Organ-specific transcripts as a source of gene multifunctionality: lessons learned from the Drosophila melanogaster sbr (Dm nxf1) gene

Authors

  • Ludmila Mamon Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0001-5338-0703
  • Viktoria Ginanova Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-8404-9893
  • Sergey Kliver Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, Sredniy Pr., 41, Saint Petersburg, 199004, Russian Federation https://orcid.org/0000-0002-2965-3617
  • Mariya Toropko Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation
  • Elena Golubkova Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-9528-5760

DOI:

https://doi.org/10.21638/spbu03.2019.206

Abstract

Analysis of the transcriptomes of different organisms has demonstrated that a single gene can have multiple transcripts. The sources of transcriptional variability are the alternative promoters, polyadenylation sites, splicing, and RNA editing. A comparison of the organisms of different taxa has demonstrated that the complexity of organization during evolution arises not due to an increase in the number of protein-coding genes. The greatest variability of transcripts is specific to the nervous and germinal systems. A variety of mechanisms providing for the complexity of the transcriptome ensures a precise and coordinated regulation of organ-specific functions through a combination of cis-acting elements and trans-acting factors. The D. melanogaster sbr (Dm nxf1) gene has proven to be an excellent model for investigating mechanisms potentially leading to the emergence of multiple products with various functions.

Keywords:

nxf (nuclear export factor), D. melanogaster, alternative splicing, intron retention, transcriptional variability, alternative polyadenylation

Downloads

Download data is not yet available.
 

References

An, J. J., Gharami, K., Liao, G.-Y., Woo, N. H., Lau, A. G., Vanevski, F., Torre, E. R., Jones, K. R., Feng, Y., Lu, B., and Xu, B. 2008. Distinct role of long 3′UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons. Cell 134(1):175–187. https://doi.org/10.1016/j.cell.2008.05.045

Barnard, D. C., Cao, Q., and Richter, J. D. 2005. Differential phosphorylation controls Maskin association with eukaryotic translation initiation factor 4E and localization on the mitotic apparatus. Molecular and Cellular Biology 25(17):7605–7615. https://doi.org/10.1128/MCB.25.17.7605-7615.2005

Beaudoing, E., Freier, S., Wyatt, J.R., Claverie, J.-M., and Gautheret, D. 2000. Patterns of variant polyadenylation signal usage in human genes. Genome Research 10:1001–1010. https://doi.org/10.1101/gr.10.7.1001

Berkovits, B. D. and Mayr, C. 2015. Alternative 3´ UTRs act as scaffolds to regulate membrane protein localization. Nature 522:363–367. https://doi.org/10.1038/nature14321

Bicknell, A. A., Cenik, C., Chua, H. N., Roth, F. P., and Moore, M. J. 2012. Intron in UTRs: why we should stop ignoring them. Bioessays 34:1025–1034. https://doi.org/10.1002/bies.201200073

Black, D. L. 2003. Mechanisms of alternative pre-messenger RNA splicing. Annual Review of Biochemistry 72:291–336. https://doi.org/10.1146/annurev.biochem.72.121801.161720

Braunschweig, U., Barbosa-Morais, N. L., Pan, Q., Nachman, E. N., Alipanahi, B., Gonatopoulos-Pournatzis, T., Frey, B., Irimia, M., and Blencowe, B. J. 2014. Widespread intron retention in mammals functionally tunes transcriptomes. Genome Research 24:1774–1786. https://doi.org/10.1101/gr.177790.114

Brown, J. B., Boley, N., Eisman, R., May, G. E., Stoiber, M. H., Duff, M. O., Booth, B. W., Wen, J., Park, S., Suzuki, A. M., Wan, K. H., Yu, C., Zhang, D., Carlson, J. W., Cherbas, L., Eads, B. D., Miller, D., Mockaitis, K., Roberts, J., Davis, C. A., Frise, E., Hammonds, A. S., Olson, S., Shenker, S., Sturgill, D., Samsonova, A. A., Weiszmann, R., Robinson, G., Hernandez, J., Andrews, J., Bickel, P. J., Carninci, P., Cherbas, P., Gingeras, T. R., Hoskins, R. A., Kaufman, T. C., Lai, E. C., Oliver, B., Perrimon, N., Graveley, B. R., and Celniker, S. E. 2014. Diversity and dynamics of the Drosophila transcriptome. Nature 512:393–399. https://doi.org/10.1038/nature12962

