A hierarchy of compass systems in migratory birds

  • Alexander Pakhomov Biological Station Rybachy, Zoological Institute of the Russian Academy of Sciences, ul. Pobedy, 32, Rybachy, 238535, Kaliningrad Region, Russian Federation https://orcid.org/0000-0001-8092-4817
  • Nikita Chernetsov Biological Station Rybachy, Zoological Institute of the Russian Academy of Sciences, ul. Pobedy, 32, Rybachy, 238535, Kaliningrad Region, Russian Federation; Department of Vertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0001-7299-6829


Migratory birds use several different sources of orientation information. They have at least three compass systems based on different cues: the sun and polarized light, the stars and their constellations, and the geomagnetic field. The concurrent information obtained from these three compasses is redundant, therefore the compasses need to have a hierarchy and must be calibrated relative to each other. One of the compasses should dominate the others, or some orientation cue should be used to calibrate the remaining compass systems. Results of experiments on a variety of songbird species demonstrate that while astronomical cues calibrate the magnetic compass during the pre-migratory period, strategies used during the migratory period are more diverse. In the present review, we analyze the results of all crucial cue-conflict studies, mostly performed in nocturnal songbird migrants; we also try to understand why some migratory species calibrate their magnetic compass on sunset cues while others use the geomagnetic field or stars as a primary cue source, and we examine why the previous hypothesis could not explain the findings of all cue-conflict experiments.


hierarchy, compass systems, compass calibration, magnetic compass, stellar compass, sun compass, orientation, migratory birds, migration


Download data is not yet available.


Able, K. P. 1982. Skylight polarization patterns at dusk influence migratory orientation in birds. Nature 299:550–551. https://doi.org/10.1038/299550a0

Able, K. P. 1993. Orientation cues used by migratory birds: A review of cue-conflict experiments. Trends in Ecology and Evolution 8:367–371. https://doi.org/10.1016/0169-5347(93)90221-A

Able, K. P. and Cherry, J. D. 1986. Mechanisms of dusk orientation in white-throated sparrows (Zonotrichia albicollis): clock-shift experiments. Journal of Comparative Physiology A 159:107–113. https://doi.org/10.1007/BF00612501

Able, K. P. and Able, M. A. 1990a. Calibration of the magnetic compass of a migratory bird by celestial rotation. Nature 347:378–379. https://doi.org/10.1038/347378a0

Able, K. P. and Able, M. A. 1990b. Ontogeny of migratory orientation in the savannah sparrow, Passerculus sandwichensis: Mechanisms at sunset. Animal Behaviour 39:1189–1198. https://doi.org/10.1016/S0003-3472(05)80791-2

Able, K. P. and Able, M. A. 1993. Daytime calibration of magnetic orientation in a migratory bird requires a view of skylight polarization. Nature 364:523–525. https://doi.org/10.1038/364523a0

Able, K. P. and Able, M. A. 1995a. Manipulations of polarized skylight calibrate magnetic orientation in a migratory bird. Journal of Comparative Physiology A 177:351–356. https://doi.org/10.1007/BF00192423

Able, K. P. and Able, M. A. 1995b. Interactions in the flexible orientation system of a migratory bird. Nature 375:230–232. https://doi.org/10.1038/375230a0

Åkesson S., Alerstam T., and Hedenström A. 2006. Flight initiation of nocturnal passerine migrants in relation to celestial orientation conditions at twilight. Journal of Avian Biology 27:95–102. https://doi.org/10.2307/3677138

Åkesson, S., Morin, J., Muheim, R., and Ottosson, U. 2001. Avian orientation at steep angles of inclination: experiments with migratory white-crowned sparrows at the magnetic North Pole. Proceedings of the Royal Society B 268:1907–1913. https://doi.org/10.1098/rspb.2001.1736

Åkesson, S., Morin, J., Muheim, R., and Ottosson, U. 2002. Avian orientation: Effects of cue-conflict experiments with young migratory songbirds in the high Arctic. Animal Behaviour 64:469–475. https://doi.org/10.1006/anbe.2002.3077

