Perception of static magnetic field by humans: a review

Authors

  • Nikita Chernetsov Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Toreza, 44, Saint Petersburg, 194223, Russian Federation; Zoological Institute, Russian Academy of Sciences, Universitetskaya nab., 1, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0001-7299-6829
  • Inna Nikishena N.P. Bekhtereva Institute of the Human Brain, Russian Academy of Sciences, ul. Akademika Pavlova, 12a, Saint Petersburg, 197376, Russian Federation; St. Petersburg State Pediatric Medical University, Litovskaya ul., 2, Saint Petersburg, 194100, Russian Federation https://orcid.org/0000-0003-1669-3123
  • Natalia Zavarzina St. Petersburg State Pediatric Medical University, Litovskaya ul., 2, Saint Petersburg, 194100, Russian Federation https://orcid.org/0000-0001-9152-8641
  • Olga Kulbach St. Petersburg State Pediatric Medical University, Litovskaya ul., 2, Saint Petersburg, 194100, Russian Federation https://orcid.org/0000-0002-2502-2973

DOI:

https://doi.org/10.21638/spbu03.2021.208

Abstract

We review the scientific data available on the ability of humans to perceive static magnetic fields with intensities comparable to the intensity of the natural geomagnetic field. It is currently assumed that birds have at least two independent magnetoreceptory systems. Various authors have reported the existence of the sensory ability to perceive the Earth’s magnetic field and to use it for spatial orientation in different species of mammals. The question of whether this ability exists in humans has been raised repeatedly. During the past 40 years, serious scholarly titles have published the results of behavioral studies on humans’ ability to perform homing to their home range by magnetic cues, of the ability to point towards a certain magnetic compass direction, and claims of magnetic modulation of the ability to discriminate weak light flashes. Several research groups have tried to find out whether brain bioelectric activity responds to changes in the stationary magnetic field. Cortical activation following changes in the static magnetic field, which suggested transduction of the changes in the Earth’s magnetic field into neural responses, was found by analyzing event-related synchronization/desynchronization. However, no behavioral manifestation for the putative magnetoreception in humans is evident. All attempts to detect behavioral responses to magnetic field changes in humans have been less than convincing.

Keywords:

magnetic field, magnetoreception, sensory system, humans

Downloads

Download data is not yet available.
 

References

Able, K. P. and Gergits, W. F. 1985. Human navigation. Attempts to replicate Baker’s displacement experiment; pp. 569–572 in J. L. Kirschvink, D. S. Jones and B. J. MacFadden (eds.), Magnetite biomineralization and magnetoreception in organisms. A new biomagnetism. Plenum Press, N.Y., London. https://doi.org/10.1007/978-1-4613-0313-8_28

Baker, R. R. 1980. Goal orientation by blindfolded humans after long-distance displacement: possible involvement of a magnetic sense. Science 210(4469):555–557. https://doi.org/10.1126/science.7423208

Baker, R. R. 1981. Human navigation and the sixth sense. Hodder and Stoughton, L.

Baker, R. R. 1985. Magnetoreception by man and other primates; pp. 537–561 in J. L. Kirschvink, D. S. Jones and B. J. MacFadden (eds.), Magnetite biomineralization and magnetoreception in organisms. A new biomagnetism. Plenum Press, N.Y., London. https://doi.org/10.1007/978-1-4613-0313-8_26

Baker, R. R. 1987. Human navigation and magnetoreception: the Manchester experiments do replicate. Animal Behaviour 35(3):691–704. https://doi.org/10.1016/S0003-3472(87)80105-7

Begall, S., Červený, J., Neef, J., Vojtěch, O., and Burda, H. 2008. Magnetic alignment in grazing and resting cattle and deer. Proceedings of the National Academy of Sciences USA 105(36):13451–13455. https://doi.org/10.1073/pnas.0803650105

