Mild osmotic stress in intertidal gastropods Littorina saxatilis and Littorina obtusata (Mollusca: Caenogastropoda): a proteomic analysis

  • Olga Muraeva Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab. 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0003-3932-2624
  • Arina Maltseva Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab. 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0003-1973-4728
  • Marina Varfolomeeva Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab. 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0003-0887-8486
  • Natalia Mikhailova Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab. 7–9, Saint Petersburg, 199034, Russian Federation; Center of Cell Technologies, Institute of Cytology RAS, Tikhoretsky pr. 4, Saint Petersburg, 194064, Russian Federation https://orcid.org/0000-0003-1650-9330
  • Andrey Granovitch Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab. 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-5203-104X

Abstract

Salinity is a crucial abiotic environmental factor for marine animals, affecting their physiology and geographic ranges. Deviation of environmental salinity from the organismal optimum range results in an osmotic stress in osmoconformers, which keep their fluids isotonic to the environment. The ability to overcome such stress is critical for animals inhabiting areas with considerable salinity variation, such as intertidal areas. In this study, we compared the reaction to mild water freshening (from 24 to 14 ‰) in two related species of intertidal snails, Littorina saxatilis and L. obtusata, with respect to several aspects: survival, behavior and proteomic changes. Among these species, L. saxatilis is more tolerant to low salinity and survives in estuaries. We found out that the response of these species was much milder (with no mortality or isolation reaction observed) and involved weaker proteomic changes than during acute stress (freshening from 24 to 10 ‰), characterized earlier. The proteomic response of the second species, L. obtusata, was weaker (6 % vs 10 % of regulated proteins) than that of L. saxatilis and engaged mainly other proteins. Among proteins potentially involved in adaptation to low salinity, we identified enzymes of energetic metabolism and antioxidant response, chaperones, proteins of extracellular matrix and cytoskeleton, ion channels and regulators of cell growth and proliferation.

Keywords:

salinity adaptation, osmotic stress, proteomic analysis, intertidal molluscs, periwinkles, Littorina, 2D-DIGE

Downloads

Download data is not yet available.
 

References

Abe, H., Hirai, S., Okada, S. 2007. Metabolic responses and arginine kinase expression under hypoxic stress of the kuruma prawn Marsupenaeus japonicus. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 146(1):40–46. https://doi.org/10.1016/j.cbpa.2006.08.027

An, M. I., Choi, C. Y. 2010. Activity of antioxidant enzymes and physiological responses in ark shell, Scapharca broughtonii, exposed to thermal and osmotic stress: effects on hemolymph and biochemical parameters. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 155(1):34–42. https://doi.org/10.1016/j.cbpb.2009.09.008

Berger, V. Ya. 1986. Adaptatsiya morskikh mollyuskov k izmeneniyam solenosti sredy [Adaptations of Marine Mollusks to Changes of Environmental Salinity], Izdatelstvo Nauka, Leningrad.

Bishop, C. M., 1999. Bayesian pca. In: Advances in neural information processing systems: 382–388.

Bommer, U. A., Thiele, B. J. 2004. The translationally controlled tumour protein (TCTP). The International Journal of Biochemistry and Cell Biology 36(3):379–385. https://doi.org/10.1016/S1357-2725(03)00213-9

Brioudes, F., Thierry, A. M., Chambrier, P., Mollereau, B., Bendahmane, M. 2010. Translationally controlled tumor protein is a conserved mitotic growth integrator in animals and plants. Proceedings of the National Academy of Sciences 107(37):16384–16389. https://doi.org/10.1073/pnas.1007926107

Bussell, J. A., Gidman, E. A., Causton, D. R., Gwynn-Jones, D., Malham, S. K., Jones, M. L. M., … Seed, R. 2008. Changes in the immune response and metabolic fingerprint of the mussel, Mytilus edulis (Linnaeus) in response to lowered salinity and physical stress. Journal of Experimental Marine Biology and Ecology 358(1):78–85. https://doi.org/10.1016/j.jembe.2008.01.018

Butlin, R. K., Saura, M., Charrier, G., Jackson, B., André, C., Caballero, A., … Kemppainen, P. 2014. Parallel evolution of local adaptation and reproductive isolation in the face of gene flow. Evolution 68(4):935–949. https://doi.org/10.1111/evo.12329

Canbäck, B., André, C., Galindo, J., Johannesson, K., Johansson, T., Panova, M., … Butlin, R. 2012. The Littorina sequence database (LSD) — an online resource for genomic data. Molecular ecology resources 12(1):142–148. https://doi.org/10.1111/j.1755-0998.2011.03042.x

