Genetic Collections of St. Petersburg University

Authors

  • Elena Andreeva Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation; Vavilov Institute of General Genetics, Russian Academy of Sciences, Saint Petersburg Branch, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-9326-3170
  • Mikhail Burlakovskiy Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0001-6694-0423
  • Irina Buzovkina Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation
  • Elena Chekunova Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation
  • Irina Dodueva Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation
  • Elena Golubkova Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-9528-5760
  • Andrew Matveenko Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-9458-0194
  • Andrew Rumyantsev Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-1744-3890
  • Natalia Tsvetkova Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation; Vavilov Institute of General Genetics, Russian Academy of Sciences, Saint Petersburg Branch, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-7353-1107
  • Sergey Zadorsky Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation; Vavilov Institute of General Genetics, Russian Academy of Sciences, Saint Petersburg Branch, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0001-8859-164X
  • Anton Nizhnikov Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation; All-Russia Research Institute for Agricultural Microbiology, shosse Podbel’skogo, 3, Saint Petersburg, 190608, Russian Federation

DOI:

https://doi.org/10.21638/spbu03.2023.308

Abstract

Bioresource collections represent a unique source of biological diversity for research in genetics and related disciplines. The Department of Genetics and Biotechnology of St. Petersburg State University is the oldest department of genetics in Russia, founded in 1919. Throughout the entire period of development, the geneticists of St. Petersburg University have collected unique forms of plants, animals and microorganisms, on which their research was based. Many of these studies including regulation of translation termination in yeast, amyloids and prions of different organisms, genetic mapping of valuable morphological and biochemical traits to create first rye chromosome maps, and several aspects of transcription regulation in plants, had a significant novelty. The most active accumulation of collections of genetic resources at St. Petersburg State University started in the 1950-1970s when important scientific directions in the genetics of microorganisms, plants and animals, many of which continue today, were established at the department. Genetic collections are actively used in educational work for teaching dozens of educational courses. Currently, the interdisciplinary genetic collections of St. Petersburg State University consist of seven sections including genetic collections of rye, radish, garden pea, Chlamydomonas algae, Saccharomyces yeast and plasmids, Komagataella yeast, Drosophila fly. This review describes in detail the collections of the Department of Genetics and Biotechnology of St. Petersburg State University and discusses their current state, application and development prospects.

Keywords:

bioresource collections, genetic collections, yeast, rye, plasmid, Saccharomyces cerevisiae, Drosophila melanogaster, Komagataella phaffii, Secale cereale, Chlamydomonas reinhardtii, Raphanus sativus, Pisum sativum

Downloads

Download data is not yet available.
 

References

Andrianova, V. M., Samsonova, M. G., Sopova, Y. V., and Inge-Vechtomov, S. G. 2003. Catalogue of the Peterhof Genetic Collection of yeast Saccharomyces cerevisiae. 32 pp. St. Petersburg University Press. St. Petersburg. (In Russian)

Antonets, K. S., Belousov, M. V., Sulatskaya, A. I., Belousova, M. E., Kosolapova, A. O., Sulatsky, M. I., Andreeva, E. A., Zykin, P. A., Malovichko, Y. V., Shtark, O. Y., Lykholay, A. N., Volkov, K. V., Kuznetsova, I. M., Turoverov, K. K., Kochetkova, E. Y., Bobylev, A. G., Usachev, K. S., Demidov, O. N., Tikhonovich, I. A., and Nizhnikov, A. A. 2020. Accumulation of storage proteins in plant seeds is mediated by amyloid formation. PLoS Biol 18(7):e3000564. https://doi.org/10.1371/journal.pbio.3000564

Ata, Ö., Ergün, B. G., Fickers, P., Heistinger, L., Mattanovich, D., Rebnegger, C., and Gasser, B. 2021. What makes Komagataella phaffii non-conventional? FEMS Yeast Research 21(8):foab059. https://doi.org/10.1093/femsyr/foab059

Ata, Ö., Rebnegger, C., Tatto, N. E., Valli, M., Mairinger, T., Hann, S., Steiger, M. G., Çalık, P., and Mattanovich, D. 2018. A single Gal4-like transcription factor activates the Crabtree effect in Komagataella phaffii. Nature Communications 9(1):4911. https://doi.org/10.1038/s41467-018-07430-4