Belopasova, A. V., Kadykov, A.S., Chervyakov, A. V., and Belopasov, V. V. 2015. Diagnostic and therapeutic potential of transcranial magnetic stimulation in aphasic patients. Nevrologicheskiy zhurnal 20(4):23–28. (In Russian)

Benediktová, K., Adámková, J., Svoboda, J., Painter, M. S., Bartoš, L., Nováková, P., Vynikalová, L., Hart, V., Phillips, J., and Burda, H. 2020. Magnetic alignment enhances homing efficiency of hunting dogs. eLife 9:e55080. https://doi.org/10.7554/eLife.55080

Bortoletto, M., Veniero, D., Thut, G., and Miniussi, C. 2015. The contribution of TMS-EEG coregistration in the exploration of the human cortical connectome. Neuroscience & Biobehavioral Reviews 49:114–124. https://doi.org/10.1016/j.neubiorev.2014.12.014

Chae, K.-S., Oh, I.-T., Lee, S.-H., and Kim, S.-C. 2019. Blue light-dependent human magnetoreception in geomagnetic food orientation. PLoS ONE 14(2):e0211826. https://doi.org/10.1371/journal.pone.0211826

Charnukha, T. N., Likhachev, S. A., Hleb, V. U., and Zabrodzets, G. V. 2016. The evaluation of safety and adverse effects of transcranial magnetic stimulation in patients with muscular dystonia. Doklady BGUIR 7(101):371–373. (In Russian)

Chernetsov, N. S. 2016. Orientation and navigation of migrating birds. Biology Bulletin 43(8):788–803. https://doi.org/10.1134/S1062359016080069

Chervyakov, A. V., Poydasheva, A. G., Nazarova, M. A., Gnezditsky, V. V., Suponeva, N. A., Chernikova, L. A., and Piradov, M. A. 2015. Navigated repetitive transcranial magnetic stimulation in post-stroke rehabilitation: a randomized, double-blind, sham-controlled study. Annaly klinicheskoy i eskprimentalnoy nevrologii 9(4):30–36. (In Russian)

Dayton, T. 1985. Statistical and methodological critique of Baker’s chapter; pp. 563–568 in J. L. Kirschvink, D. S. Jones and B. J. MacFadden (eds.), Magnetite biomineralization and magnetoreception in organisms. A new biomagnetism. Plenum Press, N.Y., London. https://doi.org/10.1007/978-1-4613-0313-8_27

Deutschlander, M. E., Freake, M. J., Borland, S. C., Phillips, J. B., Madden, R. C., Anderson, L. E., and Wilson, B. W. 2003. Learned magnetic compass orientation by the Siberian hamster, Phodopus sungorus. Animal Behaviour 65(4):779–786. https://doi.org/10.1006/anbe.2003.2111

Dolnik, V. R. 1973. Astronomic orientation of birds; pp. 14–61 in Orientation of birds and territorial links of avian populations. Zinatne, Riga. (In Russian)

Emlen, S. T., Wiltschko, W., Demong, N. J., Wiltschko, R., and Bergman, S. 1976. Magnetic direction finding: evidence for its use in migratory indigo buntings. Science 193(4252):505–508. https://doi.org/10.1126/science.193.4252.505

Evstigneev, V. V. and Kisten’, O.V. 2013. Transcranial magnetic stimulation in complex therapy of epilepsy. Annaly klinicheskoy i eskprimentalnoy nevrologii 7(2):20–26. (In Russian)

Fildes, B. N., O’Loughlin, B. J., Bradshaw, J. L., and Ewens, W. J. 1984. Human orientation with restricted sensory information: no evidence for magnetic sensitivity. Perception 13:229–236. https://doi.org/10.1068/p130229

Finney, B. A. 1995. Role for magnetoreception in human navigation? Current Anthropology 36(3):500–506. https://doi.org/10.1086/204386