Carregosa, V., Velez, C., Soares, A. M., Figueira, E., Freitas, R. 2014. Physiological and biochemical responses of three Veneridae clams exposed to salinity changes. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 177:1–9. https://doi.org/10.1016/j.cbpb.2014.08.001

Cheng, W., Juang, F. M., Chen, J. C. 2004. The immune response of Taiwan abalone Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus at different salinity levels. Fish and Shellfish Immunology 16(3):295–306. https://doi.org/10.1016/S1050-4648(03)00111-6

Conde-Padín, P., Caballero, A., Rolán-Alvarez, E. 2009. Relative role of genetic determination and plastic response during ontogeny for shell-shape traits subjected to diversifying selection. Evolution 63(5):1356–1363. https://doi.org/10.1111/j.1558-5646.2009.00636.x

De Zoysa, M., Whang, I., Lee, Y., Lee, S., Lee, J. S., Lee, J. 2009. Transcriptional analysis of antioxidant and immune defense genes in disk abalone (Haliotis discus discus) during thermal, low-salinity and hypoxic stress. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 154(4):387–395. https://doi.org/10.1016/j.cbpb.2009.08.002

Deprost, D., Yao, L., Sormani, R., Moreau, M., Leterreux, G., Nicolaï, M., … Meyer, C. 2007. The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO Reports 8(9):864–870. https://doi.org/10.1038/sj.embor.7401043

Diz, A. P., Truebano, M., Skibinski, D. O. 2009. The consequences of sample pooling in proteomics: an empirical study. Electrophoresis 30(17):2967–2975. https://doi.org/10.1002/elps.200900210

Fields, P. A., Burmester, E. M., Cox, K. M., Karch, K. R. 2016. Rapid proteomic responses to a near-lethal heat stress in the salt marsh mussel Geukensia demissa. Journal of Experimental Biology 219(17):2673–2686. https://doi.org/10.1242/jeb.141176

Galili, T. 2015. dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics 31(22):3718–3720. https://doi.org/10.1093/bioinformatics/btv428

Galindo, J., Grahame, J. W., Butlin, R. K. 2010. An EST-based genome scan using 454 sequencing in the marine snail Littorina saxatilis. Journal of Evolutionary Biology 23(9):2004–2016. https://doi.org/10.1111/j.1420-9101.2010.02071.x

Gharbi, A., Farcy, E., Van Wormhoudt, A., Denis, F. 2016. Response of the carpet shell clam (Ruditapes decussatus) and the Manila clam (Ruditapes philippinarum) to salinity stress. Biologia 71(5):551–562. https://doi.org/10.1515/biolog-2016-0072

Granovitch, A. I., Maximovich, A. N. 2013. Long-term population dynamics of Littorina obtusata: the spatial structure and impact of trematodes. Hydrobiologia 706(1):91–101. https://doi.org/10.1007/s10750-012-1411-7

Granovitch, A. I., Yagunova, E. B., Maximovich, A. N., Sokolova, I. M. 2009. Elevated female fecundity as a possible compensatory mechanism in response to trematode infestation in populations of Littorina saxatilis (Olivi). International Journal for Parasitology 39(9):1011–1019. https://doi.org/10.1016/j.ijpara.2009.02.014

Granovitch, A. I., Mikhailova, N. A., Znamenskaya, O., Petrova Yu. A. 2004. Species complex of mollusks of the genus Littorina (Gastropoda: Prosobranchia) from the eastern Murman coast. Zoologicheskij Zhurnal 83(11):1305–1316.

Granovitch, A. I., Maximovich, A. N., Avanesyan, A. V., Starunova, Z. I., Mikhailova, N. A. 2013. Micro-spatial distribution of two sibling periwinkle species across the intertidal indicates hybrdization. Genetica 141(7–9):293–301. https://doi.org/10.1007/s10709-013-9728-3

Granovitch, A. I. 2016. From host–parasite systems to parasitic systems: Interactions of littoral mollusks of the genus Littorina with their trematode parasites. Biology Bulletin 43(8):776–787. https://doi.org/10.1134/S1062359016080094

Gunter, G. 1961. Some relations of estuarine organisms to salinity. Limnology and Oceanography 6(2):182–190. https://doi.org/10.4319/lo.1961.6.2.0182

Hansen, D. V., Rattray, M. 1966. New dimensions in estuary classification. Limnology and Oceanography 11(3):319–326. https://doi.org/10.4319/lo.1966.11.3.0319