Barbitoff, Y. A., Matveenko, A. G., Moskalenko, S. E., Zemlyanko, O. M., Newnam, G. P., Patel, A., Chernova, T. A., Chernoff, Y. O., and Zhouravleva, G. A. 2017. To CURe or not to CURe? Differential effects of the chaperone sorting factor Cur1 on yeast prions are mediated by the chaperone Sis1. Molecular Microbiology 105(2):242–257. https://doi.org/10.1111/mmi.13697

Barbitoff, Y. A., Matveenko, A. G., Matiiv, A. B., Maksiutenko, E. M., Moskalenko, S. E., Drozdova, P. B., Polev, D. E., Beliavskaia, A. Y., Danilov, L. G., Predeus, A. V., and Zhouravleva, G. A. 2021. Chromosome-level genome assembly and structural variant analysis of two laboratory yeast strains from the Peterhof Genetic Collection lineage. G3 11(4):jkab029. https://doi.org/10.1093/g3journal/jkab029

Bernauer, L., Radkohl, A., Lehmayer, L. G. K., and Emmerstorfer-Augustin, A. 2021. Komagataella phaffii as emerging model organism in fundamental research. Frontiers in Microbiology 11:607028. https://doi.org/10.3389/fmicb.2020.607028

Bilova, T. E., Ryabova, D. N., and Anisimova, I. N. 2016. Molecular basis of the dwarfism character in cultivated plants. I. Growth distortions due to mutations of gibberellin metabolism and signaling (review). Agricultural biology 51(1):3–16. https://doi.org/10.15389/agrobiology.2016.1.3.rus (In Russian)

Bondarev, S. A., Shchepachev, V. V., Kajava, A. V., and Zhouravleva, G. A. 2013. Effect of charged residues in the N-domain of Sup35 protein on prion [PSI+] stability and propagation. The Journal of biological Chemistry 288(40):28503–28513. https://doi.org/10.1074/jbc.M113.471805

Botstein, D. and Fink, G. R. 2011. Yeast: an experimental organism for 21st Century biology. Genetics 189(3):695–704. https://doi.org/10.1534/genetics.111.130765

Braun, E-M., Tsvetkova, N., Rotter, B., Siekmann, D., Schwefel, K., Krezdorn, N., Plieske, J., Winter, P., Melz, G., Voylokov, A. V., and Hackauf, B. 2019. Gene expression profiling and fine mapping identifies a gibberellin 2-oxidase gene co-segregating with the dominant dwarfing gene Ddw1 in rye (Secale cereale L.). Frontiers in Plant Science 10:857. https://doi.org/10.3389/fpls.2019.00857

Buzovkina, I. S. and Lutova, L. A. 2007. The genetic collection of radish inbred lines: History and prospects. Russian Journal of Genetics 43:1181–1192. https://doi.org/10.1134/S1022795407100134 (In Russian)

Chabelskaya, S., Kiktev, D., Inge-Vechtomov, S., Philippe, M., and Zhouravleva, G. 2004. Nonsense mutations in the essential gene SUP35 of Saccharomyces cerevisiae are non-lethal. Molecular Genetics and Genomics 272(3):297–307. https://doi.org/10.1007/s00438-004-1053-1

Chekunova, E., Voronetskaya, V., Papenbrock, J., Grimm, B., and Beck, C. F. 2001. Characterization of Chlamydomonas mutants defective in the H subunit of Mg-chelatase. Molecular Genetics and Genomics 266(3):363–373. https://doi.org/10.1007/s004380100574

Chernoff, Y. O., Inge-Vechtomov, S. G., Derkach, I. L., Ptyushkina, M. V., Tarunina, O. V., Dagkesamanskaya, A. R., and Ter-Avanesyan, M. D. 1992. Dosage-dependent translational suppression in yeast Saccharomyces cerevisiae. Yeast 8(7):489–499. https://doi.org/10.1002/yea.320080702

Chernoff, Y. O., Derkach, I. L., and Inge-Vechtomov, S. G. 1993. Multicopy SUP35 gene induces de-novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae. Current Genetics 24(3):268–270. https://doi.org/10.1007/BF00351802

Chernoff, Y. O., Lindquist, S. L., Ono, B., Inge-Vechtomov, S. G., and Liebman, S. W. 1995. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 268(5212):880–884. https://doi.org/10.1126/science.7754373