Child, S. J., Miller, M. K., and Geballe, A. P. 1999. Translational control by an upstream open reading frame in the HER-2/neu transcript. Journal of Biological Chemistry 274:24335–24341. https://doi.org/10.1074/jbc.274.34.24335

Colgan, D. F. and Manley, J. L. 1997. Mechanism and regulation of mRNA polyadenylation. Genes and Development 11:2755–2766. https://doi.org/10.1101/gad.11.21.2755

Coll, O., Villalba, A., Bussotti, G., Notredame, C., and Gebauer, F. 2010. A novel, canonical mechanism of cytoplasmic polyadenylation operates in Drosophila embryogenesis. Genes and Development 24:129–134. https://doi.org/10.1101/gad.568610

Cui, J., Sartain, C. V., Pleiss, J., and Wolfner, M. F. 2013. Cytoplasmic polyadenylation is a major mRNA regulator during oogenesis and egg activation in Drosophila. Developmental Biology 383:121–131. https://doi.org/10.1016/j.ydbio.2013.08.013

Dass, B., Tardif, S., Park, J. Y., Tian, B., Weitlauf, H. M., Hess, R. A., Carnes, K., Griswold, M. D., Small, C. L., and MacDonald, C. C. 2007. Loss of polyadenylation protein τCstF-64 causes spermatogenic defects and male infertility. Proceeding of the National Academy of Science of USA 104:20374–20379. https://doi.org/10.1073/pnas.0707589104

Derti, A., Garrett-Engele, P., Maclsaac, K. D., Stevens, R. C., Sriram, S., Chen, R., Rohl, C. A., Johnson, J. M., and Babak, T. 2012. A quantitative atlas of polyadenylation in five mammals. Genome Research 22(6):1173–1183. https://doi.org/10.1101/gr.132563.111

Detivaud, L., Pascreau, G., Karaiskou, A., Osborne, H. B., and Kubiak, J. Z. 2003. Regulation of EDEN-dependent deadenylation of Aurora A/Eg2-derived mRNA via phosphorylation and dephosphorylation in Xenopus laevis egg extracts. Journal of Cell Science 116:2697–2705. https://doi.org/10.1242/jcs.00477

Du, L. and Richter, J. D. 2005. Activity-dependent polyadenylation in neurons. RNA 11:340–1347. https://doi.org/10.1261/rna.2870505

Elkon, R., Drost, J., van Haaften, G., Jenal, M., Schrier, M., Oude Vrielink, J.A., and Agami, R. 2012. E2F mediates enhanced alternative polyadenylation in proliferation. Genome Biology 13:R59. https://doi.org/10.1186/gb-2012-13-7-r59

Erson-Bensan, A. E. 2016. Alternative polyadenylation and RNA-binding proteins. Journal of Molecular Endocrinology 57:F29–F34. https://doi.org/10.1530/JME-16-0070

Evsikov, A. V. and de Evsikova, C. M. 2009. Gene expression during the oocyte-to-embryo transition in mammals. Molecular Reproduction and Development 76(9):805–818. https://doi.org/10.1002/mrd.21038

Evsikov, A. V., Graber, J. H., Brockman, J. M., Hampl, A., Holbrook, A. E., Singh, P., Eppig, J. J., Solter, D., and Knowles, B. B. 2006. Cracking the egg: molecular dynamics and evolutionary aspects of the transition from the fully grown oocyte to embryo. Genes and Development 20:2713–2727. https://doi.org/10.1101/gad.1471006

Flynt, A. S. and Lai, E. C. 2008. Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nature Reviews Genetics 9:831–842. https://doi.org/10.1038/nrg2455

Ginanova, V., Golubkova, E., Kliver, S., Bychkova, E., Markoska, K., Ivankova, N., Tretyakova, I., Evgen'ev, M., and Mamon, L. 2016. Testis-specific products of the Drosophila melanogaster sbr gene, encoding nuclear export factor 1, are necessary for male fertility. Gene 577:153–160. https://doi.org/10.1016/j.gene.2015.11.030

Ginanova V. 2017. Variety and tissue-specific isoforms of the Nxf1 (nuclear export factor 1), a main factor of nuclear export of mRNA in Drosophila melanogaster. PhD thesis. St.-Petersburg.

