The diversity of fatty acid composition in traditional and rare oil crops cultivated in Russia

  • Vera Gavrilova Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Bol'shaya Morskaya ul., 42–44, Saint Petersburg, 190000, Russian Federation https://orcid.org/0000-0002-8110-9168
  • Tatyana Shelenga Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Bol'shaya Morskaya ul., 42–44, Saint Petersburg, 190000, Russian Federation https://orcid.org/0000-0003-3992-5353
  • Elizaveta Porokhovinova Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Bol'shaya Morskaya ul., 42–44, Saint Petersburg, 190000, Russian Federation https://orcid.org/0000-0002-8328-9684
  • Aleksandra Dubovskaya Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Bol'shaya Morskaya ul., 42–44, Saint Petersburg, 190000, Russian Federation https://orcid.org/0000-0003-2487-5912
  • Nina Kon’kova Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Bol'shaya Morskaya ul., 42–44, Saint Petersburg, 190000, Russian Federation https://orcid.org/0000-0002-4920-3904
  • Sergey Grigoryev Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Bol'shaya Morskaya ul., 42–44, Saint Petersburg, 190000, Russian Federation https://orcid.org/0000-0001-7670-4360
  • Larisa Podolnaya Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Bol'shaya Morskaya ul., 42–44, Saint Petersburg, 190000, Russian Federation https://orcid.org/0000-0002-4962-1989
  • Aleksey Konarev Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Bol'shaya Morskaya ul., 42–44, Saint Petersburg, 190000, Russian Federation https://orcid.org/0000-0003-2938-1014
  • Tamara Yakusheva Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Bol'shaya Morskaya ul., 42–44, Saint Petersburg, 190000, Russian Federation https://orcid.org/0000-0002-2661-2377
  • Natalya Kishlyan Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Bol'shaya Morskaya ul., 42–44, Saint Petersburg, 190000, Russian Federation https://orcid.org/0000-0003-4454-6948
  • Andrey Pavlov Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Bol'shaya Morskaya ul., 42–44, Saint Petersburg, 190000, Russian Federation https://orcid.org/0000-0002-5098-4904
  • Nina Brutch Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Bol'shaya Morskaya ul., 42–44, Saint Petersburg, 190000, Russian Federation https://orcid.org/0000-0003-2253-6263

Abstract

This review is devoted to the description of chemical peculiarities of industrial oil crops cultivated (or prospective for cultivation) in Russia, which are stored in the VIR collection. Different crops have similar fatty acids biosynthesis pathways, but each species has its own individualities in the chemical composition of the oil and its genetic control. The diversity of oil crop chemical composition opens the possibility of its multipurpose utilization practically in all industrial segments. Sunflower, rapeseed, flax, mustard, camelina and safflower are cultivated in Russia as oil crops. Castor beans, perilla, lallemantia and noog are not cultivated on an industrial scale, but have original oil properties and are prospective for future cultivation. Hemp and poppy seeds contain oil valuable for food, but they are not widespread. Cotton and peanut oils are prospective for industrial purposes when early, already created varieties of these crops will be cultivated in Russia. Oil properties depend on the ratio of its basic fatty acids: saturated (stearic, palmitic) and unsaturated (oleic, linoleic, linolenic). As a rule, lauric, myristic and palmitoleic acids are determined in minor quantities. The oil of Brassicaceae crops also includes arachidic, eicosenoic, eicosadienoic, behenic, erucic and lignoceric acids. Fatty acids accumulation is influenced by growing conditions, though it has strict genetic control.

Keywords:

oil crops, fatty acids, sunflower, linseed, rapeseed, safflower, mustard, castor bean, hemp, peanut

Downloads

Download data is not yet available.
 

References

Anilakumar, K., Pal, A., Khanum, F., and Bawas, A. 2010. Nutritional, medicinal and industrial uses of sesame (Sesamum indicum L.) seeds. Agriculturae Conspectus Scientificus 75(4):159–168.

