Anti-mullerian hormone (AMH) is a glycoprotein of the TGFβ cytokine superfamily that regulates the development of the mammalian reproductive system, as well as the functioning of mature gonads. Recombinant AMH (rAMH) is also able to induce apoptosis of malignant cells bearing AMH type II receptors (MISRII) on the surface. Development of rAMH-based anticancer drugs is hampered by the lack of accurate information about the tissues where the AMH active form is generated and about the enzyme that activates the hormone by specific proteolysis. According to one hypothesis, the proteolytic processing of the hormone is autocatalytic. The goal of this work was to investigate the proteolytic activity of rAMH and its biologically active form — C-terminal AMH fragment (C-AMH). We showed that two forms of the hormone possess both autoproteolytic activity and the ability to influence the structure of other proteins. A full-length molecule of the hormone, as well as C-AMH, also forms complexes with aprotinin, an inhibitor of trypsin-like serine proteases. We determined that aprotinin competes for binding to C-AMH with antibodies blocking C-AMH interaction with MISRII. The obtained data suggest that AMH has protease properties and that the site of specific AMH autoproteolysis is involved in the interaction of the hormone with a specific receptor.

Keywords:

anti-mullerian hormone, AMH, aprotinin, autoproteolysis, MIS, protease, recombinant protein

Downloads

Download data is not yet available.
 

References

Cate, R. L., Donahoe, P. K., and MacLaughlin, D. T. 1990. Mullerian-inhibiting substance; pp. 179–210 in Sporn, M. B. and Roberts, A. B. (eds.) Peptide Growth Factors and Their Receptors II. Springer, New York. https://doi.org/10.1007/978-3-642-49295-2

Deshayes, E., Ladjohounlou, R., Le Fur, P., Pichard, A., Lozza, C., Boudousq, V., Sevestre, S., Jarlier, M., Kashani, R., Koch, J., Sosabowski, J., Foster, J., Chouin, N., Bruchertseifer, F., Morgenstern, A., Kotzki, P.-O., Navarro-Teulon, I., and Pouget, J.-P. 2018. Radiolabeled Antibodies Against Müllerian-Inhibiting Substance Receptor, Type II: New Tools for a Theranostic Approach in Ovarian Cancer. Journal of Nuclear Medicine 59(8):1234–1242. https://doi.org/10.2967/jnumed.118.208611

Di Clemente, N., Jamin, S. P., Lugovskoy, A., Carmillo, P., Ehrenfels, C., Picard, J. Y., Whitty, A., Josso, N., Pepinsky, R.B., and Cate, R. L. 2010. Processing of anti-mullerian hormone regulates receptor activation by a mechanism distinct from TGF-β. Molecular Endocrinology 24(11):2193–2206. https://doi.org/10.1210/me.2010-0273

Donahoe, P. K., Clarke, T., Teixeira, J., Maheswaran, S., and MacLaughlin, D. T. 2003. Enhanced purification and production of Müllerian inhibiting substance for therapeutic applications. Molecular and Cellular Endocrinology 211(1):37–42. https://doi.org/10.1016/j.mce.2003.09.009

Dunn, B. M. 2001. Overview of pepsin-like aspartic peptidases. Current protocols in protein science 25(1):21.3.1–23.3.6. https://doi.org/10.1002/0471140864.ps2103s25

Estupina, P., Fontayne, A., Barret, J. M., Kersual, N., Dubreuil, O., Le Blay, M., Pichard, A., Jarlier, M., Pugnière, M., Chauvin, M., Chardès, T., Pouget, J.-P., Deshayes, E., Rossignol, A., Abache, T., de Romeuf, C., Terrier, A., Verhaeghe, L., Gaucher, C., Prost, J.-F., Pèlegrin, A., and Navarro-Teulon, I. 2017. The anti-tumor efficacy of 3C23K, a glyco-engineered humanized anti-MISRII antibody, in an ovarian cancer model is mainly mediated by engagement of immune effector cells. Oncotarget 8(23):37061–37079. https://doi.org/10.18632/oncotarget.15715