Hartl, F. U. 1996. Molecular chaperones in cellular protein folding. Nature 381(6583):571–580. https://doi.org/10.1038/381571a0

Hartl, F. U., Bracher, A., Hayer-Hartl, M. 2011. Molecular chaperones in protein folding and proteostasis. Nature 475(7356):324–332. https://doi.org/10.1038/nature10317

Hayes, J. D., & Strange, R. C. 2000. Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology 61(3):154–166. https://doi.org/10.1159/000028396

Honorato, T. B. M., Boni, R., da Silva, P. M., Marques-Santos, L. F. 2017. Effects of salinity on the immune system cells of the tropical sea urchin Echinometra lucunter. Journal of Experimental Marine Biology and Ecology 486:22–31. https://doi.org/10.1016/j.jembe.2016.09.012

Hoy, M., Boese, B. L., Taylor, L., Reusser, D., Rodriguez, R. 2012. Salinity adaptation of the invasive New Zealand mud snail (Potamopyrgus antipodarum) in the Columbia River estuary (Pacific Northwest, USA): physiological and molecular studies. Aquatic Ecology 46(2):249–260. https://doi.org/10.1007/s10452-012-9396-x

Jauzein, C., Donaghy, L., & Volety, A. K. 2013. Flow cytometric characterization of hemocytes of the sunray venus clam Macrocallista nimbosa and influence of salinity variation. Fish and Shellfish Immunology 35(3):716–724. https://doi.org/10.1016/j.fsi.2013.06.003

Jiang, H., Li, F., Xie, Y., Huang, B., Zhang, J., Zhang, J., … Xiang, J. 2009. Comparative proteomic profiles of the hepatopancreas in Fenneropenaeus chinensis response to hypoxic stress. Proteomics 9(12):3353–3367. https://doi.org/10.1002/pmic.200800518

Johannesson, K., Rolán-Alvarez, E., & Erlandsson, J. 1997. Growth rate differences between upper and lower shore ecotypes of the marine snail Littorina saxatilis (Olivi) (Gastropoda). Biological Journal of the Linnean Society 61(2):267–279. https://doi.org/10.1111/j.1095-8312.1997.tb01790.x

Kamradt, M. C., Lu, M., Werner, M. E., Kwan, T., Chen, F., Strohecker, A., … Duckett, C. S. 2005. The small heat shock protein αB-crystallin is a novel inhibitor of TRAIL-induced apoptosis that suppresses the activation of caspase-3. Journal of Biological Chemistry 280(12):11059–11066.

Khlebovich, V. V., Aladin, N. V. 2010. Factor solyonosti v zhizni zhivotnykh [Salinity factor in animal living]. Vestnik Rossiyskoy Akademii Nauk 80(5–6):527–532.

Kültz, D., Fiol, D., Valkova, N., Gomez-Jimenez, S., Chan, S. Y., Lee, J. 2007. Functional genomics and proteomics of the cellular osmotic stress response in non-model’ organisms. Journal of Experimental Biology 210(9):1593–1601. https://doi.org/10.1242/jeb.000141

Kumari, S., nee Sabharwal, V. P., Kushwaha, H. R., Sopory, S. K., Singla-Pareek, S. L., Pareek, A. 2009. Transcriptome map for seedling stage specific salinity stress response indicates a specific set of genes as candidate for saline tolerance in Oryza sativa L. Functional and Integrative Genomics 9(1):109. https://doi.org/10.1007/s10142-008-0088-5

Lemasters, J. J., Holmuhamedov, E. 2006. Voltage-dependent anion channel (VDAC) as mitochondrial governator — thinking outside the box. Biochimica et Biophysica Acta (BBA) — Molecular Basis of Disease 1762(2):181–190. https://doi.org/10.1016/j.bbadis.2005.10.006

Li, Y., Zhang, L., Qu, T., Li, L., Zhang, G. 2016. Characterization of oyster voltage-dependent anion channel 2 (VDAC2) suggests its involvement in apoptosis and host defense. PloS One 11(1):e0146049. https://doi.org/10.1371/journal.pone.0146049

Lobov, A. A., Maltseva, A. L., Mikhailova, N. A., Granovitch, A. I. 2015. LOSP: a newly identified sperm protein from Littorina obtusata. Journal of Molluscan Studies 81(4):512–515. https://doi.org/10.1093/mollus/eyv010