Bedigian, D. and Harlan, J. 1986. Evidence for cultivation of sesame in the ancient world. Economic Botany 40:137–154. https://doi.org/10.1007/BF02859136

Bocianowski, J., Mikołajczyk, K., and Bartkowiak-Broda, I. 2012 Determination of fatty acid composition in seed oil of rapeseed (Brassica napus L.) by mutated alleles of the FAD3 desaturase genes. Journal of Applied Genetics 53(1):27–30. https://doi.org/10.1007/s13353-011-0062-0

Brar, G. and Thies, W. 1978. Biosynthesis of a-linolenic acid in leaves and seeds of rape (Brassica napus L.). Proceedings of the 5th International Rapeseed Conference 2:27–30.

Brutch N. B., Porokhovinova E. A., and Shelenga T. V. 2016. Innovative possibilities of oil flax breeding orientated at the different oil composition. Dostizheniya nauki i tekhniki APK 30(6):5–8. (In Russian)

Burkhardt, H. 1971. Phosphatides isolation from seeds of com-mercial and experimental safflower varieties. Journal of American Oil Chemists Society 48(11):607–699. https://doi.org/10.1007/BF02638523

Cao, S., Zhou, X., Wood, C., Green, A., Singh, S., Liu, L., and Liu, Q. 2013. A large and functionally diverse family of Fad2 genes in safflower (Carthamus tinctorius L.). BMC Plant Biology 13:5. https://doi.org/10.1186/1471-2229-13-5

Chen, Z., Wang, M., Barkley, N., and Pittman, R. 2010. A simple allele-specific PCR assay for detecting FAD2 alleles in both A and B genomes of the cultivated peanut for high-oleate trait selection. Plant Molecular Biology Reporter 28:542–548. https://doi.org/10.1007/s11105-010-0181-5

Chernova, A., Mazin P., Goryunova, S., Goryunov, D., Demurin, Ya., Gorlova, L., Vanyushkina, A., Mair, W., Anikanov, N., Yushina,E., Pavlova, A., Martynova, E., Garkusha, S., Mukhina, Zh., Savenko, E., and Khaitovich, Ph. 2019. Ultra-performance liquid chromatography-mass spectrometry for precise fatty acid profiling of oilseed crops. PeerJ 7:e6547 https://doi.org/10.7717/peerj.6547

Demurin, Y. and Borisenko, O. 2011. Genetic collection of oleic acid content in sunflower seed oil. Helia 34:69–74. https://doi.org/10.2298/HEL1155069D

Demurin, Ya., Borisenko, O., Chebanova, Yu., and Levutskaya, A. 2016. Maternal effect in inheritance of mid-oleic acid content in the F1 seeds of sunflower. Maslichnye kultury 1(165):16-21. (In Russian)

Dergisi, O. 2007. Seed yield, oil content and fatty acids composition of safflower (Carthamus tinctorius L.) grown in northern Turkey conditions. Journal of Agricultural Faculty OMU 22(1):98–104.

Dowd, M. 2015. Seed: in Cotton, agronomy monograph 57. Second addition. American Society of Agronomy, Inc., Crop Science Society of America, Inc., and Soil Science Society of America, Inc. pp.745–782. https://doi.org/10.2134/agronmonogr57.2013.0032

Ermakov, A., Davidyan, G., Yarosh, N., Anashchenko, A., Lemeshev, N., Rykova, R., and Megorskaya, O. 1982. Oil crops (Characters of oil quality according to fatty acids content). Leningrad, VIR. (In Russian)

Fernandez-Martinez, J. M., Jimenez, A., and Dominguez, J. 1989. Genetic analysis of the high oleic acid content in cultivated sunflower (Helianthus annuus L.). Euphytica 41:39–51. https://doi.org/10.1007/BF00022409

Fernandez-Martinez, J., Perez-Vich, B., Velasco, L., and Dominguez, J. 2007. Breeding for speciality oil types in sunflower. Helia 30(46):75–84. https://doi.org/10.2298/HEL0746075F

Fernandez-Martinez, J., Velasco, L., and Perez-Vich, B. 2004. Progress in the genetic modification of sunflower oil quality. Proceedings of 16th International sunflower conference 1:1–14.

