Creation, working principles, development of applied and fundamental scientific activities of the Collection of Cell Cultures of Vertebrates

Authors

  • Galina Poljanskaya Institute of Cytology, Russian Academy of Sciences, Tikhoretskiy pr., 4, Saint Petersburg, 194064, Russian Federation https://orcid.org/0000-0002-6324-3603
  • Danila Bobkov Institute of Cytology, Russian Academy of Sciences, Tikhoretskiy pr., 4, Saint Petersburg, 194064, Russian Federation https://orcid.org/0000-0002-0358-9266
  • Anna Koltsova Institute of Cytology, Russian Academy of Sciences, Tikhoretskiy pr., 4, Saint Petersburg, 194064, Russian Federation https://orcid.org/0000-0002-3863-4987
  • Anastasia Musorina Institute of Cytology, Russian Academy of Sciences, Tikhoretskiy pr., 4, Saint Petersburg, 194064, Russian Federation https://orcid.org/0000-0003-3748-6545
  • Natalia Mikhailova Institute of Cytology, Russian Academy of Sciences, Tikhoretskiy pr., 4, Saint Petersburg, 194064, Russian Federation https://orcid.org/0000-0003-1650-9330

DOI:

https://doi.org/10.21638/spbu03.2022.406

Abstract

The review presents the history of the creation of the "Collection of Cell Cultures of Vertebrate" (CCCV), which has been in operation for over 40 years. The working principles, comprising seven points and covering both the practical and scientific activities of the CCCV, are discussed. Part of the review is aimed at describing the amount of hands-on work associated with service delivery to CCCV’s users representing various institutions in the Russian Federation. The quantitative indicators presented are evidence of the active practical activity of the CCCV. Another part of the review is dedicated to the CCCV's many years of scientific work. It consists of a description of the work in 6 scientific areas throughout the lifetime of the CCCV. In conclusion, scientific and information activities of the CCCV, and participation in various State programs are indicated.

Keywords:

cell cultures, mesenchymal stem cells, matrix metalloproteinases, replicative senescence, karyotype, actin cytoskeleton

Downloads

Download data is not yet available.
 

References

Adak, S., Magdalene, D., Deshmukh, S., Das, D., and Jaganathan, B. 2021. A review on mesenchymal stem cells for treatment of retinal diseases. Stem Cell Reviews and Reports 17(2):1154–1173. https://doi.org/10.1007/s12015-20-10090-x

Albu, S., Kumru, H., Coll, R., Vives, J., Vallés, M., Denito-Penalva, J., Rodriguez, L., Codinach, M., Hernández, J., Navarro, X., and Vidal, J. 2021. Clinical effects of intrathecal administration of expanded Wharton jelly mesenchymal stromal cells in patients with chronic complete spinal cord injury: a randomized controlled study. Cytotherapy 23(2):146–156. https://doi.org/10.1016/j.jcyt.2020.08.008

Alessio, N., Pipino, C., Mandatori, D., Di Tomo, P., Ferone, A., Marchiso, M., Melone, M. A. B., Peluso, G., Pandolfi, A., and Galderisi, U. 2018. Mesenchymal stromal cells from amniotic fluid are less prone to senescence compared to those obtained from bone marrow: An in vitro study. Journal of Cellular Physiology 233:8996–9006. https://doi.org/10.1002/jcp.26845

Alimperti, S., Lei, P., Wen, Y., Tian, J., Campbell, A. M., and Andreadis, S. T. 2014. Serum-free spheroid suspension culture maintains mesenchymal stem cell proliferation and differentiation potential. Biotechnology Progress 30(4):974–983. https://doi.org/10.1002/btpr.1904

Baraniak, P. R. and McDevitt, T. C. 2012. Scaffold-free culture of mesenchymal stem cell spheroids in suspension preserves multilineage potential. Cell and Tissue Research 347(3):701– 711. https://doi.org/10.1007/s00441-011-1215-5

Barkholt, L., Flory, E., Jekerle, V., Lucas-Samuel, S., Ahnert, P., Bisset, L., Büscher, D., Fibbe, W., Foussat, A., Kwa, M., Lantz, O., Mačiulaitis, R., Palomäki, T., Schneider, C. K., Sensebé, L., Tachdjian, G., Tarte, K., Tosca, L., and Salmikangas, P. 2013. Risk of tumorigenicity in mesenchymal stromal cell-based therapies–bridging scientific observations and regulatory viewpoints. Cytotherapy 15(7):753–759. https://doi.org/10.1016/j.jcyt.2013.03.005

Bertolo, A., Gemperli, A., Gruber, M., Gantenbein, B., Baur, M., Pötzel, T., and Stoyanov, J. 2015. In vitro cell motility as a potential mesenchymal stem cell marker for multipotency. Stem Cells Translational Medicine 4(1):84–90. https://doi.org/10.5966/sctm.2014-0156

Bobkov, D. E. and Poljanskaya, G. G. 2020. Cellular and molecular characteristics of replicative aging of human mesenchymal stem cells. (Review). Tsitologiya 62(11):782–792. https://doi.org/10.31857/S0041377120110036

Bobkov, D., Polyanskaya, A., Musorina, A., Lomert, E., Shabelnikov, S., and Poljanskaya, G. 2020. Replicative senescence in MSCWJ-1 human umbilical cord mesenchymal stem cells is marked by characteristic changes in motility, cytoskeletal organization, and RhoA localization. Molecular Biology Reports 47(5):3867–3883. https://doi.org/10.1007/s11033-020-05476-6

Bobkov, D., Polyanskaya, A., Musorina, A., and Poljanskaya, G. 2022. The RhoA nuclear localization changes in replicative senescence: new evidence from in vitro human mesenchymal stem cells studies. BIOCELL 46(9):2053–2058. https://doi.org/10.32604/biocell.2022.019469

Bogdanova-Jatniece, A., Berzins, U., and Kozlovska, T. 2014. Growth properties and pluripotency marker expression of spontaneously formed three-dimensional aggregates of human adipose-derived stem cells. International Journal of Stem Cells 7(2):143–152. https://doi.org/10.15283/ijsc.2014.7.2.143