Lockwood, B. L., Somero, G. N. 2011. Transcriptomic responses to salinity stress in invasive and native blue mussels (genus Mytilus). Molecular Ecology 20(3):517–529. https://doi.org/10.1111/j.1365–294X.2010.04973.x

Lushchak, V. I. 2011. Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicology 101(1):13–30. https://doi.org/10.1016/j.aquatox.2010.10.006

Maltseva, A. L., Varfolomeeva, M. A., Lobov, A. A., Mikhailova, N. A., Renaud, P. E., Grishankov, A. V., … Granovitch, A. I. 2016. Measuring physiological similarity of closely related littorinid species: a proteomic insight. Marine Ecology Progress Series 552:177–193. https://doi.org/10.3354/meps11770

Meng, X. L., Dong, Y. W., Dong, S. L., Yu, S. S., Zhou, X. 2011. Mortality of the sea cucumber, Apostichopus japonicus Selenka, exposed to acute salinity decrease and related physiological responses: osmoregulation and heat shock protein expression. Aquaculture 316(1):88–92. https://doi.org/10.1016/j.aquaculture.2011.03.003

Meng, J., Zhu, Q., Zhang, L., Li, C., Li, L., She, Z. … Zhang, G. 2013. Genome and transcriptome analyses provide insight into the euryhaline adaptation mechanism of Crassostrea gigas. PLoS One 8(3):e58563. https://doi.org/10.1371/journal.pone.0058563

Mikhailova, N. A., Gracheva, Y. A., Backeljau, T., Granovitch, A. I. 2009. A potential species-specific molecular marker suggests interspecific hybridization between sibling species Littorina arcana and L. saxatilis (Mollusca, Caenogastropoda) in natural populations. Genetica 137(3):333. https://doi.org/10.1007/s10709-009-9397-4

Morrison, J. F. 1973. 13 Arginine Kinase and Other Invertebrate Guanidino Kinases. The Enzymes 8:457–486. https://doi.org/10.1016/S1874-6047(08)60073-6

Muraeva, O. A., Maltseva, A. L., Mikhailova, N. A., Granovitch, A. I. 2016. Mechanisms of adaption to salinity stress in marine gastropods Littorina saxatilis: a proteomic analysis. Cell and Tissue Biology 10(2):160–169. https://doi.org/10.1134/S1990519X16020085

Oksanen, J. F., Blanchet, G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, , R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., and Wagner H. 2017. vegan: Community Ecology Package. R package, version 2.4–4. URL: https://CRAN.R-project.org/package=vegan

Panova, M., Johannesson, K. 2004. Microscale variation in AAT (aspartate aminotransferase) is supported by activity differences between upper and lower shore allozymes of Littorina saxatilis. Marine Biology 144(6):1157–1164. https://doi.org/10.1007/s00227-003-1274-6

Panova, M., Hollander, J., Johannesson, K. 2006. Site-specific genetic divergence in parallel hybrid zones suggests nonallopatric evolution of reproductive barriers. Molecular Ecology 15(13):4021–4031. https://doi.org/10.1111/j.1365-294X.2006.03067.x

Pierce, S. K. 1982. Invertebrate cell volume control mechanisms: a coordinated use of intracellular amino acids and inorganic ions as osmotic solute. The Biological Bulletin 163(3):405–419. https://doi.org/10.2307/1541452

Plekhanov, A., Smurov, A. O., Podlipaeva, I., Ivanova, L. O., Gudkov, A. V. 2006. Heat shock proteins of freshwater protists and their involvement in adaptation to changes in the environmental salinity. Tsitologiia 48(6):530–534.

Podlipaeva, Y. I., Berger, V. Y. 2012. The effect of environmental salinity on the level of heat shock proteins in gill epithelium of Mytilus edilis L. mussel. Cell and Tissue Biology 6(5):498–502.

Podlipaeva, Y. I., Goodkov, A. V., Berger, V. Y. 2016. Changes in the 70 kDa stress protein content in the course of the Mytilus edulis L. mollusk acclimation to low salinity. Cell and Tissue Biology 10(5):430–434. https://doi.org/10.1134/S1990519X16050114

Quesada, H., Posada, D., Caballero, A., Morán, P., Rolán-Alvarez, E. 2007. Phylogenetic evidence for multiple sympatric ecological diversification in a marine snail. Evolution 61(7):1600–1612. https://doi.org/10.1111/j.1558-5646.2007.00135.x

R Core Team 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Ravinet, M., Westram, A., Johannesson, K., Butlin, R., André, C., Panova, M. 2016. Shared and nonshared genomic divergence in parallel ecotypes of Littorina saxatilis at a local scale. Molecular Ecology 25(1):287–305. https://doi.org/10.1111/mec.13332

Redfield, A. C. 1958. The biological control of chemical factors in the environment. American Scientist 46(3):230A–221.