Futehally, S. 1982. Inheritance of very high levels of linoleic acid in the seed oil of safflower (Carthamus tinctorius L.). MS Thesis, University California, Davis CA USA.

Gangadhara, K. and Nadaf, H. 2016. Inheritance of oleic acid content in new sources of groundnut (Arachis hypogaea L.). Agricultural Science Digest 36(4):299–302. https://doi.org/10.18805/asd.v36i4.6472

Gavrilova, V., Dubovskaya, A., Kon'kova, N., Brutch, N., and Porokhovinova, E. 2005. Genetic and breeding aspects determining quality of seeds, oil and oilcake of flax, sunflower, rapeseed and camelina, pp. 20–22 in Materials of 5 International conference “Oil-fat industry – 2005: facts, determining oil-fat products quality” Sankt-Peterburg. (In Russian)

Gavrilova, V., Dubovskaya, A., Konkova, N., and Nizova, G. 2005. Perspectives and reality of using vegetable oils as biofuel. Maslozhirovaya promyshlennost 8:15–17.

Ghamkar, K., Croser, Ja., Aryamanesh, N., Campbell, M., Kon`kova, N., and Francis, С. 2010. Camelina (Camelina sativa (L.) Crants) as an alternative oilseed: molecular and ecogeographic analyses. Genome 53(7):558–567. https://doi.org/10.1139/G10-034

Golombek, S., Sridhar, R., and Singh, U. 1995. Effect of soil temperature on seed composition of three Spanish cultivars of groundnut (Arachis hypogaea L.) Journal of Agricultural and Food Chemistry 43:2067–2070. https://doi.org/10.1021/jf00056a021

Gorlov, S., Bochkaryova, E., Gorlova, L., and Serdyuk, V. 2015. High oleic rapeseed variety Amulet. Maslichnye kultury. Nauchno-tekhnichesky byulleten Vserossyskogo nauchno-issledovatelskogo instituta maslichnykh kultur 2(162):127–128.

Green, A. 1986. Genetic control of polyunsaturated fatty acid biosynthesis in flax (Linum usitatissimum) seed oil. Theoretical and Applied Genetics 72(5):654–661. https://doi.org/10.1007/BF00289004

Grigoryev, S. and Illarionova, K. 2015. Results of breeding of industrial hemp textile, oilseeds and medicinal areas of use in the Russian Federation. Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta 55:44–48. (In Russian)

Hinds, M. 1995. Fatty acid composition of Caribbean-grown peanuts (Arachis hypogaea L.) at three maturity stages. Food Chemistry 53:7–14. https://doi.org/10.1016/0308-8146(95)95779-6

Hoerr, N. L. and Osol, M. D. A. (ed). 1956. New gold medical dictionary (2nd ed.). London. 821.

Ivanov, P., Petakov, D., Nikolova, V., and Pentchev, E. 1988. Sunflower breeding for high palmitic acid content in the oil. Proceedings 12th International sunflower conference 2:463–465.

Jung, S., Powell, G., Moore, K., and Abbott, A. 2000. The high oleate trait in the cultivated peanut (Arachis hypogaea L.) II Molecular basis and genetics of the trait. Molecular Genetics and Genomics 263:806–811. https://doi.org/10.1007/s004380000243

Knowles, P. 1989. Safflower. pp. 363–374 in Robbelen, G., Downey, R. K., and Ashri A. (eds), Oil Crops of the Wold.