Borgonovo, T., Vaz, I. M., Senegaglia, A. C., Rebelatto, C. L., and Brofman, P. R. 2014. Genetic evaluation of mesenchymal stem cells by G-banded karyotyping in a Cell Technology Center. Revista Brasileira de Hematologia e Hemoterapia 36(3):202–207. https://doi.org/10.1016/j.bjhh.2014.03.006

Borkhsenius, S. N., Chernova, O. A., Chernov, V. M., and Vonsky, M. S. 2002. Mycoplasmas. 319 pp. Nauka Publ., St. Petersburg. (In Russian)

Borkhsenius, S. N., Chernova, O. A., Chernov, V. M., and Vishnyakov, I. E. 2016. Mycoplasmas in biology and medicine of the beginning of the 21st century. 334 pp. Nauka Publ., St. Petersburg. (In Russian)

Сardenes, N., Alvarez, D., Sellares, J., Peng, Y., Corey, C., Wecht, S., Nouraie, S. M., Shanker, S., Sembrat, J., Bueno, M., Shiva, S., Mora, A. L., and Rojas, M. 2018. Senescence of bone marrow-derived mesenchymal stem cells from patients with idiopathic pulmonary fibrosis. Stem Cell Research and Therapy 9(1):257–267. https://doi.org/10.1186/s13287-018-0970-6

Chen, H. F., Chuang, C. Y., Shieh, Y. K., Chang, H. W., Ho, H. N., and Kuo, H. C. 2009. Novel autogenic feeders derived from human embryonic stem cells (hESCs) support an undifferentiated status of hESCs in xeno-free culture conditions. Human Reproduction 24(5):1114–1125. https://doi.org/10.1093/humrep/dep003

Choi, J. S., Lee, B. J., Park, H. Y., Song, J. S., Shin, S. C., Lee, J. C., Wang, S. G., and Jung, J. S. 2015. Effects of donor age, long-term passage culture, and cryopreservation on tonsil-derived mesenchymal stem cells. Cellular Physiology and Biochemistry 36(1):85–99. https://doi.org/10.1159/000374055

Choo, A., Ngo, A. S., Ding, V., Oh, S., and Kiang, L. S. 2008. Autogeneic feeders for the culture of undifferentiated human embryonic stem cells in feeder and feeder-free conditions. Methods in Cell Biology 86:15–28. https://doi.org/10.1016/S0091-679X(08)00002-2

Costa L., Eiro, N., Fraile, M., Gonzalez, L., Saá, J., Garcia-Portabella, P., Vega, B., Schneider, J., and Vizoso, F. 2021. Functional heterogeneity of mesenchymal stem cells from natural niches to culture conditions: implications for further clinical uses. Cellular and Molecular Life Sciences 78:447–467. https://doi.org/10.1007/s00018-020-03600-0

Cox, R. P., Krauss, M. R., Balis, M. E., and Dancis, J. 1972. Communication between normal and enzyme-deficient cells in tissue culture. Experimental Cell Research 74:251–268. https://doi.org/10.1016/0014-4827(72)90503-4

Danisovic, L., Oravcova, L., Krajciova, L., Varchulova Novakova, Z., Bohac, M., Varga, I., and Vojtassak, J. 2017. Effect of long-term culture on the biological and morphological characteristics of human adipose tissue-derived stem cells. Journal of Physiology and Pharmacology 68(1):149–158.

Darnell, M., O’Neil, A., Mao, A., Gu, L., Rubin, L. L., and Mooney, D. J. 2018. Material microenvironmental properties couple to induce distinct transcriptional programs in mammalian stem cells. Proceedings of the National Academy of Sciences of the United States of America 115(36):E8368–E8377. https://doi.org/10.1073/pnas.1802568115

Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., and Horwitz, E. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317. https://doi.org/10.1080/14653240600855905

Dvorakova, H., Valicek, L., and Reichelova, M. 2005. Detection of mycoplasma contamination in cell cultures and bovine sera. Veterinární medicína 50(6):262–268. https://doi.org/10.17221/5622-VETMED

Duncan, E. L. and Reddel, R. R. 1997. Genetic changes associated with immortalization. Biochemistry 62:1477–1490. (In Russian)

Efremova, T. N. 2008. Contamination of cell lines by microorganisms. Collection “Methods of cell cultivation”; pp. 228–236, Publishing house of the Polytechnic University, St. Petersburg. (In Russian)

Fridlyanskaya, I. I. 1988. Derivation of monoclonal antibodies (hybridomic technology). Collection “Methods of cell cultivation”, USSR, Leningrad, Nauka: 194–205. (In Russian) Ferro, F., Spelat, R., and Baheney, C. S. 2014. Dental pulp stem cell (DPSC) isolation, characterization, and differentiation. Methods in Molecular Biology 1210:91–115. https://doi.org/10.1007/978-1-4939-1435-7_8

Freshney, R. I. 1987. Culture of Animal cells. USA, Alan R. Liss, Inc., New York: 207–214.

Fu, X., Toh, W. S., Liu, H., Lu, K., Li, M., Hande, M. P., and Cao, T. 2010. Autologous feeder cells from embryoid body outgrowth support the long-term growth of human embryonic stem cells more effectively than those from direct differentiation. Tissue Engineering, Part C: Methods 16(4):719–733. https://doi.org/10.1089/ten.tec.2009.0360

Garner, C. M., Hubbold, L. M., and Chakraborti, P. R. 2000. Mycoplasma detection in cell cultures: a comparison of four methods. British Journal of Biomedical Science 57(4):295–301.