Alert, B., Michalik, A., Thiele, N., Bottesch, M., and Mouritsen, H. 2015. Re-calibration of the magnetic compass in hand-raised European robins (Erithacus rubecula). Scientific Reports 5:14323. https://doi.org/10.1038/srep14323

Beck, W. and Wiltschko, W. 1982. The magnetic-field as a reference system for genetically encoded migratory direction in pied flycatchers (Ficedula hypoleuca Pallas). Zeitschrift für Tierpsychologie 60:41–46. https://doi.org/10.1111/j.1439-0310.1982.tb01075.x

Bingman, V. P. 1983. Magnetic field orientation of migratory Savannah sparrows with different first summer experience. Behaviour 87:43–52. https://doi.org/10.1163/156853983X00110

Bingman, V. P. and Wiltschko, W. 2010. Orientation of Dunnocks (Prunella modularis) at sunset. Ethology 77:1–9. https://doi.org/10.1111/j.1439-0310.1988.tb00187.x

Bletz, H., Weindler, P., Wiltschko, R., Wiltschko, W., and Berthold, P. 1996. The magnetic field as reference for the innate migratory direction in blackcaps, Sylvia atricapilla. Naturwissenschaften 83:430–432. https://doi.org/10.1007/s001140050313

Bolshakov, C. and Chernetsov, N. 2004. Initiation of nocturnal flight in two species of long-distance migrants (Ficedula hypoleuca and Acrocephalus schoenobaenus) in spring: a telemetry study. Avian Ecology and Behaviour 12:63–76.

Bolshakov, C., Chernetsov, N., Mukhin, A., Bulyuk, V., Kosarev, V., Ktitorov, P., Leoke, D., and Tsvey, A. 2007. Time of nocturnal departures in European robins, Erithacus rubecula, in relation to celestial cues, season, stopover duration and fat score. Animal Behaviour 74:855–865. https://doi.org/10.1016/j.anbehav.2006.10.024

Bulte, M., Heyers, D., Mouritsen, H., and Bairlein, F. 2017. Geomagnetic information modulates nocturnal migratory restlessness but not fueling in a long distance migratory songbird. Journal of Avian Biology 48:75–82. https://doi.org/10.1111/jav.01285

Chernetsov, N. 2015. Avian compass systems: Do all migratory species possess all three? Journal of Avian Biology 46:342–343. https://doi.org/10.1111/jav.00593

Chernetsov, N., Kishkinev, D., Kosarev, V., and Bolshakov, C. 2011. Not all songbirds calibrate their magnetic compass from twilight cues: A telemetry study. Journal of Experimental Biology 214:2540–2543. https://doi.org/10.1242/jeb.057729

Cochran, W. W., Mouritsen, H., and Wikelski, M. 2004. Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science 304:405–408. https://doi.org/10.1126/science.1095844

Cronin, T. W., Warrant, E. J., and Greiner, B. 2006. Celestial polarization patterns during twilight. Applied Optics 45:5582–5589. https://doi.org/10.1364/AO.45.005582

Emlen, S. T. 1967a. Migratory orientation in the Indigo bunting, Passerina cyanea. Part I: Evidence for use of celestial cues. The Auk 84:309–342. https://doi.org/10.2307/4083084

Emlen, S. T. 1967b. Migratory orientation in the Indigo bunting, Passerina cyanea. Part II: Mechanism of celestial orientation. The Auk 84:463–489. https://doi.org/10.2307/4083330

Emlen, S. T. 1970. Celestial rotation: its importance in the development of migratory orientation. Science 170:1198–1201. https://doi.org/10.1126/science.170.3963.1198

Eshelman, L. M. and Shaw, J. A. 2019. Visualization of all-sky polarization images referenced in the instrument, scattering, and solar principal planes. Optical Engineering 58(8):082418. https://doi.org/10.1117/1.OE.58.8.082418

Fransson, T., Jakobsson, S., Johansson, P., Kullberg, C., Lind, J., and Vallin, A. 2001. Magnetic cues trigger extensive refuelling. Nature 414:35–36. https://doi.org/10.1038/35102115