Knowles, P. and Hill, A. 1964. Inheritance of fatty acid content in the seed oil of a safflower introduction from Iran. Crop Science 4:406–409. https://doi.org/10.2135/cropsci1964.0011183X000400040023x

Knowles, P., Hill, A., and Ruckman, F. 1965. High oleic acid content in new safflower, UC-1. California Agriculture 19:12–15. https://doi.org/10.1007/BF02971186

Krasilnikova, L., Avksentyeva, O., Zhmurko, V., and Sadovnichenko, Yu. 2004. Plants biochemistry. 224 pp. Rostov-on-Don: Feniks, Kharkov: Torgsing. (In Russian)

Krzymanski, J. and Downey, R. 1969. Inheritance of fatty acid composition in winter forms of rapeseed, B. napus. Canadian Journal of Plant Science 49(3):313–319. https://doi.org/10.4141/cjps69-053

Kutuzova, S., Gavrilova, V., Shchelko, L., Dubovskaya, A., Kartamysheva, Ye., Vakhrusheva, T., Brutch, N., Grigor'yev, S., Matveyeva, G., and Podol'naya, L. 1998. Oil crops for nutrition purposes (breeding problems, sortiment). Saint Petersburg, VIR. (In Russian)

Ladd, S. and Knowles, P. 1971. Interactions of alleles at two loci regulating fatty acid composition of the seed oil of safflower (Carthamus tinctorius L.). Crop Science 11:681–684. https://doi.org/10.2135/cropsci1971.0011183X001100050024x

Ladd, S. and Knowles, P. 1970. Inheritance of stearic acid in the seed oil of safflower (Carthamus tinctorius L.). Crop Science 10:525–27. https://doi.org/10.2135/cropsci1970.0011183X001000050022x

Li, C., Miao, H., Wei, L., Zhang, T., Han, X., and Zhang, H. 2014. Association mapping of seed oil and protein content in Sesamum indicum L. using SSR markers. PLoS ONE 9(8):e105757. https://doi.org/10.1371/journal.pone.0105757

Liu, L., Guan, L., Wu, W., and Wang, L. 2016. A review of fatty acids and genetic characterization of safflower (Carthamus tinctorius L.) seed oil. Current Organic Chemistry 5(1):1000160. https://doi.org/10.4172/2161-0401.1000160

Liu, Q., Singh, S., and Green, A. 2002. High-stearic and high-oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing. Plant Physiology 129:1732–1743. https://doi.org/10.1104/pp.001933

Lopez ,Y., Nadaf, H., Smith, O., Connel, J., Reddy, A., and Fritz, A. 2000. Isolation and characterization of the Delta(12)-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in Spanish market-type lines. Theoretical and Applied Genetics 101:1131–1138. https://doi.org/10.1007/s001220051589

Lopez, Y., Smith, O., Senseman, S., and Rooney, W. 2001. Genetic factors influencing high oleic acid content in Spanish market-type peanut cultivars. Crop Science 41:51–56. https://doi.org/10.2135/cropsci2001.41151x

Mercer, L., Wynne, J., and Young, C. 1990. Inheritance of fatty acid content in peanut oil. Peanut Science 17:17–21. https://doi.org/10.3146/i0095-3679-17-1-7

Miller, J., Zimmerman, D., and Vick, B. 1987. Genetic control of high oleic acid content in sunflower oil. Crop Science 27:923–926. https://doi.org/10.2135/cropsci1987.0011183X002700050019x

Minkevich, I. 1939. Safflower. Krasnodar: Krayevoye knizhnoe izdatelstvo. pp. 10–12. (In Russian)

Moore, K. and Knauft, D. 1989. The inheritance of high oleic acid in peanut. Journal of Heredity 80(3):252–253. https://doi.org/10.1093/oxfordjournals.jhered.a110845

Moshkin, V. 1980. Castor bean. 352 p. Trudy VASKHNIL. (In Russian)

Nagornov, S., Romantsova, S., Gavrilova, V., and Konkova, N. 2014. Use of camelina oil for biodiesel production. Nauka v tsentralnoy Rossii 4:34-40. (In Russian)

Nath, K., Kim, H., Khatum, K., Park, J., Kang, K., and Nou, I. 2016. Modification of fatty acid profiles of rapeseed (Brassica napus L.) oil for using as food, industrial feed-stock and biodiesel. Plant Breeding and Biotechnology 4:123–134. https://doi.org/10.9787/PBB.2016.4.2.123