Golubkova, E. V., Atsapkina, A. A., and Mamon, L. A. 2015. The role of sbr / Dm nxf1 gene in syncytial development in Drosophila melanogaster. Cell and Tissue Biology 9(4):271–283. https://doi.org/10.1134/S1990519X15040057

Golubkova, E. V. and Mamon, L. A. 2012. The role of Dm NXF1 in controlling early embryonic mitoses in Drosophila melanogaster. Encyclopedia of Cell Biology Research 543–549. Nova Science Publishers. Inc.

Graveley, B. R. 2001. Alternative splicing: increasing diversity in the proteomic world. Trends in Genetics 17:100–107. https://doi.org/10.1016/S0168-9525(00)02176-4

Graveley, B. R. 2005. Mutually exclusive splicing of the insect Dscam pre-mRNA directed by competing intronic RNA secondary structures. Cell 123:65–73. https://doi.org/10.1016/j.cell.2005.07.028

Guo, X., Gourronc, F., Audic, Y., Lyons-Levy, G., Mitchell, T., and Hartley, R. S. 2008. ElrA and AUF1 differentially bind cyclin B2 mRNA. Biochemical and Biophysical Research Communications 377:653–657. https://doi.org/10.1016/j.bbrc.2008.10.029

Hawthorne, S. K., Busanelli, R. R., and Kleen, K. C. 2006. The 5´ UTR and 3´ UTR of the sperm mitochondria-associated cysteine-rich protein mRNA regulate translation in spermatids by multiple mechanisms in transgenic mice. Developmental Biology 297:118–126. https://doi.org/10.1016/j.ydbio.2006.04.468

Herold, A., Klymenko, T., and Izaurralde, E. 2001. NXF1/ p15 heterodimers are essential for mRNA nuclear export in Drosophila. RNA 7:1768–1780. https://doi.org/10.1017.S1355838201013565

Hilgers, V. 2015. Alternative polyadenylation coupled to transcription initiation: Insights from ELAV-mediated 3' UTR extension. RNA Biology 12(9):918–921. https://doi.org/10.1080/15476286.2015.1060393

Hilgers, V., Lemke, S. B., and Levine, M. 2012. ELAV mediates 3’ UTR extension in the Drosophila nervous system. Genes and Development 26:2259–2264. https://doi.org/10.1101/gad.199653.112

Hilgers, V., Perry, M. W. Hednrix, D., Stark, A., Levine, M., and Haley, B. 2011. Neural-specific elongation of 3′ UTRs during Drosophila development. Proceeding of the National Academy of Science of USA 108:15864–15869. https://doi.org/10.1073/pnas.1112672108

Iguchi, N., Tobias, J. W., and Hecht, N. B. 2006. Expression profiling reveals meiotic male germ cell mRNAs that are translationally up- and down-regulated. Proceeding of the National Academy of Science of USA 103:7712–7717. https://doi.org/10.1073/pnas.0510999103

Ivankova, N., Tretyakova, I., Lyozin, G., Avanesyan, E., Zolotukhin, A., Zatsepina, O. G., Evgen’ev, M. B., and Mamon, L. A. 2010. Alternative transcripts expressed by small bristles, the Drosophila melanogaster nxf1 gene. Gene 458:11–19. https://doi.org/10.1016/j.gene.2010.02.013

Iwakawa, H. O. and Tomari, Y. 2015. The functions of microRNAs: mRNA decay and translational repression. Trends in Cell Biology 25:651–665. https://doi.org/10.1016/j.tcb.2015.07.011

Jacob, A. G. and Smith, C. W. 2017. Intron retention as a component of regulated gene expression programs. Human Genetics 136:1043–1057. https://doi.org/10.1007/s00439-017-1791-x

Johnson, J. M., Castle, J., Garrett-Engele, P., Kan, Z., Loerch, P. M., Armour, C. D., Santos, R., Schadt, E. E., Stoughton, R., and Shoemaker, D. D. 2003. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302:2141–2144. https://doi.org/10.1126/science.1090100