Hartmann, T., Schlee, W., and Weisz, N. 2012. It’s only in your head: expectancy of aversive auditory stimulation modulates stimulus-induced auditory cortical alpha desynchronization. Neuroimage 60:170–178. https://doi.org/10.1016/j.neuroimage.2011.12.034

Gippenreyter, Yu. B., Lyubimov, V. V., and Mikhalevskaya, M. B. (eds.) 2002. Psychology of sensations and perception. 2nd ed. CheRo, MPSI Publ., Moscow. (In Russian)

Gould, J. L. 1985. Absence of human homing ability as measured by displacement experiments; pp. 595–599 in J. L. Kirschvink, D. S. Jones and B. J. MacFadden (eds.), Magnetite biomineralization and magnetoreception in organisms. A new biomagnetism. Plenum Press, N.Y., London. https://doi.org/10.1007/978-1-4613-0313-8_30

Gould, J. L. and Able, K. P. 1981. Human homing: an elusive phenomenon. Science 212(4498):1061–1063. https://doi.org/10.1126/science.7233200

Heyers, D., Zapka, M., Hoffmeister, M., Wild, J. M., and Mouritsen, H. 2010. Magnetic field changes activate the trigeminal brainstem complex in a migratory bird. Proceedings of the National Academy of Sciences USA 107(20):9394–9399. https://doi.org/10.1073/pnas.0907068107

Hoffman, R. E., Boutros, N. N., Hu, S., Berman, R. M., Krystal, J. H., and Charney, D. S. 2000. Transcranial magnetic stimulation and auditory hallucinations in schizophrenia. The Lancet 355(9209):1073–1075. https://doi.org/10.1016/S0140-6736(00)02043-2

Holland, R., Thorup, K., Vonhof, M. J., Cochran, W. W., and Wikelski, M. 2006. Bat orientation using Earth's magnetic field. Nature 444(7120):702. https://doi.org/10.1038/444702a

Hore, P. J. and Mouritsen, H. 2016. The radical-pair mechanism of magnetoreception. Annual Review of Biophysics 45:299–344. https://doi.org/10.1146/annurev-biophys-032116-094545

Huerat, P. and Volpe, T. 2009. Transcranial magnetic stimulation, synaptic plasticity and network oscillations. Journal of NeuroEngineering and Rehabilitation 6:7. https://doi.org/10.1186/1743-0003-6-7

Klimesch, W. 1999. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Research Review 29(2–3):169–195. https://doi.org/10.1016/s0165-0173(98)00056-3

Kobylkov, D., Schwarze, S., Michalik, B., Winklhofer, M., Mouritsen, H., and Heyers, D. 2020. A newly identified trigeminal brain pathway in a night-migratory bird could be dedicated to transmitting magnetic map information. Proceedings of the Royal Society B 287:20192788. https://doi.org/10.1098/rspb.2019.2788

Komolkin, A. V., Kupriyanov, P., Chudin, A., Bojarinova, J., Kavokin, K., and Chernetsov, N. 2017. Theoretically possible spatial accuracy of geomagnetic maps used by migrating animals. Journal of Royal Society Interface 14(128):20161002. https://doi.org/10.1098/rsif.2016.1002

Kropotov, J. D., Grin-Yatsenko, V. A., Ponomarev, V. A., Chutko, L. S., Yakovenko, E. A., and Nikishena, I. S. 2007. Changes in EEG spectrograms, event-related potentials and event-related desynchronization induced by relative beta training in ADHD children. Journal of Neurotherapy 11(2):3–11. https://doi.org/10.1300/J184v11n02_02

Kulbach, O. S. and Zavarzina, N. Yu. 2019. Sensory systems: anatomy and physiology. SPbGPMU, St. Petersburg. (In Russian)

Malewski, S., Begall, S., and Burda, H. 2018. Learned and spontaneous magnetosensitive behaviour in the Roborovski hamster (Phodopus roborovskii). Ethology 28(6):423–431. https://doi.org/10.1111/eth.12744

Middendorff, A. T. von. 1855. Die Isepiptesen Russlands. Grundlagen zur Erforschung der Zugzeiten und Zugrichtungen der Vögel Russlands. Memoires de Academie de Sciences de St. Petersbourg. Serie VI. 8:1–143.