Gukasova, N. V. and Severin, S. E. 2005. MIS protein: structure, expression regulation, and molecular mechanism of action. Voprosy Biologicheskoj, Medicinskoj i Farmacevticheskoj Himii 4:3–9. (In Russian)

Hirschhorn, T., di Clemente, N., Amsalem, A. R., Pepinsky, R. B., Picard, J. Y., Smorodinsky, N. I., Cate, R.L., and Ehrlich, M. 2015. Constitutive negative regulation in the processing of the anti-Müllerian hormone receptor II. Journal of Cell Science 128(7):1352–1364. https://doi.org/10.1242/jcs.160143

Ischenko, A. M., Simbirtsev, A. S., Margulis, B.A., and Guzhova, I. V. 2015. Strain of Escherichia coli — producer of heat shock protein 70 method of human heat shock protein 70 preparation obtaining. Patent RU № 2564120

Jung, Y. S., Kim, H. J., Seo, S. K., Choi, Y. S., Nam, E. J., Kim, S. W., Han, H. D., Kim, J. W., and Kim, Y. T. 2016. Anti-proliferative and apoptotic activities of Müllerian inhibiting substance combined with calcitriol in ovarian cancer cell lines. Yonsei Medical Journal 57(1):33–40. https://doi.org/10.3349/ymj.2016.57.1.33

Kartuzova, V. E., Trofimov, A. V., Ischenko, A. M., Rodin, S. V., Zhakhov, A. V., Klimov, N. A., Petrov, A. V., and Karasev, M. M. 2016. Monoclonal antibody CC3-4 to conformational epitope of human C3, strain of mouse hybrid DNA RKKK(P)764D – producer of monoclonal antibody CC3-4. Patent RU № 2584582

Kikuchi, K. and Hamaguchi, S. 2013. Novel sex-determining genes in fish and sex chromosome evolution. Developmental Dynamics 242(4):339–353. https://doi.org/10.1002/dvdy.23927

Kim, J. H., MacLaughlin, D. T., and Donahoe, P. K. 2014. Müllerian inhibiting substance/anti-Müllerian hormone: A novel treatment for gynecologic tumors. Obstetrics & gynecology science 57(5):343–357. https://doi.org/10.5468/ogs.2014.57.5.343

Lee, M. M. and Donahoe, P. K. 1993. Mullerian inhibiting substance: a gonadal hormone with multiple functions. Endocrine Reviews 14:152–164. https://doi.org/10.1210/edrv-14-2-152

MacLaughlin, D. T. and Donahoe, P. K. 2010. Müllerian inhibiting substance/anti-Müllerian hormone: a potential therapeutic agent for human ovarian and other cancers. Future Oncology 6(3):391–405. https://doi.org/10.2217/fon.09.172

Nachtigal, M. W. and Ingraham, H. A. 1996. Bioactivation of Müllerian inhibiting substance during gonadal development by a kex2/subtilisin-like endoprotease. Proceedings of National Academy of Sciences (USA) 93(15):7711–7716. https://doi.org/10.1073/pnas.93.15.7711

Orvis, G. D., Jamin, S. P., Kwan, K. M., Mishina, Y., Kaartinen, V. M., Huang, S., Roberts, A. B., Umans, L., Huylebroeck, D., Zwijsen, A., Wang, D., Martin, J. F., and Behringer, R. R. 2008. Functional redundancy of TGF-beta family type I receptors and receptor-Smads in mediating anti-Müllerian hormone-induced Müllerian duct regression in the mouse. Biology of reproduction 78(6):994–1001. https://doi.org/10.1095/biolreprod.107.066605

Pankhurst, M. W., Leathart, B. L., Batchelor, N. J., and McLennan, I. S. 2016. The anti-Müllerian hormone precursor (proAMH) is not converted to the receptor-competent form (AMHN, C) in the circulating blood of mice. Endocrinology 157(4):1622–1629. https://doi.org/10.1210/en.2015-1834

Pepinsky, R. B., Sinclair, L. K., Chow, E. P., Mattaliano, R. J., Manganaro, T. F., Donahoe, P. K., and Cate, R. L. 1988. Proteolytic processing of mullerian inhibiting substance produces a transforming growth factor-beta-like fragment. Journal of Biological Chemistry 263(35):18961–18964.