Cox, B. S. 1965. Ψ, A cytoplasmic suppressor of supersuppressor in yeast. Heredity 20:505–521. https://doi.org/10.1038/hdy.1965.65

Danilov, L. G., Matveenko, A. G., Ryzhkova, V. E., Belousov, M. V., Poleshchuk, O. I., Likholetova, D. V., Sokolov, P. A., Kasyanenko, N. A., Kajava, A. V., Zhouravleva, G. A., and Bondarev, S. A. 2019. Design of a new [PSI+]-no-more mutation in SUP35 with strong inhibitory effect on the [PSI+] prion propagation. Frontiers in Molecular Neuroscience 12:274. https://doi.org/10.3389/fnmol.2019.00274

Derkatch, I. L., Chernoff, Y. O., Kushnirov, V. V., Inge-Vechtomov, S. G., and Liebman, S. W. 1996. Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 144(4):1375–1386. https://doi.org/10.1093/genetics/144.4.1375

Derkatch, I. L., Bradley, M. E., Zhou, P., Chernoff, Y. O., and Liebman, S. W. 1997. Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics 147(2):507–519. https://doi.org/10.1093/genetics/147.2.507

Dodueva, I. E., Lebedeva, M. A., Kuznetsova, K. A., Gancheva, M. S., Paponova, S. S., and Lutova, L. A. 2020. Plant tumors: a hundred years of study. Planta 251(4):82. https://doi.org/10.1007/s00425-020-03375-5

Doonan, J. H. and Sablowski, R. 2010. Walls around tumours — why plants do not develop cancer. Nature Reviews. Cancer 10(11):794–802. https://doi.org/10.1038/nrc2942

Drozdova, P. B., Tarasov, O. V., Matveenko, A. G., Radchenko, E. A., Sopova, J. V., Polev, D. E., Inge-Vechtomov, S. G., and Dobrynin, P. V. 2016a. Genome sequencing and comparative analysis of Saccharomyces cerevisiae strains of the Peterhof genetic collection. PloS one 11(5):e0154722. https://doi.org/10.1371/journal.pone.0154722

Drozdova, P., Mironova, L., and Zhouravleva, G. 2016b. Haploid yeast cells undergo a reversible phenotypic switch associated with chromosome II copy number. BMC Genetics 17(3):152. https://doi.org/10.1186/s12863-016-0464-4

Eaglestone, S. S., Ruddock, L. W., Cox, B. S., and Tuite, M. F. 2000. Guanidine hydrochloride blocks a critical step in the propagation of the prion-like determinant [PSI+] of Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America 97(1):240–244. https://doi.org/10.1073/pnas.97.1.240

Fedorov, V. S. 1961. Genetics of rye (Secale cereale L.). Research in Genetics 1:116–121. (In Russian)

Fedorov, V. S. 1964. Genetics of rye (Secale cereale L.). Inheritance of anthocyanin coloration, wax coating and branching in rye. Research in Genetics 2:100–110. (In Russian)

Fedorov, V. S. and Smirnov, V. G. 1967. Genetics of rye (Secale cereale L.). Report IV. On the genetics of anthocyanin coloration. Russian Journal of Genetics 3:94–102. (In Russian)

Fedorov, V. S., Smirnov, V. G., and Sosnikhina, S. P. 1971. On the results of genetic studies in rye. Research in Genetics 4:117–133. (In Russian)

Golubkova, E., Atsapkina, A., K’ergaard, A., and Mamon, L. 2020. Spermatogenesis in Drosophila melanogaster: key Features and the role of the NXF1 (Nuclear Export Factor) Protein. IntechOpen 9:151–166. https://doi.org/10.5772/intechopen.90917

Goroshchenko, Y. L. 1994. Y. A. Philiptschenko, the founder of the national school of genetics. Research in Genetics 11:12–22. (In Russian)

Harris, E. H. 2001. Chlamydomonas as a model organism. Annual Review of Plant Physiology and Plant Molecular Biology 52:363–406. https://doi.org/10.1146/annurev.arplant.52.1.363

Ianshina, T., Sidorin, A., Petrova, K., Shubert, M., Makeeva, A., Sambuk, E., Govdi, A., Rumyantsev, A., and Padkina, M. 2023. Effect of methionine on gene expression in Komagataella phaffii cells. Microorganisms 11(4):877. https://doi.org/10.3390/microorganisms11040877