Jun, L., Frints, S., Duhamel, H., Herold, A., Abad-Rodrigues, J., Dotti, C., Izaurralde, E., Marynen, P., and Froyen, G. 2001. NXF5, a novel member of the nuclear RNA export factor family, is lost in a male patient with a syndromic form of mental retardation. Current Biology 11(18):1381–1391. https://doi.org/10.1016/S0960-9822(01)00419-5

Kadonaga, J. T. 2012. Perspectives on the RNA polymerase II core promoter. Wiley Interdisciplinary Reviews-Developmental Biology 1(1):40–51. https://doi.org/10.1002/wdev.21

Kadonaga, J. T. 2002. The DPE, a core promoter element for transcription by RNA polymerase II. Experimental and Molecular Medicine 34:259–264. https://doi.org/10.1038/emm.2002.36

Kashiwabara, S., Zhuang, T., Yamagata, K., Noguchi, J., Fukamizu, A., and Baba, T. 2000. Identification of a novel isoform of poly(A) polymerase, TPAP, specifically present in the cytoplasm of spermatogenic cells. Developmental Biology 228:106–115. https://doi.org/10.1006/dbio.2000.9894

Kashiwabara, S, Noguchi, J, Zhuang, T, Ohmura, K, Honda, A, Sugiura, S, Miyamoto, K, Takahashi, S, Inoue, K, Ogura, A, and Baba, T. 2002. Regulation of spermatogenesis by testis-specific, cytoplasmic poly(A) polymerase TPAP. Science 298:1999–2002. https://doi.org/10.1126/science.1074632

Kiseleva, E., Rutherford, S., Cotter, L. M., Allen, T. D., and Goldberg, M. W. 2001. Step of nuclear pore complex disassembly and reassembly during mitosis in early Drosophila embryos. Journal of Cell Science 114:3607–3618.

Kleene, K. C. 2001. A possible meiotic function of the peculiar patterns of gene expression in mammalian spermatogenic cells. Mechanisms of Development 106:3–23. https://doi.org/10.1016/S0925-4773(01)00413-0

Kleene, K. C. 2003. Patterns, mechanisms, and functions of translation regulation in mammalian spermatogenic cells. Cytogenetic and Genome Research 103:217–224. https://doi.org/10.1159/000076807

Kopytova, D., Popova, V., Kurshakova, M., Shidlovskii, Y., Nabirochkina, E., Brechalov, A., Georgiev, G., and Georgieva, S. 2016. ORC interacts with THSC/TREX-2 and its subunits promote Nxf1 association with mRNP and mRNA export in Drosophila. Nucleic Acids Research 44:4920–4933. https://doi.org/10.1093/nar/gkw192

Kumar, A. 2009. An overview of nested genes in eukaryotic genomes. Eukaryotic Cell 8:1321–1329. https://doi.org/10.1128/EC.00143-09

Kundel, M., Jones, K. J., Shin, C. Y., and Wells, D. G. 2009. Cytoplasmic polyadenylation element binding protein regulates neurotrophin 3-dependent β-catenin mRNA translation in developing hippocampal neurons. Journal of Neuroscience 29:13630–13639. https://doi.org/10.1523/JNEUROSCI.2910-08.2009

Li, J. and Gilmour, D.S. 2013. Distinct mechanisms of transcriptional pausing orchestrated by GAGA factor and M1BP, a novel transcription factor. The EMBO Journal 32:1829–1841. https://doi.org/10.1038/emboj.2013.111

Li, W., Park, J.Y. Zheng, D., Hoque, M. Yehia, G., and Tian, B. 2016. Alternative cleavage and polyadenylation in spermatogenesis connects chromatin regulation with post-transcriptional control. BMC Biology 14:6. https://doi.org/10.1186/s12915-016-0229-6

Li, Y., Bor, Y. C., Fitzgerald, M. P., Lee, K. S., Rekosh, D., and Hammarskjold, M. L. 2016. An NXF1 mRNA with a retained intron is expressed in hippocampal and neocortical neurons and is translated into a protein that functions as an Nxf1 cofactor. Molecular Biology of the Cell 27:3903–3912. https://doi.org/10.1091/mbc.E16-07-0515