Gattazzo, F., Urciuolo, A., and Bonaldo, P. 2014. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochimica et Biophysica Acta 1840(8):2506–2519. https://doi.org/10.1016/j.bbagen.2014.01.010

Geissler, S., Textor, M., Kühnisch, J., Könnig, D., Klein, O., Ode, A., Pfitzner, T., Adjaye, J., Kasper, G., and Duda, G. N. 2012. Functional comparison of chronological and in vitro aging: differential role of the cytoskeleton and mitochondria in mesenchymal stromal cells. PLoS One 7(12):e52700. https://doi.org/10.1371/journal.pone.0052700

Ghajar, C. M., Kachgal, S., Kniazeva, E., Mori, H., Costes, S. V., George, S. C., and Putnam, A. J. 2010. Mesenchymal cells stimulate capillary morphogenesis via distinct proteolytic mechanisms. Experimental Cell Research 316(5):813– 825. https://doi.org/10.1016/j.yexcr.2010.01.013

Goncharova, D., Polyanskaya, A., Musorina, A., Poljanskaya, G., and Bobkov, D. 2021. Analysis of nuclear-cytoplasmic redistribution of actin-binding protein alpha-actinin-4 and signaling protein RhoA in the process of replicative senescence of human epicardial adipose tissue-derived ADH-MSC cell line. Cell and Tissue Biology 15(5):465–472. https://doi.org/10.1134/S1990519X21050035

Guo, L., Zhou, Y., Wang, S., and Wu, Y. 2014. Epigenetic changes of mesenchymal stem cells in three-dimensional (3D) spheroids. Journal of Cellular and Molecular Medicine 18(10):2009–2019. https://doi.org/10.1111/jcmm.12336

Hay, R. J., Caputo, J., Chen, T. R., Macy, M., McClintock, P. and Reid, Y. 1994. ATCC American type culture collection. Cell lines and hybridomas. USA. 8 ed. 638 c.

Hay, R. J., Reid, Y. A., McClintock, P. R., Chen, T. R., and Macy, M. L. 1996. Cell line and their role in cancer research. Journal of Cellular Biochemistry 24:107–130. https://doi.org/10.1002/jcb.240630507

Hayflick, L. 1965. The limited in vitro lifetime of human diploid cell strains. Experimental Cell Research 37(3):614–636. https://doi.org/10.1016/0014-4827(65)90211-9

Hooper, M. L. and Subak-Sharpe, J. H. 1981. Metabolic cooperation between cells. International Review of Cytology 69:45– 104. https://doi.org/10.1016/S0074-7696(08)62320-7

Huang, X., Zhang, H., Liang, X., Hong, Y., Mao, M., Han, Q., He, H., Tao, W., Jiang, G., Zhang, Y., and Li, X. 2019. Adipose-derived mesenchymal stem cells isolated from patients with abdominal aortic aneurysm exhibit senescence phenomena. Oxidative Medicine and Cellular Longevity 1305049. https://doi.org/10.1155/2019/1305049

Jin, Q., Yuan, K., Lin, W., Niu, C., Ma, R., and Huang, Z. 2019. Comparative characterization of mesenchymal stem cells from human dental pulp and adipose tissue for bone regeneration potential. Artificial Cells, Nanomedicine, and Biotechnology 47(1):1577–1584. https://doi.org/10.1080/21691401.2019.1594861

Kessenbrock, K., Plaks, V., and Werb, Z. 2010. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1):52–67. https://doi.org/10.1016/j.cell.2010.03.015

Kim, J. A., Im, K. O., Park, S. N., Kwon, J. S., Kim, S. Y., Oh, K., Lee, D. S., Kim, M. K., Kim, S. W., Jang, M., Lee, G., Oh, Y. M., Lee, S. D., and Lee, D. S. 2015. Cytogenetic heterogeneity and their serial dynamic changes during acquisition of cytogenetic aberrations in cultured mesenchymal stem cells. Mutation Research 777:60–68. https://doi.org/10.1016/j.mrfmmm.2015.04.003

Kim J. G., Islam R., Cho J. Y., Jeang H., Cap K.-C., Park Y., Hossain A. J., and Park, J.-B. 2018. Regulation of RhoA GTPase and various transcription factors in the RhoA pathway. Journal of Cellular Physiology 233(9):6381–6392. https://doi.org/10.1002/jcp.26487

Kita, K., Gauglitz, G. G., Phan, T. T., Herndon, D. N., and Jeschke, M. G. 2010. Isolation and characterization of mesenchymal stem cells from the sub-amniotic human umbilical cord lining membrane. Stem Cells and Development 19(4):491–502. https://doi.org/10.1089/scd.2009.0192

Koltsova, A. M., Gordeeva, O. F., Krylova, T. A., Lifantseva, N. V., Musorina. A. S., Yakovleva, T. K., and Poljanskaya, G. G. 2011. Comparative characteristics of new human embryonic stem cell lines SC5, SC6, SC7 and SC3a. Ontogenesis 42 (4):249–263. (In Russian)

Koltsova, A. M., Voronкina, I. V., Gordeeva, O. F., Zenin, V. V., Lifantseva, N. V., Musorina, A. S., Smagina L. V., Yakovleva, T. K., and Poljanskaya, G. G. 2012. Development of a new feederless system and characterization of human embryonic stem cell sublines obtained in it during autogenic and allogeneic cultivation. Tsitologiya 54(8):637–651. (In Russian)

Koltsova, A. M., Yakovleva, T. K., and Poljanskaya, G. G. 2016. Derivation and characterization of a new subline of human embryonic stem cells SC6-FF in an allogeneic feederless cultivation system. Tsitologiya 58(7):507–516. (In Russian)

Koltsova, A. M., Krylova, T. A., Musorina, A. S., Zenin, V. V., Turilova, V. I., Yakovleva, T. K., and Poljanskaya, G. G. 2017. Dynamics of properties of two lines of mesenchymal stem cells derived from the Warton jelly of the human umbilical cord, during long-term cultivation. Tsitologiya 59(9):574–587. (In Russian)

Koltsova, A. M., Zenin, V. V., Turilova, V. I., Yakovleva, T. K., and Poljanskaya, G. G. 2019. Derivation and characterization of a line of mesenchymal stem cells isolated from human gingiva. Tsitologiya 61(8):658–671. https://doi.org/10.1134/S0041377119080029 (In Russian)

Koltsova, A. M., Zenin, V. V., Petrosyan, M. A., Turilova, V. I., Yakovleva, T. K., and Poljanskaya, G. G. 2020. Isolation and characterization of mesenchymal stem cells derived from different regions of the placenta of the same donor. Tsitologiya 62(9):713–727. https://doi.org/10.31857/S004137712009003 (In Russian)