Il’ina, E. L., Dodueva, I. E., Ivanova, N. M., and Lutova, L. A. 2006. The effect of cytokinins on in vitro cultured inbred lines of Raphanus sativus var. radicula Pers. with genetically determined tumorigenesis. Russian Journal of Plant Physiology 53:514–522. https://doi.org/10.1134/S1021443706040133 (In Russian)

Inge-Vechtomov, S. G. 1963. New genetic lines of yeast Saccharomyces cerevisiae. Vestnik of Leningrad University. Series “Biology” 21:117–125. (In Russian)

Inge-Vechtomov, S. and Andrianova, V. 1970. Recessive supersuppressors in yeast. Russian Journal of Genetics 6:103. (In Russian)

Inge-Vechtomov, S. G. and Repnevskaya, M. V. 1989. Phenotypic expression of primary lesions of genetic material in Saccharomyces yeasts. Genome 31(2):497–502. https://doi.org/10.1139/g89-097

Inge-Vechtomov, S. G. 2007. “Do not lose the winning games”. To the 100th anniversary of M. E. Lobashev. Russian Journal of Genetics 43(10):1287–1298. (In Russian)

Inge-Vechtomov, S., Zhouravleva, G., and Golubkova, E. 2019. The 100th Anniversary of the Department of Genetics and Biotechnology, St. Petersburg State University. Biological Communications 64(2):77–88. https://doi.org/10.21638/spbu03.2019.201

Iovleva, O. V. and Mylnikov S. V. 2007. Consequences of selection in highly inbred Drosophila strains. Russian Journal of Genetics 43:1108–1119. https://doi.org/10.1134/S1022795407100043 (In Russian)

Iovleva, O. V. 2016. Half-Century-Long Experiment. “Istorikobiologicheskie issledovaniya” journal 8(3):59–77. https://doi.org/10.24411/2076-8176-2016-11875 (In Russian)

Kaĭdanov, L. Z., Myl’nikov, S. V., Galkin, A. P., Iovleva, O. V., Kuznetsova, O. V., and Zimina, N. V. 1997. Genetic effects of destabilizing selection for adaptively important traits in Drosophila melanogaster lines. Genetika 33(8):1102–1109. (In Russian)

Karabelsky, A. V., Zinovieva, Y. G., Smirnov M. N., and Padkina M. V. 2009. Generation of Pichia pastoris yeast strains producing chimeric proteins “albumin-interleukin-2” and “albumin-interferon-α16”. Biological Communications 2:53–63. (In Russian)

Khlestkina, E. K., Zakharova, M. V., Nizhnikov, A. A., Geltman, D. V., Chernetsov, N. S., Mikhailova, N. A., Glotov, A. S., Khlestkin, V. К., Zavarzin, A. A., Mokhov, A. A., and Tikhonovich, I. A. 2022. The first scientific forum “Genetic resources of Russia” — on legal regulation in the field of bioresources and biological collections. Plant Biotechnology and Breeding 5(2):48–54. https://doi.org/10.30901/2658-6266-2022-2-o2 (In Russian)

Kitashiba, H., Li, F., Hirakawa, H., Kawanabe, T., Zou, Z., Hasegawa, Y., Tonosaki, K., Shirasawa, S., Fukushima, A., Yokoi, S., Takahata, Y., Kakizaki, T., Ishida, M., Okamoto, S., Sakamoto, K., Shirasawa, K., Tabata, S., and Nishio, T. 2014. Draft sequences of the radish (Raphanus sativus L.) genome. DNA Research 21(5):481–490. https://doi.org/10.1093/dnares/dsu014

Kosolapova, A. O., Belousov, M. V., Sulatskaya, A. I., Belousova, M. E., Sulatsky, M. I., Antonets, K. S., Volkov, K. V., Lykholay, A. N., Shtark, O. Y., Vasilieva, E. N., Zhukov, V. A., Ivanova, A. N., Zykin, P. A., Kuznetsova, I. M., Turoverov, K. K., Tikhonovich, I. A., and Nizhnikov, A. A. 2019. Two Novel Amyloid Proteins, RopA and RopB, from the Root Nodule Bacterium Rhizobium leguminosarum. Biomolecules 9:e694. https://doi.org/10.3390/biom9110694

