Spontaneous activity in neuromuscular synapse of Drosophila melanogaster larvae with human APP gene expression

  • Ekaterina Saburova Saint Petersburg State University, 7–9, Universitetskaya nab., Saint Petersburg, 199034, Russian Federation
  • Alexander Vasiliev Saint Petersburg State University, 7–9, Universitetskaya nab., Saint Petersburg, 199034, Russian Federation
  • Violetta Kravtsova Saint Petersburg State University, 7–9, Universitetskaya nab., Saint Petersburg, 199034, Russian Federation
  • Olga Bolshakova B. P. Konstantinov St. Petersburg Nuclear Physics Institute, National Research Centre «Kurchatov Institute», Orlova Roscha, Gatchina, Leningrad district, 188300, Russian Federation
  • Svetlana Sarantseva B. P. Konstantinov St. Petersburg Nuclear Physics Institute, National Research Centre «Kurchatov Institute», Orlova Roscha, Gatchina, Leningrad district, 188300, Russian Federation
  • Igor Krivoi Saint Petersburg State University, 7–9, Universitetskaya nab., Saint Petersburg, 199034, Russian Federation

Abstract

According to amyloid cascade hypothesis the main role in pathogenesis of Alzheimer’s disease plays β-amyloid peptide, which is the product of proteolytic processing of amyloid precursor protein (APP). In regards to APP, physiological role of this protein itself remain incompletely understood. A convenient model for such experiments is Drosophila melanogaster, which does not contain APP and β-secretase genes. So in transgenic lines of Drosophila melanogaster it’s possible to study effects of APP and β-amyloid independently. In our experiments on neuromuscular synapse of Drosophila melanogaster larvae with human APP gene expression a decrease of spontaneous quantal transmitter release frequency without alteration of its random nature was demonstrated. Frequency of spontaneous transmitter release was not affected at decreased level of APP and production of β-amyloid in conditions of co-expression of human APP and β-secretase genes. These changes give evidences for alteration of synaptic vesicle exocytosis mechanism which is specific for APP.

Keywords:

neuromuscular synapse, Drosophila melanogaster, APP, quantal transmitter release

Downloads

Download data is not yet available.

References

Reinhard C., Hebert S. S., De Strooper B. The amyloid–β precursor protein: integrating structure with biological function. EMBO J., 2005, vol. 24, no. 2, pp. 3996–4006.

Zheng H., Koo E. H. The amyloid precursor protein: beyond amyloid. Mol. Neurodegener., 2006, vol. 1, no. 5, pp. 1–12.

O’Brien R. J., Wong P. C. Amyloid precursor protein processing and Alzheimer’s disease. Annu. Rev. Neurosci., 2011, vol. 34, pp. 185–204.

Hoe H-S., Lee H-K., Pak D. T. S. The upside APP at synapses. CNS Neurosci. Ther., 2012, vol. 18, no. 1, pp. 47–56.

Mukhamed’iarov M. A., Zefirov A. L. Vliianie β-amiloidnogo peptida na funktsii vozbudimykh tkanei: fiziologicheskie i patologicheskie aspekty [The influence of beta-amyloid peptide on the functions of excitable tissues: physiological and pathological aspects]. Uspekhi fiziol. Nauk [Advances Fiziol. sciences], 2013, vol. 44, no. 1, pp. 55–71. (In Russian)

Tyan S.-H., Shih A. Y.-J., Walsh J. J., Maruyama H., Sarsoza F., Ku L., Eggert S., Hof P. R., Koo E. H., Dickstein D. L. Amyloid precursor protein (APP) regulates synaptic structure and function. Mol. Cell. Neurosci., 2012, vol. 51, no. 1–2, pp. 43–52.

Seabrook G. R., Smith D. W., Bowery B. J., Easter A., Reynolds T., Fitzjohn S. M., Morton R. A., Zheng H., Dawso G. R., Sirinathsinghji D. J., Davies C. H., Collingridge G. L., Hill R. G. Mechanisms contributing to the deficits in hippocampal synaptic plasticity in mice lacking amyloid precursor protein. Neuropharmacology, 1999, vol. 38, no. 3, pp. 349–359.

Senechal Y., Larmet Y., Dev K. K. Unraveling in vivo functions of amyloid precursor protein: Insights from knockout and knockdown studies. Neurodegener. Dis., 2006, vol. 3, no. 3, pp. 134–147.

Ting J. T., Kelley B. G., Lambert J. T., Cook D. G., Sullivan J. M. Amyloid precursor protein overexpression depresses excitatory transmission through both presynaptic and postsynaptic mechanisms. Proc. Natl. Acad. Sci. USA, 2007, vol. 104, no. 1, pp. 353–358.