Reid, D. G. 1996. Systematics and evolution of Littorina (No. 164). Ray Society. https://doi.org/10.1017/S002531540004114X

Robertson, J. D. 1941. The function and metabolism of calcium in the invertebrata. Biological Reviews 16(2):106–133. https://doi.org/10.1111/j.1469-185X.1941.tb01097.x

Rolan-Alvarez, E., Austin, C., Boulding, E. G. 2015. The contribution of the genus Littorina to the field of evolutionary ecology. Oceanography and Marine Biology: an Annual Review 53:157–214. https://doi.org/10.1201/b18733–6

Santa Brígida, A. B., Dos Reis, S. P., Costa, C. D. N. M., Cardoso, C. M. Y., Lima, A. M., de Souza, C. R. B. 2014. Molecular cloning and characterization of a cassava translationally controlled tumor protein gene potentially related to salt stress response. Molecular Biology Reports 41(3):1787–1797. https://doi.org/10.1007/s11033-014-3028-6

Seveso, D., Montano, S., Strona, G., Orlandi, I., Galli, P., Vai, M. 2013. Exploring the effect of salinity changes on the levels of Hsp60 in the tropical coral Seriatopora caliendrum. Marine Environmental Research 90:96–103. https://doi.org/10.1016/j.marenvres.2013.06.002

Sokolova, I. M., Pörtner, H. O. 2001a. Physiological adaptations to high intertidal life involve improved water conservation abilities and metabolic rate depression in Littorina saxatilis. Marine Ecology Progress Series 224:171–186. https://doi.org/10.3354/meps224171

Sokolova, I., Pörtner, H. O. 2001b. Temperature effects on key metabolic enzymes in Littorina saxatilis and L. obtusata from different latitudes and shore levels. Marine Biology 139(1):113–126. https://doi.org/10.1007/s002270100557

Sokolova, I. M., Bock, C., Pörtner, H. O. 2000. Resistance to freshwater exposure in White Sea Littorina spp. I: Anaerobic metabolism and energetics. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 170(2):91–103. https://doi.org/10.1007/s003600050264

Stacklies, W., Redestig, H., Scholz, M., Walther, D., Selbig, J. 2007. pcaMethods — a bioconductor package providing PCA methods for incomplete data. Bioinformatics 23(9):1164–1167. https://doi.org/10.1093/bioinformatics/btm069

Storey, K. B., Lant, B., Anozie, O. O., Storey, J. M. 2013. Metabolic mechanisms for anoxia tolerance and freezing survival in the intertidal gastropod, Littorina littorea. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology 165(4):448–459. https://doi.org/10.1016/j.cbpa.2013.03.009

Strange, R. C., Spiteri, M. A., Ramachandran, S., Fryer, A. A. 2001. Glutathione-S-transferase family of enzymes. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 482(1):21–26. https://doi.org/10.1016/S0027-5107(01)00206-8

Stucchi-Zucchi, A., Salomão, L. C. 1998. The ionic basis of membrane potentials and adaptation to hyposmotic stress in Perna perna, an osmoconforming mollusc. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology 121(2):143–148. https://doi.org/10.1016/S1095-6433(98)10115-0

Suzuki, R. and Shimodaira, H. 2015. pvclust: Hierarchical Clustering with P-Values via Multiscale Bootstrap Resampling. R package version 2.0–0. URL: https://CRAN.Rproject.org/package=pvclust

Tabata, S. 1961. Temporal changes of salinity, temperature, and dissolved oxygen content of the water at Station” P” in the northeast Pacific Ocean, and some of their determining factors. Journal of the Fisheries Board of Canada 18(6):1073–1124. https://doi.org/10.1139/f61-066

Tomanek, L., and Zuzow, M. J. 2010. The proteomic response of the mussel congeners Mytilus galloprovincialis and M. trossulus to acute heat stress: implications for thermal tolerance limits and metabolic costs of thermal stress. Journal of Experimental Biology 213(20):3559–3574. https://doi.org/10.1242/jeb.041228

Tomanek, L., Zuzow, M. J., Hitt, L., Serafini, L., Valenzuela, J. J. 2012. Proteomics of hyposaline stress in blue mussel congeners (genus Mytilus): implications for biogeographic range limits in response to climate change. Journal of Experimental Biology 215(22):3905–3916. https://doi.org/10.1242/jeb.076448