Kosolapova, A. O., Belousov, M. V., Sulatsky, M. I., Tsyganova, A. V., Sulatskaya, A. I., Bobylev, A. G., Shtark, O. Y., Tsyganov, V. E., Volkov, K. V., Zhukov, V. A., Tikhonovich, I. A., and Nizhnikov, A. A. 2022. RopB protein of Rhizobium leguminosarum bv. viciae adopts amyloid state during symbiotic interactions with pea (Pisum sativum L.). Frontiers in Plant Science 13:e1014699. https://doi.org/10.3389/fpls.2022.1014699

Kosterin, O. E. 2015. Pea (Pisum sativum L.): the uneasy fate of the first genetical object. Vavilov Journal of Genetics and Breeding 19(1):13–26. https://doi.org/10.18699/VJ15.002 (In Russian)

Kozlov, K. N., Golubkova, E. V., Mamon, L. A., Samsonova, M. G., and Surkova, S. Yu. 2022. Drosophila eye imaginal disc as a model for processing epithelial tissue images. Biophysics 67:216–220. https://doi.org/10.1134/S0006350922020129

Kuznetsova, K., Dodueva, I., Gancheva, M., and Lutova, L. 2022. Transcriptomic analysis of radish (Raphanus sativus L.) roots with CLE41 overexpression. Plants 11(16):2163. https://doi.org/10.3390/plants11162163

Kvitko, K. V., Borshchevskaya, T. N., Chunaev, A. S., and Tugarinov, V. V. 1983. Peterhof genetic collection of strains of green algae Chlorella, Scenedesmus, Chlamydomonas; pp. 28–56 in B. V. Gromov (ed.), Cultivation of collection strains of algae. Leningrad University Press. Leningrad. (In Russian)

Lebedeva (Osipova), M. A., Tvorogova, V. E., Vinogradova, A. P., Gancheva, M. S., Azarakhsh, M., Ilina, E. L., Demchenko, K. N., Dodueva, I. E., and Lutova, L. A. 2015. Initiation of spontaneous tumors in radish (Raphanus sativus): Cellular, molecular and physiological events. Journal of Plant Physiology 173:97–104. https://doi.org/10.1016/j.jplph.2014.07.030

Lebedeva, M., Gancheva, M., Kulaeva, O., Zorin, E., Dobychkina, D., Romanyuk, D., Sulima, A., Zhukov, V., and Lutova, L. 2022a. Identification and expression analysis of the C-TERMINALLY ENCODED PEPTIDE family in Pisum sativum L. International Journal of Molecular Sciences 23:14875. https://doi.org/10.3390/ijms232314875

Lebedeva, M., Sadikova, D., Dobychkina, D., Zhukov, V., and Lutova, L. 2022b. CLAVATA3/EMBRYO SURROUNDING REGION genes involved in symbiotic nodulation in Pisum sativum. Agronomy 12:2840. https://doi.org/10.3390/agronomy12112840

Lutova, L. A. and Dodueva, I. E. 2019. Genetic control of regeneration processes of radish plants in vitro: from phenotype to genotype. Biological Communications 64(2):124–132. https://doi.org/10.21638/spbu03.2019.204

Maksiutenko, E. M., Barbitoff, Y. A., Matveenko, A. G., Moskalenko, S. E., and Zhouravleva, G. A. 2021. Gene amplification as a mechanism of yeast adaptation to nonsense mutations in release factor genes. Genes 12(12):2019. https://doi.org/10.3390/genes12122019

Mamon, L. A., Ginanova, V. R., Kliver, S. F., Yakimova, A. O., Atsapkina, A. A., and Golubkova, E. V. 2017. RNA-binding proteins of the NXF (nuclear export factor) family and their connection with the cytoskeleton. Cytoskeleton 74:161–169. https://doi.org/10.1002/cm.21362

Mamon, L., Ginanova, V., Kliver, S., Toropko, M., and Golubkova, E. 2019. Organ-specific transcripts as a source of gene multifunctionality: lessons learned from the Drosophila melanogaster sbr (Dm nxf1) gene. Biological Communications 64(2):146–157. https://doi.org/10.21638/spbu03.2019.206

Mamon, L., Yakimova, A., Kopytova, D., and Golubkova, E. 2021. The RNA-binding protein SBR (Dm NXF1) is required for the constitution of medulla boundaries in Drosophila melanogaster optic lobes. Cells 10:1144. https://doi.org/10.3390/cells10051144