Mhatre S. D., Satyasi V., Killen M., Paddock B. E., Moir R. D., Saunders A. J., Marenda D. R. Synaptic abnormalities in a Drosophila model of Alzheimer’s disease. Dis. Model. Mech, 2014, vol. 7, pp. 373–385.

Chakraborty R., Vepuri V., Mhatre S. D., Paddock B. E., Miller S., Michelson S. J., Delvadia R., Desai A., Vinokur M., Melicharek D. J., Utreja S., Khandelwal P., Ansaloni S., Goldstein Lee E., Moir R. D., Lee J. C., Tabb L. P., Saunders A. J., Marenda D. R. Characterization of a Drosophila Alzheimer’s disease model: pharmacological rescue of cognitive defects. PLoS ONE, 2011, vol. 6. e20799.

Sarantseva S. V., Kislik G. A., Tkachenko N. A.,Vasil’ev A. N., Shvartsman A. L. Morfologicheskie i funktsional’nye narusheniia v neiromyshechnykh kontaktakh Drosophila melanogaster, vyzvannye ekspressiei gena APP cheloveka [Morphological and functional impairment in neuromuscular contacts Drosophila melanogaster, caused by the human APP gene expression]. Tsitologiia [Cytology], 2012, vol. 54, no. 5, pp. 421–429. (In Russian)

Sarantseva S., Timoshenko S., Bolshakova O., Karaseva E., Rodin D., Schwarzman A. L., Vitek M. P. Apolipoprotein E-mimetics inhibit neurodegeneration and restore cognitive functions in a transgenic Drosophila model of Alzheimer’s disease. PLos ONE, 2009, vol. 4, no. 12. e8191.

Collins C. A., DiAntonio A. Synaptic development: insights from Drosophila. Curr. Opin. Neurobiol., 2007, vol. 17, no. 1, pp. 35–42.

Van Dam D., De Deyn P. P. Animal models in the drug discovery pipeline for Alzheimer’s disease. Br. J. Pharmacol., 2011, vol. 164, no. 4, pp. 1285–1300.

Stewart B. A., Atwood H. L., Renger J. J., Wang J., Wu C.-F. Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions. J. Comp. Physiol. A, 1994, vol. 175, pp. 179–191.

Ramachandran P., Budnik V. Dissection of Drosophila larval body-wall muscles. Cold Spring Harb. Protoc., 2010. https://doi.org/10.1101/pdb.prot5469

Zhang B., Stewart B. Electrophysiological recording from Drosophila larval body-wall muscles. Cold Spring Harb. Protoc., 2010. https://doi.org/10.1101/pdb.prot5487

Karunanithi S., Marin L., Wong K., Atwood H. L. Quantal size and variation determined by vesicle size in normal and mutant Drosophila glutamatergic synapses. J. Neurosci., 2002, vol. 22 (23), pp. 10267–10276.

Ball R., Xing B., Bonner P., Shearer J., Cooper R. L. Long-term in vitro maintenance of neuromuscular junction activity of Drosophila larval. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2003, vol. 134, no. 2, pp. 247–255.

Krans J. L., Parfitt K. D., Gawera K. D., Rivlin P. K., Hoy R. R. The resting membrane potential of Drosophila melanogaster larval muscle depends strongly on external calcium concentration. J. Insect Physiol., 2010, vol. 56, no. 3, pp. 304–313.

Van der Kloot W. The regulation of quantal size. Prog. Neurobiol., 1991, vol. 36, no. 2, pp. 93–130.

Zefirov A. L., Petrov A. M. Sinapticheskaia vezikula i mekhanizm osvobozhdeniia mediatora (ekzo — endotsitoznyi tsikl) [Synaptic vesicles and mechanism of neurotransmitter release (exo — endocytosis vesicular cycle)]. Kazan: Art-kafe Publ., 2010, 323 p. (In Russian)

Sarantseva S. V., Rodin D. I., Schwarzman A. L. Human APP gene expression in nerve cells of Drosophila melanogaster causes alteration of synaptoptagmin 1 mRNA level. Doklady Biochemistry and Biophysics, 2012, vol. 442, pp. 19–21.
Published
2015-06-29
How to Cite
Saburova, E., Vasiliev, A., Kravtsova, V., Bolshakova, O., Sarantseva, S., & Krivoi, I. (2015). Spontaneous activity in neuromuscular synapse of <em>Drosophila melanogaster</em> larvae with human <em>APP</em&gt; gene expression. Biological Communications, (2), 90–97. Retrieved from https://biocomm.spbu.ru/article/view/863
Section
Full communications

Most read articles by the same author(s)