Perler, F. B., Xu, M. Q., and Paulus, H. 1997. Protein splicing and autoproteolysis mechanisms. Current opinion in chemical biology 1(3):292–299. https://doi.org/10.1016/S1367-5931(97)80065-8

Ragin, R. C., Donahoe, P. K., Kenneally, M. K., Ahmad, M. F., and MacLaughlin, D. T. 1992. Human Müllerian inhibiting substance: enhanced purification imparts biochemical stability and restores antiproliferative effects. Protein Expression and Purification 3(3):236–245. https://doi.org/10.1016/1046-5928(92)90020-W

Rak, A. Ya., Trofimov, A. V., Kolobov, A. A., and Ischenko, A. M. 2018. Monoclonal antibodies against the C-terminal fragment of human recombinant anti-mullerian hormone: a tool for purification, detection and study. Tsytokiny I Vospaleniye 17(1–4):72–79. (In Russian)

Rak, A. Ya., Trofimov, A. V., Protasov, E. A., Rodin, S. V., Zhakhov, A. V., Zabrodskaya, Ya. A., and Ischenko, A. M. 2019. Spontaneous proteolytic processing of human recombinant anti-mullerian hormone: structural and functional differences of the molecular forms. Applied Biochemistry and Microbiology 55(1):13–20. https://doi.org/10.1134/S0003683819010149

Rak, A. Ya., Trofimov, A. V., Protasov, E. A., Simbirtsev, A. S., and Ischenko, A. M. 2017. Comparison studies of the properties of activated recombinant human anti-mullerian hormone. Rossijskij Immunologicheskij Zhurnal 11(4):755–757. (In Russian)

Rosenblum, J. S. and Blobel, G. 1999. Autoproteolysis in nucleoporin biogenesis. Proceedings of the National Academy of Sciences (USA) 96(20):11370–11375. https://doi.org/10.1073/pnas.96.20.11370

Schmitt, S., Goetschel, J. D., Römmelt, E. M., and Adler, C. 1990. One-step purification of trypsin and alpha-chymotrypsin by affinity chromatography on Eupergit-aprotinin, a novel carrier for purification of serine proteases. Journal of Chromatography 510:239–242. https://doi.org/10.1016/S0021-9673(01)93758-6

Sèdes, L., Leclerc, A., Moindjie, H., Cate, R. L., Picard, J. Y., Di Clemente, N., and Jamin, S. 2013. Anti-Müllerian hormone recruits BMPR-IA in immature granulosa cells. PLoS One 8(11):1–13. https://doi.org/10.1371/journal.pone.0081551

Shikimi, T. and Kobayashi, T. 1980. Production of antibody to aprotinin and location of this compound in bovine tissue. Journal of Pharmacobiodynamics 3(8):400–406. https://doi.org/10.1248/bpb1978.3.400

Teixeira, J., Maheswaran, S., and Donahoe, P. K. 2001. Mullerian inhibiting substance: an instructive developmental hormone with diagnostic and possible therapeutic applications. Endocrine Reviews 22(5):657–674. https://doi.org/10.1210/edrv.22.5.0445

Walker, J. M. 1984. Gradient SDS polyacrylamide gel electrophoresis; pp. 57–61 in Walker, J. M. (ed.) Proteins. Methods in Molecular Biology, vol 1. Humana Press, New York. https://doi.org/10.1385/0-89603-062-8:57

Downloads

Published

2019-10-30

How to Cite

Rak, A., Trofimov, A., Stefanov, V., & Ischenko, A. (2019). Is the hormone a protease? Proteolytic properties of human recombinant anti-mullerian hormone. Biological Communications, 64(3), 201–210. https://doi.org/10.21638/spbu03.2019.304

Issue

Section

Full communications