Gaggini, V., Baldaccini, N. E., Spina, F., and Giunchi, D. 2010. Orientation of the pied flycatcher Ficedula hypoleuca: Cue-conflict experiments during spring migration. Behavioral Ecology and Sociobiology 64:1333–1342. https://doi.org/10.1007/s00265-010-0948-6

Giunchi, D., Vanni, L., Baldaccini, N. E., Spina, F., and Biondi, F. 2015. New cue-conflict experiments suggest a leading role of visual cues in the migratory orientation of Pied Flycatchers Ficedula hypoleuca. Journal of Ornithology 156:113–121. https://doi.org/10.1007/s10336-014-1107-z

Gwinner, E. and Wiltschko, W. 1978. Endogenously controlled changes in migratory direction of the garden warbler, Sylvia borin. Journal of Comparative Physiology 125:267–273. https://doi.org/10.1007/BF00656605

Hamaoui, M. 2017. Polarized skylight navigation. Applied Optics 56(3):37–46. https://doi.org/10.1364/AO.56.000B37

Helbig, A. J. and Wiltschko, W. 1989. The skylight polarization patterns at dusk affect the orientation behavior of blackcaps, Sylvia atricapilla. Naturwissenschaften 76:227–229. https://doi.org/10.1007/BF00627697

Kramer, G. 1950. Weitere Analyse der Faktoren, welche die Zugaktivität des gekäfigten Vogels orientieren. Naturwissenschaften 37:377–378. https://doi.org/10.1007/BF00626007

Kramer, G. 1953. Wird die Sonnenhöhe bei der Heimfindeorientierung verwertet? Journal für Ornithologie 94:201–219. https://doi.org/10.1007/BF01922508

Kramer, G. 1957. Experiments on bird orientation and their interpretation. Ibis 99:196–227. https://doi.org/10.1111/j.1474-919X.1957.tb01947.x

Lefeldt, N., Dreyer, D., Schneider, N.-L., Steenken, F., and Mouritsen, H. 2015. Migratory blackcaps tested in Emlen funnels can orient at 85 degrees but not at 88 degrees magnetic inclination. Journal of Experimental Biology 218:206–211. https://doi.org/10.1242/jeb.107235

Liu, X. and Chernetsov, N. 2012. Avian orientation: multi-cue integration and calibration of compass systems. Chinese Birds 3:1–8. https://doi.org/10.5122/cbirds.2012.0001

Moore, F. R. 1982. Sunset and the orientation of a nocturnal bird migrant: A mirror experiment. Behavioral Ecology and Sociobiology 10:153–155. https://doi.org/10.1007/BF00300176

Mouritsen, H. 1998. Redstarts, Phoenicurus phoenicurus, can orient in a true-zero magnetic field. Animal Behaviour 55:1311–1324. https://doi.org/10.1006/anbe.1997.0696

Muheim, R., Moore, F. R., and Phillips, J. B. 2006a. Calibration of magnetic and celestial compass cues in migratory birds — a review of cue-conflict experiments. Journal of Experimental Biology 209:2–17. https://doi.org/10.1242/jeb.01960

Muheim, R., Phillips, J. B., and Åkesson, S. 2006b. Polarized light cues underlie compass calibration in migratory songbirds. Science 313:837–839. https://doi.org/10.1126/science.1129709

Muheim, R., Åkesson, S., and Phillips, J. B. 2007. Magnetic compass of migratory Savannah sparrows is calibrated by skylight polarization at sunrise and sunset. Journal of Ornithology 148:485–494. https://doi.org/10.1007/s10336-007-0187-4

Muheim, R., Phillips, J. B., and Deutschlander, M. E. 2009. White-throated sparrows calibrate their magnetic compass by polarized light cues during both autumn and spring migration. Journal of Experimental Biology 212:3466–3472. https://doi.org/10.1242/jeb.032771

Muheim, R. 2011. Behavioural and physiological mechanisms of polarized light sensitivity in birds. Philosophical Transactions of the Royal Society B 366:763–771. https://doi.org/10.1098/rstb.2010.0196

Müller, F., Eikenaar, C., Crysler, Z. J., Taylor, P. D., and Schmaljohann, H. 2018. Nocturnal departure timing in songbirds facing distinct migratory challenges. Journal of Animal Ecology 87:1102–1115. https://doi.org/10.1111/1365-2656.12821