Krylova, T. A., Musorina, A. S., Zenin, V. V., Yakovleva, T. K., and Poljanskaya, G. G. 2014. Comparative characteristics of mesenchymal stem cell lines derived from bone marrow and muscle of limb of early human embryo. Tsitologiya 56(8):562–573. (In Russian)

Krylova, T. A., Musorina, A. S., Zenin, V. V., and Poljanskaya, G. G. 2015. Characteristic of the cellular spheroids, derived from mesenchymal stem cell lines from bone marrow and muscle of limb of early human embryo. Tsitologiya 57(7):480–490. (In Russian)

Krylova, T. A., Musorina, A. S., Zenin, V. V., Koltsova, A. M., Kropacheva, I. V., Turilova, V. I., Yakovleva, T. K., and Poljanskaya, G. G. 2016. Derivation and characteristic of a nonimmortalized cell lines of human dermal fibroblasts, generated from skin of the eyelids of adult donors of different age. Tsitologiya 58(11):850–864. (In Russian)

Krylova, T. A., Koltsova, A. M., Musorina, A. S., Zenin, V. V., Turilova, V. I., Yakovleva, T. K., and Poljanskaya, G. G. 2017. Derivation and characteristic of two lines of human mesenchymal stem cells, generated from the wharton’s jelly of the human umbilical cord. Tsitologiya 59(5):315–327. (In Russian)

Kubikova, I., Konecna, H., Sedo, O., Zdrahal, Z., Rehulka, P., Hribkova, H., Rehulkova, H., Hampl, A., Chmelik, J., and Dvorak, P. 2009. Proteomic profiling of human embryonic stem cell-derived microvesicles reveals a risk of transfer of proteins of bovine and mouse origin. Cytotherapy 11(3):330–340. https://doi.org/10.1080/14653240802595531

Larsen, M., Tremblay, M. L., and Yamada, K. M. 2003. Phosphatases in cell-matrix adhesion and migration. Nature Reviews Molecular Cell Biology 4(9):700–711. https://doi.org/10.1038/nrm1199

Le Clainche, C. and Carlier, M. F. 2008. Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiological Reviews 88(2):489–513. https://doi.org/10.1152/physrev.00021.2007

Leyva-Leyva, M., Barrera, L., López-Camarillo, C., ArriagaPizano, L., Orozco-Hoyuela, G., Carrillo-Casas, E. M., Calderón-Pérez, J., López-Díaz, A., Hernandez-Aguilar, F., González-Ramírez, R., Kawa, S., Chimal-Monroy, J., and Fuentes-Mera, L. 2013. Characterization of mesenchymal stem cell subpopulations from human amniotic membrane with dissimilar osteoblastic potential. Stem Cells and Development 22:1275–1287. https://doi.org/10.1089/scd.2012.0359

Li, Y., Guo, G., Li, L., Chen, F., Bao, J., Shi, Y. J., and Bu, H. 2015. Three-dimensional spheroid culture of human umbilical cord mesenchymal stem cells promotes cell yield and stemness maintenance. Cell and Tissue Research 360(2):297–307. https://doi.org/10.1007/s00441-014-2055-x

Li, J., Xu, S-Q., Zhao, Y-M., Yu, S., Ge, L-H., and Xu, B-H. 2018. Comparison of the biological characteristics of human mesenchymal stem cells derived from exfoliated deciduous teeth, bone marrow, gingival tissue, and umbilical cord. Molecular Medicine Reports 18(6):4969–4977. https://doi.org/10.3892/mmr.2018.9501

Lifantseva, N., Koltsova, A., Krylova, T., Yakovleva, T., Poljanskaya, G., and Gordeeva, O. 2011. Expression patterns of cancer-testis antigens in human embryonic stem cells and their cell derivatives indicate lineage tracks. Stem Cells International 2011:795239. https://doi.org/10.4061/2011/795239

Mamaeva, S. E. 1988. Methods of analysis of cultured cells; pp. 78–98 in Collection “Methods of cell cultivation”, ed. G. P. Pinaev. Nauka Publ., Leningrad. (In Russian)

Mamaeva, S. E. 2002. Atlas of chromosomes of human and animal cell lines. 233 pp. Scientific World Publishing House, Moscow. (In Russian and in English)

Mamaeva, S. E. 1996. The regularity of karyotypic evolution of cells in culture. Tsitologiya 38(8):787–814. (In Russian)

Мargulis, B. A. 1988. Determination of the species specificity of cultured cells using isoenzyme analysis; pp. 98–103 in Collection “Methods of cell cultivation”, ed. G. P. Pinaev Nauka Publ., Leningrad. (In Russian)

Musorina, A. S., Zenin, V. V., Turilova, V. I., Yakovleva, T. K., and Poljanskaya, G. G. 2019. Characterization of a nonimmortalized mesenchymal stem cell line isolated from human epicardial adipose tissue. Cell and Tissue Biology 13(4):247–258. https://doi.org/10.1134/S1990519X19040060

Mannello, F., Tonti, G. A., Bagnara, G. P., and Papa, S. 2006. Role and function of matrix metalloproteinases in the differentiation and biological characterization of mesenchymal stem cells. Stem Cells 24(3):475–481. https://doi.org/10.1634/stemcells.2005-0333

Martin, M. J., Muotri, A., Gage, F., and Varki, A. 2005. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nature Medicine 11(2):228–232. https://doi.org/10.1038/nm1181

Matsumura, T., Zerrudo, Z., and Hayflick, L. 1979. Senescent human diploid cells in culture: survival, DNA synthesis and morphology. Journal of Gerontology 34(3):328–334. https://doi.org/10.1093/geronj/34.3.328

McGarrity, G. J. and Carson, D. A. 1982. Adenosine phosphorylase-mediated nucleoside toxicity. Application towards the detection of mycoplasmal infection in mammalian cell cultures. Experimental Cell Research 139(1):199–205. https://doi.org/10.1016/0014-4827(82)90333-0

Meisner, L. F. and Johnson, J. A. 2008. Protocols for cytogenetics studies of human embryonic stem cells. Methods 45(2):133–141. https://doi.org/10.1016/j.ymeth.2008.03.005