Matveenko, A. G., Drozdova, P. B., Belousov, M. V., Moskalenko, S. E., Bondarev, S. A., Barbitoff, Y. A., Nizhnikov, A. A., and Zhouravleva, G. A. 2016. SFP1-mediated prion-dependent lethality is caused by increased Sup35 aggregation and alleviated by Sis1. Genes to Cells 21(12):1290–1308. https://doi.org/10.1111/gtc.12444

Matveenko, A. G., Barbitoff, Y. A., Jay-Garcia, L. M., Chernoff, Y. O., and Zhouravleva, G. A. 2018. Differential effects of chaperones on yeast prions: CURrent view. Current Genetics 64(2):317–325. https://doi.org/10.1007/s00294-017-0750-3

Matveenko, A. G., Drozdova, P. B., Moskalenko, S. E., Tarasov, O. V., and Zhouravleva, G. A. 2019. Whole genome sequencing data and analyses of the underlying SUP35 transcriptional regulation for a Saccharomyces cerevisiae nonsense suppressor mutant. Data in Brief 23:103694. https://doi.org/10.1016/j.dib.2019.01.042

Matveeva, T., Frolova, N., Smets, R., Dodueva, I., Buzovkina, I., Onckelen, H. van, and Lutova, L. 2004. Hormonal control of tumor formation in radish. Journal of Plant Growth Regulation 23(1):37–43. https://doi.org/10.1007/s00344-004-0004-8

Mortimer, R. K. and Johnston, J. R. 1986. Genealogy of principal strains of the yeast genetic stock center. Genetics 113(1):35–43. https://doi.org/10.1093/genetics/113.1.35

Moskalenko, S. E., Chabelskaya, S. V., Inge-Vechtomov, S. G., Philippe, M., and Zhouravleva, G. A. 2003. Viable nonsense mutants for the essential gene SUP45 of Saccharomyces cerevisiae. BMC Molecular Biology 4:2. https://doi.org/10.1186/1471-2199-4-2

Narbut, S. I. 1966. Genetic collection of inbred lines of radish. Russian Journal of Genetics 5:89–100. (In Russian)

Narbut, S. I. 1967. Genetic tumor generated during inbreeding in radish. Vestnik of Leningrad University. Series “Biology” 15:144–149. (In Russian)

Nizhnikov, A. A., Magomedova, Z. M., Rubel, A. A., Kondrashkina, A. M., Inge-Vechtomov, S. G., and Galkin, A. P. 2012. [NSI+] determinant has a pleiotropic phenotypic manifestation that is modulated by SUP35, SUP45, and VTS1 genes. Current Genetics 58:35–47. https://doi.org/10.1007/s00294-011-0363-1

Nizhnikov, А. А., Ryzhova, T. А., Volkov, K. V., Zadorsky, S. P., Sopova, J. V., Inge-Vechtomov, S. G., and Galkin, A. P. 2016. Interaction of prions causes heritable traits in Saccharomyces cerevisiae. PLOS Genetics 12:e1006504. https://doi.org/10.1371/journal.pgen.1006504

Rumyantsev, A., Sidorin, A., Volkov, A., Al Shanaa, O., Sambuk, E., and Padkina, M. 2021. Transcriptome analysis unveils the effects of proline on gene expression in the yeast Komagataella phaffii. Microorganisms 10(1):67. https://doi.org/10.3390/microorganisms10010067

Ryzhova, T. A., Sopova, J. V., Zadorsky, S. P., Siniukova, V. A., Sergeeva, A. V., Galkina, S. A., Nizhnikov, A. A., Shenfeld, A. A., Volkov, K. V., and Galkin, A. P. 2018. Screening for amyloid proteins in the yeast proteome. Current Genetics 64(2):469–478. https://doi.org/10.1007/s00294-017-0759-7

Saifitdinova, A. F., Nizhnikov, A. A., Lada, A. G., Rubel, A. A., Magomedova, Z. M., Ignatova, V. V., Inge-Vechtomov, S. G., and Galkin, A. P. 2010. [NSI+]: a novel non-Mendelian nonsense suppressor determinant in Saccharomyces cerevisiae. Current Genetics 56:467-478. https://doi.org/10.1007/s00294-010-0314-2

Sergeeva, A. V., Sopova, J. V., Belashova, T. A., Siniukova, V. A., Chirinskaite, A. V., Galkin, A. P., and Zadorsky, S. P. 2019. Amyloid properties of the yeast cell wall protein Toh1 and its interaction with prion proteins Rnq1 and Sup35. Prion 13(1):21–32. https://doi.org/10.1080/19336896.2018.1558763

Sherman, F., Fink, G., and Hicks, J. 1983. Methods in yeast Genetics. 120 pp. Cold Spring Harbor Laboratory. New York.

