Possibility of studying earthworm feeding ecology using mid-range infrared spectrometry

Authors

DOI:

https://doi.org/10.21638/spbu03.2024.406

Abstract

Earthworms in forests ensure the return of nutrients to the soil by recycling litter. Climate warming promotes changes in the feeding ecology of earthworms, which leads to changes in soil nutrient cycling due to the saturation of biotopes with invasive plants and lumbricids. This study explored the use of mid-infrared (IR) spectrometry as a technique for identifying earthworm dietary preferences. In a controlled laboratory-based experiment, we examined how consumption of three different types of leaf litter — Populus tremula, P. sibirica, and Acer negundo — affects the IR spectra of three earthworm species — Eisenia nana, E. nordenskioldi, and E. ventripapillata. The results demonstrated that body composition changes in each earthworm species indicated the specific type of leaf litter ingested. Therefore, mid-infrared spectrometry is promising as a method for investigating the feeding preferences of earthworms.

Keywords:

earthworms, forest litter, food preferences, IR spectrometry

Downloads

Download data is not yet available.
 

References

Berg, B., Davey, M. P., Marco, A. De., Emmett, B., Faituri, M., Hobbie, S. E., Johansson, M. B., Liu, C., McClaugherty, C., Norell, L., Rutigliano, F. A., Vesterdal, L., and De Santo, A. V. 2010. Factors influencing limit values for pine needle litter decomposition: a synthesis for boreal and temperate pine forest systems. Biogeochemistry 100:7–73. http://dx.doi.org/10.1007/s10533-009-9404-y

Bohlen, P. J., Groffman, P. M., Fahey, T. J., Fisk, M. C., Suarez, E., Pelletier, D. M., and Fahey, R. T. 2004a. Ecosystem consequences of exotic earthworm invasion of North temperate forests. Ecosystems 7(1):1–12. http://dx.doi.org/10.1007/s10021-003-0126-z

Bohlen, P. J., Scheu, S, Hale, C. M., McLean, M. A., Migge, S., Groffman, P. M., and Parkinson D. 2004b. Nonnative invasive earthworms as agents of change in northern temperate forests. Frontiers in Ecology and the Environment 2(7):427–435. http://dx.doi.org/10.2307/3868431

Bottinelli, N., Kaupenjohann, M., Marten, M., Jouquet, P., Soucemarianadin, L., Baudin, F., Minh, T. T., and Rumpel, C. 2020. Age matters: Fate of soil organic matter during ageing of earthworm casts produced by the anecic earthworm Amynthas khami. Soil Biology and Biochemistry 148:107906. https://doi.org/10.1016/j.soilbio.2020.107906

Briones, M. J. I. and Schmidt, O. 2004. Stable isotope techniques in studies of the ecological diversity and functions of earthworm communities in agricultural soils. Recent Research Developments in Crop Science 1:11–26.

Craven, D., Thakur, M. P., Cameron, E. K., Frelich, L. E., Beauséjour, R., Blair, R. B., Blossey, B., Burtis, J., Choi, A., Dávalos, A., Fahey, T. J., Fisichelli, N. A., Gibson, K., Handa, I. T., Hopfensperger, K., Loss, S. R., Nuzzo, V., Maerz, J. C., Sackett, T., Scharenbroch, B. C., Smith, S. M., Vellend, M., Umek, L. G., and Eisenhauer, N. 2016. The unseen invaders: introduced earthworms as drivers of change in plant communities in North American forests (a meta-analysis). Global Change Biology 23(3):1065–1074. https://doi.org/10.1111/gcb.13446

Curry, J. P. and Schmidt, O. 2007. The feeding ecology of earthworms — A review. Pedobiologia 50:463–477. https://doi.org/10.1016/j.pedobi.2006.09.001

Devi, N. M., Kukarskih, V. V., Galimova, A. A., Mazepa, V. S., and Grigoriev, A. A. 2020. Change evidence in tree growth and stand productivity at the upper treeline ecotone in the polar Ural Mountains. Forest Ecosystems 7:1–7. https://doi.org/10.1186/s40663-020-0216-9

Dominguez-Haydar, Y., Velasqueze, E., Zangerle, A., Lavelle, P., Gutierrez-Eisman, S., and Jimenez, J. J. 2020. Unveiling the age and origin of biogenic aggregates produced by earthworm species with their NIRS fingerprint in a subalpine meadow of Central Pyrenees. PLOS ONE 15:e0237115. https://doi.org/10.1371/journal.pone.0237115

Golovanova, E. V., Kniazev, S. Y., Babiy, K. A., Tsvirko, E. I., Karaban, K., and Solomatin, D. V. 2021. Dispersal of earthworms from the Rudny Altai (Kazakhstan) into Western Siberia. Ecologica Montenegrina 45:48–61. https://doi.org/10.37828/em.2021.45.9

IUSS Working Group WRB. 2006. World reference base for soil resources. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports, Rome: FAO.