Moujaber, O., Fishbein, F., Omran, N., Liang, Y., Colmegna, I., Presley, J. F., and Stochaj, U. 2019. Cellular senescence is associated with reorganization of the microtubule cytoskeleton. Cellular and Molecular Life Sciences 76(6):1169– 1183. https://doi.org/10.1007/s00018-018-2999-1

Nagase, H. and Woessner, J. F. 1999. Matrix metalloproteinases. Journal of Biological Chemistry 274(31):21491–21494. https://doi.org/10.1074/jbc.274.31.21491

Narumiya, S., Tanji, M., and Ishizaki, T. 2009. Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion. Cancer and Metastasis Reviews 28(1–2):65–76. https://doi.org/10.1007/s10555-008-9170-7

Niedernhofer, L. J., Gurkar, A. U., Wang, Y., Vijg, J., Hoeijmakers, J. H. J., and Robbins, P. D. 2018. Nuclear genomic instability and aging. Annual Review of Biochemistry 87:295–322. https://doi.org/10.1146/annurev-biochem-062917-012239

Nikitina, V., Astrelina, T., Nugis, V., Ostashkin, A., Karaseva, T., Dobrovolskaya, E., Usupzhanova, D., Suchkova, Y., Lomonosova, E., Rodin, S., Brunchukov, V., Lauk-Dubitskiy, S., Brumberg, V., Machova, A., Kobzeva, I., Bushmanov, A., and Samoilov, A. 2018. Clonal chromosomal and genomic instability during human multipotent mesenchymal stromal cells long-term culture. PLoS One 13(2):e0192445. https://doi.org/10.1371/journal.pone.0192445

Nimiritsky P. P., Sagaradze G. D., Efimenko A. Yu., Makarevich P. I., and Tkachuk V. A. 2018. The stem cell niche. Tsitologiya 60(8):575–586. https://doi.org/10.31116/tsitol.2018.08.01 (In Russian)

Ould-Yahoui, A., Sbai, O., Baranger, K., Bernard, A., Gueye, Y., Charrat, E., Clement, B., Gigmes, D., Dive, V., Girard, S. D., Feron, F., Khrestchatisky, M., and Rivera, S. 2013. Role of matrix metalloproteinases in migration and neurotrophic properties of nasal olfactory stem and ensheathing cells. Cell Transplantation 22(6):993–1010. https://doi.org/10.3727/096368912X657468

Özcan, S., Alessio, N., Acar, M. B., Mert, E., Omerli, F., Peluso, G., and Galderisi, U. 2016. Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses. Aging 8(7):1316–1329. https://doi.org/10.18632/aging.100971

Page-McCaw, A., Ewald, A. J., and Werb, Z. 2007. Matrix metalloproteinases and the regulation of tissue remodelling. Nature Reviews Molecular Cell Biology 8(3):221–233. https://doi.org/10.1038/nrm2125

Parodi, B., Aresu, O., Mannielo, A., and Romano, P. 1993. Human and animal cell lines catalogue. 445 pp. Interlab Project, Milano.

Pinaev, G. P. (ed.) 1988. Methods of cell cultivation. 313 pp. Nauka Publ., Leningrad. (In Russian)

Pinaev, G. P. (ed.) 1991. Catalogue of the All-Union collection of cell cultures. 119 pp. Nauka Publ., Leningrad. (In Russian)

Pinaev, G. P. 2008. Cell cultures in fundamental and applied research; pp. 7–22 in Methods of cell cultivation, eds Pinaev G. P. and Bogdanova M. S. Publishing house of the Polytechnic University, St. Petersburg. (In Russian)

Pinaev, G. P. and Bogdanova, M. S. (eds) 2008. Methods of cell cultivation. 278 pp. Publishing house of the Polytechnic University, St. Petersburg. (In Russian)

Pinaev, G. P., Poljanskaya, G. G., Sakuta G. A., and Bogdanova M. S. 1999. Catalog of the Russian collection of cell cultures. 429 pp. Biological Series, iss. 5. Publishing house OmSPU, St. Petersburg, Omsk. (In Russian and in English)

Pinaev, G. P., Blinova, M. I., Nikolaenko, N. S., Poljanskaya, G. G., Efremova T. N., Sharlaimova, N. S., and Shubin, N. A. 2012. Study guide “Cellular biotechnology”. 206 pp. Publishing house of the Polytechnic University, St. Petersburg. (In Russian)

Pinaev, G. P. and Poljanskaya, G. G. 2010. Creation and development of the Russian collection of human, animal and plant cell cultures (ed. M. S. Bogdanova) Cell cultures. Newsletter. Issue 26. 61 pp. Publishing house of the Polytechnic University, St. Petersburg. (In Russian)

Polacek, M., Bruun, J. A., Elvenes, J., Figenschau, Y., and Martinez, I. 2011. The secretory profiles of cultured human articular chondrocytes and mesenchymal stem cells: implications for autologous cell transplantation strategies. Cell Transplantation 20(9):1381–1393. https://doi.org/10.3727/096368910X550215

Poljanskaya, G. G. 2000. Regularities of karyotypic variability in cell cultures in long-term cultivation under various conditions. Uspekhi sovremennoi biologii 120(6):529–539. (In Russian)

Poljanskaya, G. G. 2008. Types of cell cultures. Formation, main characteristics and variability of cell lines; pp. 22– 40 in Methods of cell cultivation. Pinaev G. P., Bogdanova M. S. (eds). Publishing house of the Polytechnic University, St. Petersburg. (In Russian)

Poljanskaya, G. G. 2014. The problem of genome instability of cultured human stem cells. Tsitologiya 56(10):697–707. (In Russian)

Poljanskaya, G. G. 2018. Comparative analysis of the characteristics of human mesenchymal stem cell lines obtained in the collection of vertebrate cell cultures (Review), 3–18 in Cell cultures. Newsletter. Bogdanova M. S. (ed.). Issue 34. 101 pp. Publishing house of the Polytechnic University, St. Petersburg. (In Russian)

Poljanskaya, G. G., Abramyan D. S., and Glebov, O. K. 1981. Karyotypic structure of clone populations of Chinese hamster cells during long-term cultivation. Tsitologiya 23(7):818–830. (In Russian)