Pakhomov, A. and Chernetsov, N. 2014. Early evening activity of migratory Garden Warbler Sylvia borin: Compass calibration activity? Journal of Ornithology 155:621–630. https://doi.org/10.1007/s10336-014-1044-x

Pakhomov, A., Anashina, A., and Chernetsov, N. 2017. Further evidence of a time-independent stellar compass in a night-migrating songbird. Behavioral Ecology and Sociobiology 71:48. https://doi.org/10.1007/s00265-017-2279-3

Pakhomov, A., Anashina, A., and Chernetsov, N. 2019. No evidence for compass calibration in European songbird migrants during both migratory seasons. Abstracts of 12th European Ornithologists’ Union Congress (EOU 2019), 26–30 August 2019, Cluj Napoca, Romania, p. 112.

Prinz, K. and Wiltschko, W. 1992. Migratory orientation of pied flycatchers: interaction of stellar and magnetic information during ontogeny. Animal Behaviour 44:539–545. https://doi.org/10.1016/0003-3472(92)90063-F

Rabøl, J. 2010. Orientation by passerine birds under conflicting magnetic and stellar conditions: no calibration in relation to the magnetic field. Dansk Ornithologisk Forenings Tidsskrift 104:85–102.

Sandberg, R. 1991. Sunset orientation of robins, Erithacus rubecula, with different fields of sky vision. Behavioral Ecology and Sociobiology 28:77–83. https://doi.org/10.1007/BF00180983

Sandberg, R., Bäckman, J., Moore, F. R., and Lõhmus, M. 2000. Magnetic information calibrates celestial cues during migration. Animal Behaviour 60:453–462. https://doi.org/10.1006/anbe.2000.1582

Sandberg, R., Moore, F. R., Bäckman, J., and Lõhmus, M. 2002. Orientation of nocturnally migrating Swainson’s Thrush at dawn and dusk: importance of energetic condition and geomagnetic cues. The Auk 119:201–209. https://doi.org/10.1093/auk/119.1.201

Sauer, F. 1957. Die Sternenorientierung nächtlich ziehender Grasmücken. Zeitschrift für Tierpsychologie 14:20–70.

Schmaljohann, H., Rautenberg, T., Muheim, R., Naef-Daenzer, B., and Bairlein, F. 2013a. Response of a free-flying songbird to an experimental shift of the light polarization pattern around sunset. Journal of Experimental Biology 216:1381–1387. https://doi.org/10.1242/jeb.080580

Schmaljohann, H., Korner-Nievergelt, F., Naef-Daenzer, B., Nagel, R., Maggini, I., Bulte, M., and Bairlein, F. 2013b. Stopover optimization in a long-distance migrant: the role of fuel load and nocturnal take-off time in Alaskan northern wheatears (Oenanthe oenanthe). Frontiers in Zoology 10:26. https://doi.org/10.1186/1742-9994-10-26

Schmidt-Koenig, K. 1990. The sun compass. Experientia 46:336–342. https://doi.org/10.1007/BF01952166

Schwarze, S., Steeken, F., Thiele, N., Kobylkov, D., Nefeldt, N., Dreyer, D., Schneider, N.-L., and Mouritsen, H. 2016. Migratory blackcaps can use their magnetic compass at 5 degrees inclination, but are completely random at 0 degrees inclination. Scientific Reports 6:33805. https://doi.org/10.1038/srep33805

Sjöberg, S. and Muheim, R. 2016. A new view on an old debate: Type of cue-conflict manipulation and availability of stars can explain the discrepancies between cue-calibration experiments with migratory songbirds. Frontiers in Behavioral Neuroscience 10:1–12. https://doi.org/10.3389/fnbeh.2016.00029

Vanni, L., Baldaccini, N. E., and Giunchi, D. 2017. Cue-conflict experiments between magnetic and visual cues in dunlin Calidris alpina and curlew sandpiper Calidris ferruginea. Behavioral Ecology and Sociobiology 71:1–9. https://doi.org/10.1007/s00265-017-2290-8

Weindler, P., Wiltschko, R., and Wiltschko, W. 1996. Magnetic information affects the stellar orientation of young bird migrants. Nature 383:158. https://doi.org/10.1038/383158a0

Weindler, P., Baumetz, M., and Wiltschko, W. 1997. The direction of celestial rotation influences the development of stellar orientation in young garden warblers (Sylvia borin). Journal of Experimental Biology 200:2107–2113.