Misra, U. K., Kalita, J., Tripathi, G., and Bhoi, S. K. 2017. Role of β-endorphin in pain relief following high rate repetitive transcranial magnetic stimulation in migraine. Brain Stimulation 10(3):618–623. https://doi.org/10.1016/j.brs.2017.02.006

Mouritsen, H. 2018. Long-distance navigation and magnetoreception in migratory animals. Nature 558(7708):50–59. https://doi.org/10.1038/s41586-018-0176-1

Norrsell, U., Finger, S., and Lajonchere, C. 1999. Cutaneous sensory spots and the “law of specific nerve energies”: history and development of ideas. Brain Research Bulletin 48 (5):457–465. https://doi.org/10.1016/S0361-9230(98)00067-7

Pakhomov, A., Anashina, A., Heyers, D., Kobylkov, D., Mouritsen, H., and Chernetsov, N. 2018. Magnetic map navigation in a migratory songbird requires trigeminal input. Scientific Reports 8:11975. https://doi.org/10.1038/s41598-018-30477-8

Phillips, J. B., Youmans, P. W., Muheim, R., Sloan, K. A., Landler, L., Painter, M. S., and Anderson, C. R. 2013. Rapid learning of magnetic compass direction by C57BL/6 mice in a 4-armed ‘plus’ water maze. PLoS ONE 8(8):e73112. https://doi.org/10.1371/journal.pone.0073112

Peng, W., Hu, L., Zhang, Z., and Hu, Y. 2012. Causality in the association between P300 and alpha event-related desynchronization. PLoS ONE 7(4):e34163. https://doi.org/10.1371/journal.pone.0034163

Perera, T., George, M. S., Grammer, G., Janicack, P. G., Pascual-Leone, A., and Wirecki, T. S. 2016. The clinical TMS society consensus review and treatment recommendation for TMS therapy for major depressive disorder. Brain Stimulation 9(3):336–346. https://doi.org/10.1016/j.brs.2016.03.010

Pfurtscheller, G. 2006. The cortical activation model (CAM). Progress in Brain Research 159:19–27. https://doi.org/10.1016/S0079-6123(06)59002-8

Pfurtscheller, G., Neuper, C., and Mohl, W. 1994. Event-related desynchronization (ERD) during visual processing. International Journal of Psychophysiology 16:147–153. https://doi.org/10.1016/0167-8760(89)90041-X

Ponomarev, V. A., Pronina, M. V., and Kropotov, Yu. D. 2017. Dynamics of the EEG spectral density in the θ, α, and β bands in the visual Go/NoGo task. Human Physiology 43(4):366–376. https://doi.org/10.1134/S0362119717040132

Ritz, T., Adem, S., and Schulten, K. 2000. A model for photoreceptor-based magnetoreception in birds. Biophysical Journal 78(2):707–718. https://doi.org/10.1016/S0006-3495(00)76629-X

Rüppel, W. 1944. Versuche über Heimfinden ziehender Nebelkrähen nach Verfrachtung. Journal für Ornithologie 92:106–132. https://doi.org/10.1007/BF02086330

Sastre, A., Graham, C., Cook, M. R., Gerkovich, M. M., and Gailey, P. 2002. Human EEG responses to controlled alterations of the Earth’s magnetic field. Clinical Neurophysiology 113:1382–1390. https://doi.org/10.1016/s1388-2457(02)00186-4

Schlaepfer, T. E. and Kosel, M. 2004. Transcranial magnetic stimulation in depression; pp. 1–22 in S. H. Lisanby (ed.), Review of Psychiatry Series, Vol. 23 no. 1. Brain stimulation in psychiatric treatment. American Psychiatric Publishing, Inc.