Tsujimoto, Y., Shimizu, S. 2002. The voltage-dependent anion channel: an essential player in apoptosis. Biochimie 84(2):187–193. https://doi.org/10.1016/S0300-9084(02)01370-6

Tuynder, M., Fiucci, G., Prieur, S., Lespagnol, A., Géant, A., Beaucourt, S., … Moras, D. 2004. Translationally controlled tumor protein is a target of tumor reversion. Proceedings of the National Academy of Sciences of the United States of America 101(43):15364–15369. https://doi.org/10.1073/pnas.0406776101

Vincent, D., Ergül, A., Bohlman, M. C., Tattersall, E. A., Tillett, R. L., Wheatley, M. D., … Schooley, D. A. 2007. Proteomic analysis reveals differences between Vitis vinifera L. cv. Chardonnay and cv. Cabernet Sauvignon and their responses to water deficit and salinity. Journal of Experimental Botany 58(7):1873–1892. https://doi.org/10.1093/jxb/erm012

Wang, F., Yang, H., Gao, F., Liu, G. 2008. Effects of acute temperature or salinity stress on the immune response in sea cucumber, Apostichopus japonicus. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 151(4):491–498. https://doi.org/10.1016/j.cbpa.2008.06.024

Wang YM. 2013. The ecology of Singapore littorinids Echinolittorina malaccana and E. vidua in relation to thermal stress. PhD Thesis. Nanyang.

Warner, J. R. 1999. The economics of ribosome biosynthesis in yeast. Trends in Biochemical Sciences 24(11):437–440. https://doi.org/10.1016/S0968-0004(99)01460-7

Weber, C., Guigon, G., Bouchier, C., Frangeul, L., Moreira, S., Sismeiro, O., … Guillén, N. 2006. Stress by heat shock induces massive down regulation of genes and allows differential allelic expression of the Gal/GalNAc lectin in Entamoeba histolytica. Eukaryotic Cell 5(5):871–875. https://doi.org/10.1128/EC.5.5.871-875.2006

Wen, G. Q., Cai, L., Liu, Z., Li, D. K., Luo, Q., Li, X. F., … Yang, Y. 2011. Arabidopsis thaliana VDAC2 involvement in salt stress response pathway. African Journal of Biotechnology 10(55):11588–11593. https://doi.org/10.4238/2015.December.1.1

Westram, A. M., Galindo, J., Alm Rosenblad, M., Grahame, J. W., Panova, M., Butlin, R. K. 2014. Do the same genes underlie parallel phenotypic divergence in different Littorina saxatilis populations? Molecular Ecology 23(18):4603–4616. https://doi.org/10.1111/mec.12883

Wickham, H., 2009. ggplot2: Elegant Graphics for Data Analysis Springer-Verlag. New York.

Woo, S., Yum, S., Kim, Y. T., Suh, S. J., Kim, H. C., Lee, J., … Lee, T. K. 2006. Thermal and organic chemical stress responsive genes in soft coral, Scleronephthya gracillimum. Molecular and Cellular Toxicology 2:170–175.

Yan, L., Su, J., Wang, Z., Yan, X., Yu, R., Ma, P., … Du, J. 2017. Transcriptomic analysis of Crassostrea sikamea × Crassostrea angulata hybrids in response to low salinity stress. PloS One 12(2):e0171483. https://doi.org/10.1371/journal.pone.0171483

Yang, C. Y., Sierp, M. T., Abbott, C. A., Li, Y., Qin, J. G. 2016. Responses to thermal and salinity stress in wild and farmed Pacific oysters Crassostrea gigas. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 201:22–29. https://doi.org/10.1016/j.cbpa.2016.06.024

Zhao, X., Yu, H., Kong, L., Li, Q. 2012. Transcriptomic responses to salinity stress in the Pacific oyster Crassostrea gigas. PloS One 7(9):e46244. https://doi.org/10.1371/journal.pone.0046244
Published
2017-12-29
How to Cite
Muraeva, O., Maltseva, A., Varfolomeeva, M., Mikhailova, N., & Granovitch, A. (2017). Mild osmotic stress in intertidal gastropods <em>Littorina saxatilis</em> and <em>Littorina obtusata</em&gt; (Mollusca: Caenogastropoda): a proteomic analysis. Biological Communications, 62(3), 202–213. https://doi.org/10.21638/11701/spbu03.2017.305
Section
Full communication