Li, Y., Bor, Y. C., Misawa, Y., Xue, Y., Rekosh, D., and Hammarskjöld, M. L. 2006. An intron with a constitutive transport element is retained in a Tap messenger RNA. Nature 443:234–237. https://doi.org/10.1038/nature05107

Liu, D., Brockman, J. M., Dass, B., Hutchins, L. N., Singh, P., McCarrey, J. R., MacDonald, C. C., and Graber, J. H. 2007. Systematic variation in mRNA 3'-processing signals during mouse spermatogenesis. Nucleic Acids Research 35:234–246. https://doi.org/10.1093/nar/gkl919

Lόpez de Salines, I., Zhan, M., Lal, A., Yang, X., and Gorospe, M. 2004. Identification of a target RNA motif for RNA-binding protein HuR. Proceeding of the National Academy of Science of USA 101:2987–2992. https://doi.org/10.1073.pnas.0306453101

Lund, E., Liu, M., Hartley, R. S., Sheets, M. D., and Dahlberg, J. S. 2009. Deadenylation of maternal mRNAs mediated by miR-427 in Xenopus laevis embryos. RNA 15:2351–2363. https://doi.org/10.1261/rna.1882009

MacDonald, C. C. and McMahon, K. W. 2010. Tissue-specific mechanisms of alternative polyadenylation: testis, brain, and beyond. Wiley Interdisciplinary Reviews-RNA 1:494–501. https://doi.org/10.1002/wrna.29

MacDonald, C. C., Wilusz, J., and Shenk, T. 1994. The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location. Molecular and Cellular Biology 14:6647–6654. https://doi.org/10.1128/MCB.14.10.6647

Mamon, L. A., Kliver, S. F., and Golubkova, E. V. 2013. Evolutionarily conserved features of the retained intron in alternative transcripts of the nxf1 (Nuclear eXport Factor) genes in different organisms. Open Journal of Genetics 3:159–170. https://doi.org/10.4236/ojgen.2013.33018

Mamon, L. A., Kliver, S. F., Prosovskaya, A. O., Ginanova, V. R., and Golubkova, Ye. V. 2014. The intron-containing transcript: an evolutionarily conserved characteristic of the genes orthologous to nxf1 (nuclear export factor 1). Russian Journal of Genetics and Applied Research 4(5):434–443. https://doi.org/10.1134/S2079059714050104

Mamon, L. A., Ginanova, V. R., Kliver, S. F., Yakimova, A. O., Atsapkina, A. A., and Golubkova, E. V. 2017. RNA-binding proteins of the NXF (nuclear export factor) family and their connection with the cytoskeleton. Cytoskeleton 74:161–169. https://doi.org/10.1002/cm.21362

Medenbach, J., Seiler, M., and Hentze, M. W. 2011. Translational control via protein-regulated upstream open reading frames. Cell 145:902–913. https://doi.org/10.1016/j.cell.2011.05.005

Mitra, M., Johnson, E. L., and Coller, H. A. 2015. Alternative polyadenylation can regulate post-translational membrane localization. Trends in Cell and Molecular Biology 10:37–47.

Miura, P., Sanfilippo, P., Shenker, S., and Lai, E. C. 2014. Alternative polyadenylation in the nervous system: to what lengths with 3´ UTR extensions take us? BioEssays 36:766–777. https://doi.org/10.1002/bies.201300174

Miura, P., Shenker, S., Andreu-Agullo, C., Westholm, J. O., and Lai, E. C. 2013. Widespread and extensive lengthening of 3´ UTRs in the mammalian brain. Genome Research 23:812–825. https://doi.org/10.1101/gr.146886.112

Neilson, J. R. and Sandberg, R. 2010. Heterogeneity in mammalian RNA 3′ end formation. Experimental Cell Research 316:1357–1364. https://doi.org/10.1016/j.yexcr.2010.02.040

Neve, J., Patel, R., Wang, Z., Louey, A., and Furger, A. M. 2017. Cleavage and polyadenylation: Ending the message expands gene regulation: Ending the message expands gene regulation. RNA Biology 14:865–890. https://doi.org/10.1080/15476286.2017.1306171

Nilsen, T. W. and Graveley, B. R. 2010. Expansion of the eukaryotic proteome by alternative splicing. Nature 463:457–463. https://doi.org/10.1038/nature08909