Poljanskaya, G. G. and Efremova, T. N. 1994. The effect of mycoplasma contamination of Indian muntjak skin fibroblast cultures and subsequent decontamination of cultures with ciprofloxacin on the karyotypic structure of the cell line. Tsitologiya 36(4):393–400. (In Russian)

Poljanskaya, G. G., Goryachaya, T. S., and Pinaev, G. P. 2002. The effect of laminin on karyotypic variability in the cell line of Indian muntjak skin fibroblasts. Tsitologiya 44(5):491–498. (In Russian)

Poljanskaya, G. G., Goryachaya, T. S., and Pinaev, G. P. 2003. The effect of laminin on structural karyotypic variability in kangaroo rat kidney cell lines. Tsitologiya 45(10):1048– 1053. (In Russian)

Poljanskaya, G. G., Goryachaya, T. S., and Pinaev, G. P. 2007. The effect of immobilized fibronectin on karyotypic variability in kangaroo rat kidney cell lines. Tsitologiya 49(3): 219–228. (In Russian)

Poljanskaya, G. G., Goryachaya, T. S., and Pinaev, G. P. 2008. The effect of immobilized laminin on karyotypic variability in two karyotypically different variants of the Indian muntjak skin fibroblast cell line. Tsitologiya 50(11):988–998. (In Russian)

Poljanskaya, G. G. and Efremova, T. N. 2010. The effect of Mycoplasma salivarium in the absence and presence of Larginine on karyotypic variability in the cell line of Indian muntjak skin fibroblasts during long-term cultivation. Tsitologiya 52(12):997–1004. (In Russian)

Poljanskaya, G. G. and Koltsova, A. M. 2013. The effect of a substrate including extracellular matrix proteins on karyotypic variability in two cell lines of Indian muntjak skin fibroblasts. Tsitologiya 55(7):463–471. (In Russian)

Poljanskaya, G. G., Efremova, T. N., Koltsova, A. M., Musorina, A. S., Sharlaimova, N. S., and Yakovleva, T. K. 2019. Methodological guide for working with human and animal cell cultures. 114 pp. Polytech-Press, St. Petersburg. (In Russian)

Poljanskaya, G. G. and Musorina, A. S. 2018. Collection of vertebrate cell cultures: creation, activity, catalog. 185 pp. Publishing house of the Polytechnic University, St. Petersburg. (In Russian)

Poljanskaya, G. G. and Vakhtin, Y. B. 2003. The karyotypic structure of cell populations in vitro as integral system. Tsitologiya 45(2):115–131.

Pruckler, J. M, Pruckler, J. M., and Ades, E. W. 1995. Detection by polymerase chain reaction of all common Mycoplasma in a cell culture facility. Pathobiology 63(1):9–11. https://doi.org/10.1159/000163929

Raftopoulou, M. and Hall, A. 2004. Cell migration: Rho GTPases lead the way. Developmental Biology 265(1):23–32. https://doi.org/10.1016/j.ydbio.2003.06.003

Ratushnyy, A., Ezdakova, M., and Buravkova, L. 2020. Secretome of senescent adipose-derived mesenchymal stem cells negatively regulates angiogenesis. International Journal of Molecular Sciences 21(5):1802–1817. https://doi.org/10.3390/ijms21051802

Redaelli, S., Bentivegna, A., Foudah, D., Miloso, M., Redondo, J., Riva, G., Baronchelli, S., Dalprà L., and Tredici, G. 2012. From cytogenomic to epigenomic profiles: monitoring the biologic behavior of in vitro cultured human bone marrow mesenchymal stem cells. Stem Cell Research and Therapy 3(6):47–63. https://doi.org/10.1186/scrt138

Rohban, R. and Pieber, T. R. 2017. Mesenchymal stem and progenitor cells in regeneration: tissue specificity and regenerative potential. Stem Cells International 2017(6):1–16. https://doi.org/10.1155/2017/5173732

Romanova, Y. M. and Ginzburg, A. L. 1993. Are there similarities in the mechanisms of formation of “uncultivated forms” in gram-negative bacteria and spores in bacilli? Molecular genetics, virology and microbiology 6:34–37. (In Russian)

Sassoli, C., Nosi, D., Tani, A., Chellini, F., Mazzanti, B., Quercioli, F., Zecchi-Orlandini, S., and Formigli, L. 2014. Defining the role of mesenchymal stromal cells on the regulation of matrix metalloproteinases in skeletal muscle cells. Experimental Cell Research 323(2):297–313. https://doi.org/10.1016/j.yexcr.2014.03.003

Savickienė, J., Baronaitė, S., Zentelytė, A., Treigytė, G., and Navakauskienė, R. 2016. Senescence-associated molecular and epigenetic alterations in mesenchymal stem cell cultures from amniotic fluid of normal and fetus-affected pregnancy. Stem Cells International 2016:2019498. https://doi.org/10.1155/2016/2019498

Schneider, R. K., Puellen, A., Kramann, R., Raupach, K., Bornemann, J., Knuechel, R., Perez-Bouza, A., and Neuss, S. 2010. The osteogenic differentiation of adult bone marrow and perinatal umbilical mesenchymal stem cells and matrix remodelling in three-dimensional collagen scaffolds. Biomaterials 31(3):467–480. https://doi.org/10.1016/j.biomaterials.2009.09.059

Sharovskaya, Y. Y., Lagarkova, M. A., Kiselev, S. L., and Chilakhyan, L. M. 2009. Investigation of diffusion communication through slit contacts in human embryonic stem cells during spontaneous differentiation. Doklady Akademii Nauk 427(3):407–410. (In Russian)

Semenova, E., Grudniak, M. P., Machaj, E. K., Bocian, K., Chroscinska-Krawczyk, M., Trochonowicz, M., Stepaniec, I. M., Murzyn, M., Zagorska, K. E., Boruczkowski, D., Kolanowski, T. J., Oldak, T., and Rozwadowska, N. 2021. Mesenchymal stromal cells from different parts of umbilical cord: approach to comparison and characteristics. Stem Cell Reviews and Reports 17(6):1–16. https://doi.org/10.1007/s12015-021-10157-3

Sensebé, L., Krampera, M., Schrezenmeier, H., Bourin, P., and Giordano, R. 2010. Mesenchymal stem cells for clinical application. Vox Sanguinis 98(2):93–107. https://doi.org/10.1111/j.1423-0410.2009.01227.x

Shaffer, I. G., Slovak, M. L., and Campbell, L. J. 2009. An international system for human cytogenetic nomenclature. 138 pp. S. Karger, Basel.