Sherstnev, N. F. 1980. Winter rye in Siberia and the Urals. 63 pp. Rossiiskoe sel'kokhoziaistvennoe izdatel'stvo Publ. Moscow. (In Russian)

Sosnikhina, S. P., Mikhailova, E. I., Tikholiz, O. A., Priyatkina, S. N., Smirnov, V. G., Dadashev, S. Y., Kolomiets, O. L., and Bogdanov, Y. F. 2005. Meiotic mutations in rye Secale cereale L. Cytogenetic and Genome Research 109(1–3):215–220. https://doi.org/10.1159/000082403

Stansfield, I., Jones, K. M., Kushnirov, V. V., Dagkesamanskaya, A. R., Poznyakovski, A. I., Paushkin, S. V., Nierras, C. R., Cox, B. S., Ter-Avanesyan, M. D., and Tuite, M. F. 1995. The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. The EMBO Journal 14(17):4365–4373. https://doi.org/10.1002/j.1460-2075.1995.tb00111.x

Stepchenkova, E. I., Kochenova, O. V., Zhuk, A. S., Andreĭchuk, Iu. V., and Inge-Vechtomov, S. G. 2011. Phenotypic manifestation and trans-conversion of primary genetic material damages considered in the alpha-test on the yeast Saccharomyces cerevisiae. Hygiene and Sanitation 6:64–69. (In Russian)

Stolbova, A. V. 1974. Genetic analysis of pigment mutations of Chlamydomonas reinhardi. I. Identification of the basic pigments and description of a collection of pigmented forms. Soviet genetics 7(9):1171–1175. (In Russian)

Surkova, S., Golubkova, E., Mamon, L., and Samsonova, M. 2018. Dynamic maternal gradients and morphogenetic networks in Drosophila early embryo. Bio Systems 173:207–213. https://doi.org/10.1016/j.biosystems.2018.10.009

Ter-Avanesyan, M. D., Kushnirov, V. V., Dagkesamanskaya, A. R., Didichenko, S. A., Chernoff, Y. O., Inge-Vechtomov, S. G., and Smirnov, V. N. 1993. Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Molecular Microbiology 7(5):683–692. https://doi.org/10.1111/j.1365-2958.1993.tb01159.x

Tikhenko, N., Rutten, T., Tsvetkova, N., Voylokov, A., and Börner, A. 2015. Hybrid dwarfness in crosses between wheat (Triticum aestivum L.) and rye (Secale cereale L.): a new look at an old phenomenon. Plant Biology 17(2):320–326. https://doi.org/10.1111/plb.12237

Tikhonovich, I. A., Geltman, D. V., Chernetsov, N. S., Mikhailova, N. А., Glotov, A. S., Khlestkin, V. K., Ukhatova, Y. V., Zavarzin, А. A., Nizhnikov, A. A., and Khlestkina, E. K. 2022. On the results of the First Scientific Forum “Genetic Resources of Russia”: prospects for development, research and practical potential of bio-collections. Plant Biotechnology and Breeding 5(2):38–47. https://doi.org/10.30901/2658-6266-2022-2-o4 (In Russian)

Tkachenko, A., Dodueva, I., Tvorogova, V., Predeus, A., Pravdina, O., Kuznetsova, K., and Lutova, L. 2021. Transcriptomic analysis of radish (Raphanus sativus L.) spontaneous tumor. Plants 10(5):919. https://doi.org/10.3390/plants10050919

Trubitsina, N. P., Zemlyanko, O. M., Bondarev, S. A., and Zhouravleva, G. A. 2020. Nonsense mutations in the yeast SUP35 gene affect the [PSI+] prion propagation. International Journal of Molecular Sciences 21(5):1648. https://doi.org/10.3390/ijms21051648