Oktaba, K., Zhang, W., Lotz, T. S., Jun, D. J., Lemke, S. B., Ng, S. P., Esposito, E., Levine, M., and Hilgers, V. 2015. ELAV links paused Pol II to alternative polyadenylation in the Drosophila nervous system. Molecular Cell 57(2):341–348. https://doi.org/10.1016/j.molcel.2014.11.024

Perales, R. and Bentley, D. 2009. “Co-transcriptionality” – the transcription elongation complex as a nexus for nuclear transactions. Molecular Cell 36:178–191. https://doi.org/10.1016/j.molcel.2009.09.018

Proudfoot, N. J. 2011. Ending the message: poly(A) signals then and now. Genes and Development 25:1770–1782. https://doi.org/10.1101/gad.17268411

Richter, J. D. 1996. Dynamics of poly(A) addition and removal during development. pp 481-503 in J.W.B. Hershey, M.B. Mathews, and N. Sonenberg (eds) “Translational control”. Cold Spring Harbor Laboratory Press. Plainview. NY.

Richter, J. D. and Sonenberg, N. 2005. Regulation of cap-dependent translation by elF4E inhibitory proteins. Nature 433:477–480. https://doi.org/10.1038/nature03205

Sanfilippo, P., Wen, J., and Lai, E. C. 2017. Landscape and evolution of tissue-specific alternative polyadenylation across Drosophila species. Genome Biology 18:229. https://doi.org/10.1186/s13059-017-1358-0

Sasaki, M., Takeda, E., and Takano, K. 2005. Molecular cloning and functional characterization of mouse Nxf family gene products. Genomics 85:641–653. https://doi.org/10.1016/j.ygeno.2005.01.003

Schmitz, U., Pinello, N., Jia, F., Alasmari, S., Ritchie, W., Keightley, M.-C., Shini, S., Lieschke, G. J., Wong, J. J.-L., and Rasko, J. E. J. 2017. Intron retention enhances gene regulatory complexity in vertebrates. Genome Biology 18:216. https://doi.org/10.1186/s13059-017-1339-3

Schmucker, D., Clemens, J. C., Shu, H., Worby, C. A., Xiao, J., Muda, M., Dixon, J. E., and Zipursky, S. L. 2000. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101:671–684. https://doi.org/10.1016/S0092-8674(00)80878-8

Schultz, R. M., Stein, P., and Svoboda, P. 2018. The oocyte to embryo transition in mouse: past, present, and future. Biology of Reproduction 99:160–174. https://doi.org/10.1093/biolre/ioy013

Smibert, P., Miura, P., Westholm, J. O., Shenker, S., May, G., Duff, M. O., Zhang, D., Eads, B. D., Carlson, J., Brown, J. B., Eisman, R. C., Andrews, J., Kaufman, T., Cherbas, P., Celniker, S. E., Graveley, B. R., and Lai, E. C. 2012. Global patterns of tissue-specific alternative polyadenylation in Drosophila. Cell Reports 1:277–289. https://doi.org/10.1016/j.celrep.2012.01.001

Sridharan V., Heimiller J., Robida M. D., and Singh, R. 2016. High throughput sequencing identifies misregulated genes in the Drosophila polypyrimidine tract-binding protein (hephaestus) mutant defective in spermatogenesis. PLoS One 11(3):e0150768. https://doi.org/10.1371/journal.pone.0150768

Stafstrom, J. P. and Staehelin, L. A. 1984. Dynamics of the nuclear envelope and of nuclear pore complexes during mitosis in the Drosophila embryo. European Journal of Cell Biology 34:179–189.