Sharma, S., Venkatesan, V., Prakhya, B. M., and Bhonde, R. 2014. Human mesenchymal stem cells as a novel platform for simultaneous evaluation of cytotoxicity and genotoxicity of pharmaceuticals. Mutagenesis 30(3):391–399. https://doi.org/10.1093/mutage/geu086

Shin, S., Lee, J., Kwon, Y., Park, K-S., Jeong, J-H., Choi, S-J., Bang, S., Chang, J., and Lee, C. 2021. Comparative proteomic analysis of the mesenchymal stem cells secretome from adipose, bone marrow, placenta and Wharton’s jelly. International Journal of Molecular Sciences 22(2):845. https://doi.org/10.3390/ijms22020845

Sillat, T., Saat, R., Pöllänen, R., Hukkanen, M., Takagi, M., and Konttinen, Y. T. 2012. Basement membrane collagen type IV expression by human mesenchymal stem cells during adipogenic differentiation. Journal of Cellular and Molecular Medicine 16(7):1485–1495. https://doi.org/10.1111/j.1582-4934.2011.01442.x

Skottman, H., Dilber, M. S., and Hovatta, O. 2006. The derivation of clinical-grade human embryonic stem cell lines. FEBS Letters 580(12):2875–2878. https://doi.org/10.1016/j.febslet.2006.03.083

Spiering, D. and Hodgson, L. 2011. Dynamics of the Rhofamily small GTPases in actin regulation and motility. Cell Adhesion and Migration 5(2):170–180. https://doi.org/10.4161/cam.5.2.14403

Stanko, P., Kaiserova, K., Altanerova, V., and Altaner, C. 2014. Сomparison of human mesenchymal stem cells derived from dental pulp, bone marrow, adipose tissue, and umbilical cord tissue by gene expression. Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia 158(3):373–377. https://doi.org/10.5507/bp.2013.078

Stojkovic, P., Lako, M., Stewart, R., Przyborski, S., Armstrong, L., Evans, J., Murdoch, A., Strachan, T., and Stojkovic, M. 2005. An autogeneic feeder cell system that efficiently supports growth of undifferentiated human embryonic stem cells. Stem Cells 23:306–314. https://doi.org/10.1634/stemcells.2004-0137

Stultz, B. G., McGinnis, K., Thompson, E. E., Lo Surdo, J. L., Bauer, S. R., and Hursh, D. A. 2016. Chromosomal stability of mesenchymal stromal cells during in vitro culture. Cytotherapy 18(3):336–343. https://doi.org/10.1016/j.jcyt.2015.11.017

Taei, A., Dargahi, L., Nasoohi, S., Hassanzadeh, G., Kadivar, M., and Farahmandfar, M. 2021. The conditioned medium of human embryonic stem cell‐derived mesenchymal stem cells alleviates neurological deficits and improves synaptic recovery in experimental stroke. Journal of Cellular Physiology 236(3):1967–1979. https://doi.org/10.1002/jcp.29981

Tai, C, Wang, L., Xie, Y., Gao, T., Huang, F., and Wang, B. 2021. Analysis of key distinct biological characteristics of human placenta-derived mesenchymal stromal cells and individual heterogeneity attributing to donors. Cells Tissues Organs 210(1):45–57. https://doi.org/10.1159/000513038

Tarte, K., Gaillard, J., Lataillade, J. J., Fouillard, L., Becker, M., Mossafa, H., Tchirkov, A., Rouard, H., Henry, C., Splingard, M., Dulong, J., Monnier, D., Gourmelon, P., Gorin, N. C., and Sensebé, L. 2010. Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood 115(8):1549–1553. https://doi.org/10.1182/blood-2009-05-219907

Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., and Jones, J. M. 1998. Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147. https://doi.org/10.1126/science.282.5391.1145

Tkach, V., Bock, E., and Berezin, V. 2005. The role of RhoA in the regulation of cell morphology and motility. Cell Motility and the Cytoskeleton 61(1):21–23. https://doi.org/10.1002/cm.20062

Tratwal, J., Mathiasen, A. B., Juhl, M., Brorsen, S. K., Kastrup, J., and Ekblond, A. 2015. Influence of vascular endothelial growth factor stimulation and serum deprivation on gene activation patterns of human adipose tissuederived stromal cells. Stem Cell Research and Therapy 6(1):62–73. https://doi.org/10.1186/s13287-015-0062-9

Troshin, A. S. 1984. Collection “Cell biology in culture”. 280 pp. Nauka, Leningrad. (In Russian)

Truong, N. C., Bui, K. H. and Van Pham, P. 2018. Characterization of senescence of human adipose-derived stem cells after long-term expansion. Advances in Experimental Medicine and Biology 1084:109–128. https://doi.org/10.1007/5584_2018_235

Turinetto, V., Vitale, E., and Giachino, C. 2016. Senescence in human mesenchymal stem cells: functional changes and implications in stem cell-based therapy. International Journal of Molecular Sciences 17(7):1164–1181. https://doi.org/10.3390/ijms17071164

Uphoff, C. C., Gignac, S. M., and Drexler, H. G. 1992. Mycoplasma contamination in human leukemia cell lines. I. Comparison of various detection methods. Journal of Immunological Methods 149(1):43–53. https://doi.org/10.1016/s0022-1759(12)80047-0

Uphoff, C. C. and Drexler, H. G., 2013. Detection of mycoplasma contamination. Methods in Molecular Biology 946:1–13. https://doi.org/10.1007/978-1-62703-128-8_1