Nizova, G., Dubovskaya, A., Konkova, N., Librikht, A., and Gorkovenko, T. 1999. Catalog of the VIR world collection. Issue 700. Cruciferous crops. Rapeseed, bitter cress, mastard, camelina (Characteristics of the accessions for content of oil, fatty acids and protein). 57 p. Saint Petersburg, VIR. (In Russian)

Nizova, G., and Konkova, N. 2008. Catalog of the VIR world collection. Issue 783. Minor oilseeds eruca, conringia, crambe, cuphea, lallemantia, madia, euphorbia, sunflecks, perilla, safflower, oil radish, camelina, chufa (characterization of biochemical characteristics). 54 p. Saint Petersburg, VIR. (In Russian)

Norden, A., Gorbet, D., Knauft, D., and Young, C. 1987. Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Science 14:7–11. https://doi.org/10.3146/i0095-3679-14-1-3

Ohlrogge, J. and Browse, J. 1995. Lipid biosynthesis. The Plant Cell 7:957–970. https://doi.org/10.1105/tpc.7.7.957

Perez-Vich, B., Fernandez, J., Garces, R., and Fernandez-Martinez, J. 2002. Inheritance of high palmitic acid content in the sunflower mutant CAS-12 and its relationship with high oleic content. Plant Breeding 121:49–56. https://doi.org/10.2298/HEL0848055V

Perez-Vich, B., Velasco, L., Munoz-Ruz, J., and Fernandez-Martinez, J. 2006. Inheritance of high stearic acid content in the sunflower mutant CAS-14. Crop Science 46:22–29. https://doi.org/10.2135/cropsci2004.0723

Porokhovinova, E. A., Shelenga, T. V., Kosykh, L. A., Sanin, A. A., Kazarina, A. V., Kutuzova, S. N., Pavlov, A. V., and Brach, N. B. 2017. Biochemical diversity of fatty acid composition in flax from VIR's genetic collection and effect of environment on its development. Russian Journal of Genetics: Applied Research 7(6):626–639. https://doi.org/10.1134/S2079059717060107

Porokhovinova, E., Shelenga, T., Matveeva, T., Pavlov, A., Grigorieva, E., and Brutch, N. 2019. Polymorphism of genes controlling low level of linolenic acid in lines from VIR flax genetic collection. Ecologitcheskaya genetica 17(2):5–19. https://doi.org/10.17816/ecogen1725-19

Rational nutrition, norms of physiological needs in energy and nutrients for different groups of the population in Russian Federation. Methodical recommendations MR 2.3.1.2432-08. 2008. Tutelyan, V. (add). 39 p. (In Russian)

Sakhno, L. 2010. Variability of fatty acids composition of rapeseed oil: classical breeding and biotechnology. Tsitologiya i genetika 44(6):70–80. https://doi.org/10.3103/S0095452710060101 (In Russian)

Salunkhe, D. K. and Desai, B. B. 1986. Postharvest biotechnology of oilseeds. CRC Press. Boca Raton. Florida. 213 p.

Schmid, K. M. 2016. Chapter 4. Lipid metabolism, pp 113–147 in Plants biochemistry of lipids, lipoproteins and membranes. (Sixth Edition) Elsevier. https://doi.org/10.1016/B978-0-444-63438-2.00004-3

Schuppert, G., Tang, S., Slabaugh, M., and Knapp, S. 2006. The sunflower high-oleic mutant Ol carries variable tandem repeats of fad2-1, a seed-specific oleoyl-phosphatidyl choline desaturase. Molecular Breeding 17:241–256. https://doi.org/10.1007/s11032-005-5680-y

Shasidhar, Y., Vishwakarma, M., Pandey, M., Janila, P., Variath, M., Manohar, S., Nigam, S., Guo, B., and Varshney, R. 2017. Molecular mapping of oil content and fatty acids using dense genetic maps in groundnut (Arachis hypogaea L.) Frontiers in Plant Science 8:794. https://doi.org/10.3389/fpls.2017.00794