Schmidt, R. F. (ed.) 1981. Fundamentals of sensory physiology. 2nd ed. Springer, N.Y., Heidelberg, Berlin.

Schulten, K., Swenberg, C. E., and Weller, A. 1978. A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion. Zeitschrift für Physikalische Chemie (NF) 111(1):1–5. https://doi.org/10.1524/zpch.1978.111.1.001

Skiles, D. D. 1985. The geomagnetic field. Its nature, history, and biological relevance; pp. 43–102 in J. L. Kirschvink, D. S. Jones and B. J. MacFadden (eds.), Magnetite biomineralization and magnetoreception in organisms. A new biomagnetism. Plenum Press, N.Y., London. https://doi.org/10.1007/978-1-4613-0313-8_3

Thorup, K., Bisson, I., Bowlin, M., Holland, R., Wingfield, J., Ramenofsky, M., and Wikelski, M. 2007. Evidence for a navigational map stretching across the continental U.S. in a migratory songbird. Proceedings of the National Academy of Sciences USA 104:18115–18119. https://doi.org/10.1073/pnas.0704734104

Thoss, F. and Bartsch, B. 2003. The human visual threshold depends on direction and strength of a weak magnetic field. Journal of Comparative Physiology A 189(10):777–779. https://doi.org/10.1007/s00359-003-0450-y

Thoss, F., Bartsch, B., Fritzsche, B., Tellschaft, D., and Thoss, M. 2000. The magnetic field sensitivity of the human visual system shows resonance and compass characteristic. Journal of Comparative Physiology A 186(10):1007–1010. https://doi.org/10.1007/s003590000166

Thoss, F., Bartsch, B., Tellschaft, D., and Thoss, M. 2002. The light sensitivity of the human visual system depends on the direction of view. Journal of Comparative Physiology A 188(3):235–237. https://doi.org/10.1007/s00359-002-0300-3

Wang, C. X., Hilburn, I. A., Wu, D.-A., Mizuhara, Y., Cousté, C. P., Abrahams, J. N. H., Bernstein, S. E., Matani, A., Shimojo, S., and Kirschvink, J. L. 2019. Transduction of the geomagnetic field as evidenced from alpha-band activity in the human brain. eNeuro 6(2):e0483-18.2019. https://doi.org/10.1523/ENEURO.0483-18.2019

Westby, G. W. and Partridge, K. J. 1986. Human homing: still no evidence despite geomagnetic controls. Journal of Experimental Biology 120:325–331.

Wiltschko, R. and Wiltschko, W. 2019. Magnetoreception in birds. Journal of Royal Society Interface 16:20190295. https://doi.org/10.1098/rsif.2019.0295

Wiltschko, W. 1968. Über den Einfluß statischer Magnetfelder auf die Zugorientierung der Rotkehlchen (Erithacus rubecula). Zeitschrift der Tierpsychologie 25(5):537–558. https://doi.org/10.1111/j.1439-0310.1968.tb00028.x

Wiltschko, W. and Wiltschko, R. 1972. Magnetic compass of European robins. Science 176(4030):62–64. https://doi.org/10.1126/science.176.4030.62

Yakovenko, E. A., Nikishena, I. S., Ponomarev, V. A., and Kropotov, Ju. D. 2010. Correlation between EEG event-related synchronization in theta band and degree of attention disorder in children with ADHD in test GO/NOGO. Ekologiya cheloveka 11:9–18. (In Russian)

Downloads

Published

2021-06-30

How to Cite

Chernetsov, N., Nikishena, I., Zavarzina, N., & Kulbach, O. (2021). Perception of static magnetic field by humans: a review. Biological Communications, 66(2), 171–178. https://doi.org/10.21638/spbu03.2021.208

Issue

Section

Review communications

Categories

Most read articles by the same author(s)