Wiltschko, W. 1974. Der magnetkompass der gartengrasmücke (Sylvia borin). Journal für Ornithologie 115:1–7. https://doi.org/10.1007/BF01647313

Wiltschko, W. 1978. Further analysis of the magnetic compass of migratory birds. In: Animal migration, navigation, and homing. pp. 302–310. https://doi.org/10.1007/978-3-662-11147-5_29

Wiltschko, W. and Wiltschko, R. 1972. Magnetic compass of European robins. Science 176:62–64. https://doi.org/10.1126/science.176.4030.62

Wiltschko, W. and Wiltschko, R. 1975a. The interaction of stars and magnetic field in the orientation system of night migrating birds. I. Autumn experiments with European warblers (Gen. Sylvia). Zeitschrift für Tierpsychologie 37:337–355. https://doi.org/10.1111/j.1439-0310.1975.tb00885.x

Wiltschko, W. and Wiltschko, R. 1975b. The interaction of stars and magnetic field in the orientation system of night migrating birds. II. Spring experiments with European robins (Erithacus rubecula). Zeitschrift für Tierpsychologie 39:265–282. https://doi.org/10.1111/j.1439-0310.1975.tb00912.x

Wiltschko, R. and Wiltschko, W. 1980. The process of learning sun compass orientation in young homing pigeons. Naturwissenschaften 67:512–514. https://doi.org/10.1007/BF01047636

Wiltschko, R. and Wiltschko, W. 1981. The development of sun compass orientation in young homing pigeons. Behavioral Ecology and Sociobiology 9:135–141. https://doi.org/10.1007/BF00293584

Wiltschko, R. and Wiltschko, W. 2019. Magnetoreception in birds. Journal of the Royal Society Interface 16:20190295. https://doi.org/10.1098/rsif.2019.0295

Wiltschko, W., Wiltschko, R., Munro, U., and Ford, H. 1998. Magnetic versus celestial cues: Cue-conflict experiments with migrating silvereyes at dusk. Journal of Comparative Physiology A 182:521–529. https://doi.org/10.1007/s003590050199

Wiltschko, R., Munro, U., Ford, H., and Wiltschko, W. 1999. After-effects of exposure to conflicting celestial and magnetic cues at sunset in migratory silvereyes Zosterops l. lateralis. Journal of Avian Biology 30:56–62. https://doi.org/10.2307/3677243

Wiltschko, W., Stapput, K., Thalau, P., and Wiltschko, R. 2006. Avian magnetic compass: Fast adjustment to intensities outside the normal functional window. Naturwissenschaften 93:300–304. https://doi.org/10.1007/s00114-006-0102-5

Wiltschko, R., Munro, U., Ford, H., and Wiltschko, W. 2008. Contradictory results on the role of polarized light in compass calibration in migratory songbirds. Journal of Ornithology 149:607–614. https://doi.org/10.1007/s10336-008-0324-8

Winklhofer, M., Dylda, E., Thalau, P., Wiltschko, W., and Wiltschko, R. 2013. Avian magnetic compass can be tuned to anomalously low magnetic intensities. Proceedings of the Royal Society B 280:20130853. https://doi.org/10.1098/rspb.2013.0853

Zapka, M., Heyers, D., Hein, C. M., Engels, S., Schneider, N. L., Hans, J., Weiler, S., Dreyer, D., Kishkinev, D., Wild, J. M., and Mouritsen, H. 2009. Visual but not trigeminal mediation of magnetic compass information in a migratory bird. Nature 461:1274–1277. https://doi.org/10.1038/nature08528

How to Cite
Pakhomov, A., & Chernetsov, N. (2020). A hierarchy of compass systems in migratory birds. Biological Communications, 65(3), 262–276. https://doi.org/10.21638/spbu03.2020.306
Review communications