Shelenga, T., Grigoryev, S., Baturin, V., and Sarana, Yu. 2011. Biochemical characters of hemp seeds (Cannabis sativa L.) from different regions of Russia. Agrarnaya Rossiya 2:6–9. (In Russian)

Singkham, N., Jogloy, S., Kesmala, T., Swatsitang, P., Jaisil, P., Puppala, N., and Patanothai, A. 2010. Estimation of heritability by parent-offspring regression for high-oleic acid in peanut. Asian Journal of Plant Science 9(6):358–363. https://doi.org/10.3923/ajps.2010.358.363

Soldatov, K., Voskoboynik, L., and Kharchenko, L. 1976. High oleic acid sunflower variety Pervenets. Byulleten NTI po maslichnym kulturam 3:3–7. (In Russian)

Stefansson, B., Hougen, F., and Downey, R. 1961. Note on the isolation of rape plants with seed oil free from erucic acid. Canadian Journal of Plant Science 41(1):218. https://doi.org/10.4141/cjps61-028

Tejklova, E., Bjelkova, M., and Pavelek, M. 2011. Medum-linolenic linseed (Linum usitatissimum L.). Czech Jornal of Genetics and Plant Breeding 47(3):128–130. https://doi.org/10.17221/96/2011-CJGPB

Thambugala, D., Duguid, S., Loewen, E., Rowland, G., Booker, H., You, F., and Cloutier, S. 2013. Genetic variation of six desaturase genes in flax and their impact on fatty acid composition. Theoretical and Applied Genetics 126:2627–2641. https://doi.org/10.1007/s00122-013-2161-2

Vassiliou, E., Gonzalez, A., Garcia, C., Tadros, J., Chakraborty, G., and Toney, J. 2009. Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-a both in vitro and in vivo system. Lipids Health Disease 8:25. https://doi.org/10.1186/1476-511X-8-25

Velasco, L., Perez-Vich, B., and Fernandez-Martinez, J. 2000. Inheritance of oleic acid content under controlled environment. In Proceedings of 15th International Sunflower Conference. Toullouse, France. 1:A31–A36.

Veselovskaya, M. A. 1975. Poppy (diversity, classification, evolution). Sbornik nauchnich trudov po prikladnoy botanike, genetike i selektcii 55(1):175–223. (In Russian)

Wang, M., Khera, P., Pandey, M., Wang, H., Qiao, L., Feng, S., Tonnis, B., Barkley N., Pinnow, D., Holbrook, C., Culbreath, A., Varshney, R., and Guo, B. 2015. Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.). PLoS ONE 10:e0119454. https://doi.org/10.1371/journal.pone.0119454

Wei, X., Liu, K., Zhang, Y.,Feng, Q., Wang, L., Zhao, Y., Li, D., Zhao, Q., Zhu, X., Zhu, X.,Li, W., Fan, D., Gao, Y., Lu, Y., Zhang, X., Tang, X., Zhou, C., Zhu, Ch., Liu, L., Zhong, R., Tian, Q., Wen, Z., Weng, Q., Han, B., Huang, X., and Zhang, X. 2015. Genetic discovery for oil production and quality in sesame. Nature Communications 6:8609. https://doi.org/10.1038/ncomms9609

You, F., Li, P., Kumar, S., Ragupathy, R., Li, Z., Fu, Y., and Cloutie, S. 2014. Genome-wide identification and characterization of the gene families controlling fatty acid biosynthesis in flax (Linum usitatissimum L). Journal of Proteomics and Bioinformatics 7(10):310–326. https://doi.org/10.4172/jpb.1000334

Published
2020-03-27
How to Cite
Gavrilova, V., Shelenga, T., Porokhovinova, E., Dubovskaya, A., Kon’kova, N., Grigoryev, S., Podolnaya, L., Konarev, A., Yakusheva, T., Kishlyan, N., Pavlov, A., & Brutch, N. (2020). The diversity of fatty acid composition in traditional and rare oil crops cultivated in Russia. Biological Communications, 65(1), 68–81. https://doi.org/10.21638/spbu03.2020.106
Section
Review communications

Most read articles by the same author(s)