Svoboda, P., Franke, V., and Schultz, R. M. 2015. Chapter Nine - Sculpting the Transcriptome During the Oocyte-to-Embryo Transition in Mouse. Current Topics in Developmental Biology 113:305–349. https://doi.org/10.1016/bs.ctdb.2015.06.004

Szostak, E. and Gebauer, F. 2012. Translational control by 3´ -UTR-binding proteins. Briefings Functional Genomics 12:58–65. https://doi.org/10.1093/bfgp/els056

Tadros, W. and Lipshitz, H. D. 2009. The maternal-to-zygotic transition: a play in two acts. Development 136:3033–3042. https://doi.org/10.1242/dev.033183

Tay, J. and Richter, J. D. 2001. Germ cell differentiation and synaptonemal complex formation are disrupted in CPEB knockout mice. Developmental Cell 1:201–213. https://doi.org/10.1016/S1534-5807(01)00025-9

Tian, B., Hu, J., Zhang, H., and Lutz, C. S. 2005. A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Research 33:201–212. https://doi.org/10.1093/nar/gki158

Tretyakova, I., Zolotukhin, A. S., Tan, W., Bear, J., Propst, F., Rothler, G., and Fleber, B. K. 2005. Nuclear export factor family protein participates in cytoplasmic mRNA trafficking. Journal of Biological Chemistry 280(36):31981–31990. https://doi.org/10.1074/jbc.M502736200

Tuck, A. C. and Tollervey, D. 2011. RNA in pieces. Trends in Genetics 27:422–432. https://doi.org/10.1016/j.tig.2011.06.001

Vacik, T. and Raska, I. 2017. Alternative intronic promoters in development and disease. Protoplasma 254:1201–1206. https://doi.org/10.1007/s00709-016-1071-y

Voeltz, G. K. and Steitz, J. A. 1998. AUUUA sequences direct mRNA deadenylation uncoupled from decay during Xenopus early development. Molecular and Cellular Biology 18:7537–7545. https://doi.org/10.1128/MCB.18.12.7537

Wallace, A. M., Dass, B., Ravnik, S. E., Tonk, V., Jenkins, N. A., Gilbert, D. J., Copeland, N. G., and MacDonald, C. C. 1999. Two distinct forms of the 64,000 Mr protein of the cleavage stimulation factor are expressed in mouse male germ cells. Proceeding of the National Academy of Science of USA 96:6763–6768. https://doi.org/10.1073/pnas.96.12.6763

Wang, B., Rekosh, D., and Hammarskjold, M.-L. 2015. Evolutionary conservation of machinery for export and expression of mRNAs with retained introns. RNA 21:1–12. https://doi.org/10.1261/rna.048520.114

Wang, E. T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore, S. F., Schroth, G. P., and Burge, C. B. 2008. Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476. https://doi.org/10.1038/nature07509

Wells, S. E., Hillner, P. E., Vale, R. D., and Sachs, A. B. 1998. Circularization of mRNA by eukaryotic translation initiation factors. Molecular Cell 2:135–140. https://doi.org/10.1016/S1097-2765(00)80122-7

White, E. J. F., Brewer, G., and Wilson, G. M. 2013. Post-transcriptional control of gene expression by AUF1: Mechanisms, physiological targets, and regulation. Biochimica et Biophysica Acta 1829:680–688. https://doi.org/10.1016/j.bbagrm.2012.12.002

Xu, M., Gonzalez-Hurtado, E., and Martinez, E. 2016. Core promoter-specific gene regulation: TATA box selectivity and Initiator-dependent bi-directionality of serum response factor activated transcription. Biochimica et Biophysica Acta 1859:553–563. https://doi.org/10.1016/j.bbagrm.2016.01.005

Yang, J., Bogert, H. P., Wang, P. J., Page, D. C., and Cullen B. R. 2001. Two closely related human nuclear export factors utilize entirely distinct export pathways. Molecular Cell 8:397–406. https://doi.org/10.1016/S1097-2765(01)00303-3

Zhou, J., Pan, J., Eckardt, S., Leu, N. A., McLaughlin, K. J., and Wang, P. J. 2011. Nxf3 is expressed in Sertoli cells, but is dispensable for spermatogenesis. Molecular Reproduction and Development 78(4):241–249. https://doi.org/10.1002/mrd.21291

Downloads

Published

2019-08-27

How to Cite

Mamon, L., Ginanova, V., Kliver, S., Toropko, M., & Golubkova, E. (2019). Organ-specific transcripts as a source of gene multifunctionality: lessons learned from the <em>Drosophila melanogaster sbr</em> (<em>Dm nxf1</em>) gene. Biological Communications, 64(2), 146–157. https://doi.org/10.21638/spbu03.2019.206

Issue

Section

Review communications

Most read articles by the same author(s)