Volarevic, V., Markovic, B. S., Gazdic, M., Volarevic, A., Jovicic, N., Arsenijevic, N., Armstrong, L., Djonov, V., Lako, M., and Stojkovic, M. 2018. Ethical and safety issues of stem cell-based therapy. International Journal of Medical Sciences 15(1):36–45. https://doi.org/10.7150/ijms.21666

Voronkina, I. V., Smagina, L. V., Krylova, T. A., Musorina, A. S., and Poljanskaya, G. G. 2016. Comparative analysis of matrix metalloproteinases activity during differentiation of mesenchymal stem cells lines isolated from different tissues from one donor. Tsitologiya 58(11):865–874. (In Russian)

Voronkina I. V., Smagina L. V., Gin, I. I., Musorina, A. S., and Poljanskaya, G. G. 2018. Analysis of the dynamics of the activity of matrix metalloproteinases in the process of chondrogenic differentiation of a line of mesenchymal stem cells isolated from the Warton jelly of the human umbilical cord. Tsitologiya 60(9):725–734. https://doi.org/10.31116/tsitol.2018.09.08 (In Russian)

Voronkina, I. V., Smagina, L. V., Bildyug, N. V., Musorina, A. S., and Poljanskaya, G. G. 2020. Dynamics of matrix metalloproteinase activity and extracellular matrix protein content in the process of replicative senescence of human mesenchymal stem cell lines. Tsitologiya 62(3):210–219. https://doi.org/10.31857/S0041377120030086 (In Russian)

Wagner, W., Horn, P., Castoldi, M., Diehlmann, A., Bork, S., Saffrich, R., Benes, V., Blake, J., Pfister, S., Eckstein, V., and Ho, A. D. 2008. Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One 3(5):e2213. https://doi.org/10.1371/journal.pone.0002213

Wang, Y., Huso, D. L., Harrington, J., Kellner, J., Jeong, D. K., Turney, J., and McNiece, I. K. 2005. Outgrowth of a transformed cell population derived from normal human BM mesenchymal stem cell culture. Cytotherapy 7(6):509–519. https://doi.org/10.1080/14653240500363216

Wang, D. and Jang, D. J. 2009. Protein kinase CK2 regulates cytoskeletal reorganization during ionizing radiationinduced senescence of human mesenchymal stem cells. Cancer Research 69(20):8200–8207. https://doi.org/10.1158/0008-5472.CAN-09-1976

Wangler, S., Kamali, A., Wapp, C., Wuertz-Kozak, K., Häckel, S., Fortes, C., Lorin, M., Benneker, L. M., Haglund, L., Richards, R. G., Alini, M., Peroglio, M., and Grad, S. 2021. Uncovering the secretome of mesenchymal stromal cells exposed to healthy, traumatic, and degenerative intervertebral discs: a proteomic analysis. Stem Cell Research and Therapy 12(1):11–27. https://doi.org/10.1186/s13287-020-02062-2

Wu, J., Sun, Y., Block, T. J., Marinkovic, M., Zhang, Z. L., Chen, R., Yin, Y., Song, J., Dean, D. D., Lu, Z., and Chen, X. D. 2016. Umbilical cord blood-derived non-hematopoietic stem cells retrieved and expanded on bone marrow-derived extracellular matrix display pluripotent characteristics. Stem Cell Research and Therapy 7:176–189. https://doi.org/10.1186/s13287-016-0437-6

Xiao, Z., Lei, T., Liu, Y., Yang, Y., Bi, W., and Du, H. 2021. The potential therapy with dental tissue-derived mesenchymal stem cells in Parkinson’s disease. Stem Cell Research and Therapy 12(1):5–15. https://doi.org/10.1186/s13287020-01957-4

Yigitbilek, F., Conley, S. M., Tang, H., Saadiq, I. M., Jordan, K. L., Lerman, L. O., and Taner, T. 2021. Comparable in vitro function of human liver-derived and adipose tissue-derived mesenchymal stromal cells: implications for cellbased therapy. Frontiers in Cell and Developmental Biology 9:641792. https://doi.org/10.3389/fcell.2021.641792

Young, L., Sung, J., Stacey G., and Masters, J. R. 2010. Detection of Mycoplasma in cell cultures. Nature Protocols 5(5):929–934. https://doi.org/10.1038/nprot.2010.43

Yu, J., Shi, J., Zhang, Y., Zhang, Y., Huang, Y., Chen, Z., and Yang, J. 2018. The replicative senescent mesenchymal stem /stromal cells defect in DNA damage response and anti-oxidative capacity. International Journal of Medical Sciences 15(8):771–781. https://doi.org/10.7150/ijms.24635

Zakharov, A. F., Benyush, V. A., Kuleshov, N. P., and Baranovskaya, L. I. 1982. Human chromosomes. Moscow, Medicine. 264 p. (In Russian)

Zaman, W. S., Makpol, S., Sathapan, S., and Chua, K. H. 2014. Long-term in vitro expansion of human adipose-derived stem cells showed low risk of tumourigenicity. Journal of Tissue Engineering and Regenerative Medicine 8(1):67–76. https://doi.org/10.1002/term.1501

Zhang, H., Zhang, B., Tao, Y., Cheng, M., Hu, J., Xu, M., and Chen, H. 2012. Isolation and characterization of mesenchymal stem cells from whole human umbilical cord applying a single enzyme approach. Cell Biochemistry and Function 30(8):643–649. https://doi.org/10.1002/cbf.2843

Zhang, X., Wang, N., Huang, Y., Li, Y., Li, G., Lin, Y., Atala, A., Hou, J., and Zhao, W. 2021. Extracellular vesicles from three dimensional culture of human placental mesenchymal stem cells ameliorated renal ischemia/reperfusion injury. The International Journal of Artificial Organs 45(2):181–192. https://doi.org/10.1177/0391398820986809

Downloads

Published

2022-12-31

How to Cite

Poljanskaya, G., Bobkov, D., Koltsova, A., Musorina, A., & Mikhailova, N. (2022). Creation, working principles, development of applied and fundamental scientific activities of the Collection of Cell Cultures of Vertebrates. Biological Communications, 67(4), 312–330. https://doi.org/10.21638/spbu03.2022.406

Issue

Section

Review communications

Categories