Tsvetkova, N. V., Tikhenko, N. D., Hackauf, B., and Voylokov, A. V. 2018. Two rye genes responsible for abnormal development of wheat-rye hybrids are linked in the vicinity of an evolutionary translocation on chromosome 6R. Plants 7(3):55. https://doi.org/10.3390/plants7030055

Volkov, K. V., Aksenova, A. Y., Soom, M. J., Osipov, K. V., Svitin, A. V., Kurischko, C., Shkundina, I. S., Ter-Avanesyan, M. D., Inge-Vechtomov, S. G., and Mironova, L. N. 2002. Novel non-Mendelian determinant involved in the control of translation accuracy in Saccharomyces cerevisiae. Genetics 160(1):25–36. https://doi.org/10.1093/genetics/160.1.25

Voylokov, A. V., Fuong, F. T., and Smirnov, V. G. 1993. Genetic studies of self-fertility in rye (Secale cereale L.). 1. The identification of genotypes of self-fertile lines for the Sf alleles of self-incompatibility genes. Theoretical and Applied Genetics 87(5):616–618. https://doi.org/10.1007/BF00221887

Voylokov, A., Korzun, V., and Börner, A. 1998. Mapping of three self-fertility mutations in rye (Secale cereale L.) using RFLP, isozyme and morphological markers. Theoretical and Applied Genetics 97:147–153. https://doi.org/10.1007/s001220050879

Wickner, R. B. 1994. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264(5158):566–569. https://doi.org/10.1126/science.7909170

Xu, L., Wang, Y., Dong, J., Zhang, W., Tang, M., Zhang, W., Wang, K., Chen, Y., Zhang, X., He, Q., Zhang, X., Wang, K., Wang, L., Ma, Y., Xia, K., and Liu, L. 2023. A chromosomelevel genome assembly of radish (Raphanus sativus L.) reveals insights into genome adaptation and differential bolting regulation. Plant Biotechnology Journal 21(5):990–1004. https://doi.org/10.1111/pbi.14011

Yakimova, A. O., Golubkova, E. V., Sarantseva, S. V., and Mamon L. A. 2018. Ellipsoid body and medulla defects and locomotion disturbances in sbr (small bristles) mutants of Drosophila melanogaster. Russian Journal of Genetics 54(6):609–617. https://doi.org/10.1134/S1022795418060145 (In Russian)

Zhouravleva, G., Frolova, L., Le Goff, X., Le Guellec, R., Inge-Vechtomov, S., Kisselev, L., and Philippe, M. 1995. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. The EMBO Journal 14(16):4065–4072. https://doi.org/10.1002/j.1460-2075.1995.tb00078.x

Zhouravleva, G. A., Bondarev, S. A., Zemlyanko, O. M., and Moskalenko, S. E. 2022. Role of proteins interacting with the eRF1 and eRF3 release factors in the regulation of translation and prionization. Molekuliarnaia biologiia 56(2):206–226. https://doi.org/10.31857/S002689842201013X (In Russian)

Zhuk, A. S., Stepchenkova, E. I., and Inge-Vechtomov, S. G. 2020. Detection of modifications of DNA primary structure that arose under the action of an analogue of nitrogenous bases 6-n-hydroxylaminopurine by the alpha test in the yeast Saccharomyces cerevisiae. Ecological Genetics 18(3):357–366. https://doi.org/10.17816/ecogen34581 (In Russian)

Zhukov, V. A., Zhernakov, A. I., Belozerova, M. Y., Dodueva, I. E., Lebedeva, M. A., Lutova, L. A., and Tikhonovich, I. A. 2022. Diversity of PsSym29 and PsNRLK1 genes in the VIR germplasm collection of pea (Pisum sativum L.). Ecological Genetics 20(4):271–278. https://doi.org/10.17816/ecogen111959

Zykin, P. A., Andreeva, E. A., Lykholay, A. N., Tsvetkova, N. V., and Voylokov, A. V. 2018. Anthocyanin composition and content in rye plants with different grain color. Molecules 23(4):948. https://doi.org/10.3390/molecules23040948

Downloads

Published

2023-11-30

How to Cite

Andreeva, E., Burlakovskiy, M., Buzovkina, I., Chekunova, E., Dodueva, I., Golubkova, E., … Nizhnikov, A. (2023). Genetic Collections of St. Petersburg University. Biological Communications, 68(3), 199–214. https://doi.org/10.21638/spbu03.2023.308

Issue

Section

Review communications

Categories