Jouquet, P., Capowiez, Y., Bottinelli, N., and Traoré, S. 2014. Potential of Near Infrared Reflectance Spectroscopy for identifying termite species. European Journal of Soil Biology 60:49–52. https://doi.org/10.1016/j.ejsobi.2013.11.004

Jouquet, P., Pando, A., Aroui, H., Harit, A., Capowiez, Y., and Bottinelli, N. 2018. Evidence from mid-infrared spectroscopy (MIRS) that the biochemical fingerprints of Odontotermes obesus colonies change according to their geographical location and age. Insectes Sociaux 65:77–84. https://doi.org/10.1007/s00040-017-0589-0

Kim, G., Jo, H., Kim, H. S., Kwon, M., and Son, Y. 2022. Earthworm effects on soil biogeochemistry in temperate forests focusing on stable isotope tracing: A review. Applied Biological Chemistry 65:88. https://doi.org/10.1186/s13765-022-00758-y

Krishna, M. P. and Mohan, M. 2017. Litter decomposition in forest ecosystems: A review. Energy, Ecology and Environment 2:236–249. https://doi.org/10.1007/s40974-017-0064-9

Langmaier, M. and Lapin, K. 2020. A systematic review of the impact of invasive alien plants on forest regeneration in European temperate forests. Frontiers in Plant Science 11:e524969. https://doi.org/10.3389/fpls.2020.524969

Lê, S., Josse, J., and Husson, F. 2008. FactoMineR: An R package for multivariate analysis. Journal of Statistical Software 25(1):1–18. https://doi.org/10.18637/jss.v025.i01

Patoine, G., Bruelheide, H., Haase, J., Nock, C., Ohlmann, N., Schwarz, B., Scherer-Lorenzen, M., and Eisenhauer, N. 2020. Tree litter functional diversity and nitrogen concentration enhance litter decomposition via changes in earthworm communities. Ecology and Evolution 10:6752–6768. https://doi.org/10.1002/ece3.6474

Pham, T., Rumpel, C., Capowiez, Y., Jouquet, P., Pelosi, C., Pando, A., Boukbida, H. A., and Bottinelli, N. 2021. Midinfrared spectroscopy of earthworm bodies to investigate their species belonging and their relationship with the soil they inhabit. Applied Soil Ecology 162:103894. https://doi.org/10.1016/j.apsoil.2021.103894

Pokarzhevskii, A. D., Zaboyev, D. P., Ganin, G. N., and Gordienko, S. A. 1997. Amino acids in earthworms: Are earthworms ecosystem ivorous? Soil Biology & Biochemistry 29:559–567.

Potapov, A. M., Beaulieu, F., Birkhofer, K., Bluhm, S. L., Degtyarev, M. I., Devetter, M., Goncharov, A. A., Gongalsky, K. B., Klarner, B., Korobushkin, D. I., Liebke, D. F., Maraun, M., Mc Donnell, R. J., Pollierer, M. M., Schaefer, I., Shrubovych, J., Semenyuk, I. I., Sendra, A., Tuma, J., and Scheu, S. 2022. Feeding habits and multi-functional classification of soil-associated consumers from protists to vertebrates. Biological Reviews 97(3):1057–1117. https://doi.org/10.1111/brv.12832

Resner, K., Yoo, K., Sebestyen, S. D., Aufdenkampe, A., Hale, C., Lyttle, A., and Blum, A. 2015. Invasive earthworms deplete key soil inorganic nutrients (Ca, Mg, K, and P) in a northern hardwood forest. Ecosystems 18(1):89–102. https://doi.org/10.1007/s10021-014-9814-0

Richardson, J. B., Johnston, M. R., and Herrick, B. M. 2022. Invasive earthworms Amynthas tokioensis and Amynthas agrestis alter macronutrients (Ca, Mg, K, P) in field and laboratory forest soils. Pedobiologia 91–92:150804. https://doi.org/10.1016/j.pedobi.2022.150804

Schmidt, O., Scrimgeour, C. M., and Handley, L. L. 1997. Natural abundance of 15N and 13C in earthworms from a wheat and a wheat clover field. Soil Biology and Biochemistry 29(9–10):1301–1308.

Schmidt, O., Scrimgeour, C. M., and Curry, J. P. 1999. Carbon and nitrogen stable isotope ratios in body tissue and mucus of feeding and fasting earthworms (Lumbricus festivus). Oecologia 118(1):9–15.

Shekhovtsov, S. V., Golovanova, E. V., Ershov, N. I., Poluboyarova, T. V., Berman, D. I., Bulakhova, N. A., Szederjesi, T., and Peltek, S. E. 2020a. Phylogeny of the Eisenia nordenskioldi complex based on mitochondrial genomes. European Journal of Soil Biology 96:103137. https://doi.org/10.1016/j.ejsobi.2019.103137

Shekhovtsov, S. V., Shipova, A. A., Poluboyarova, T. V., Vasiliev, G. V., Golovanova, E. V., Geraskina, A. P., Bulakhova, N. A., Szederjesi, T., and Peltek, S. E. 2020b. Species delimitation of the Eisenia nordenskioldi complex (Oligochaeta, Lumbricidae) using transcriptomic data. Frontiers in Genetics 11:1–10. https://doi.org/10.3389/fgene.2020.598196

Song, Y., Yanghua, Y., Yitong, L., and Mingfeng, D. 2023. Leaf litter chemistry and its effects on soil microorganisms in different ages of Zanthoxylum planispinum var. dintanensis. BMC Plant Biology 23:262. https://doi.org/10.1186/s12870-023-04274-z

Striganova, B. R. 1980. Nutrition of Soil Saprophages. 224 p. Nauka Publ., Moscow. (In Russian)

Vorobeichik, E. L. and Bergman, I. E. 2023. Modification of the bait-lamina test to estimate soil macrofauna and mesofauna feeding activity. Soil Biology and Biochemistry 183:109047. https://doi.org/10.1016/j.soilbio

Xiao, T., Zhang, B., Zhao, H., Xie, Z., Zhang, Y., Wu, D., Chen, T-W., Scheu, S., and Schaefer, I. 2024. Differential changes in body size and stoichiometry in genetic lineages of the earthworm Eisenia nordenskioldi with elevation. Soil Biology and Biochemistry 189:109262. https://doi.org/10.1016/j.soilbio.2023.109262

Zangerle, A., Hissler, C., McKey, D., and Lavelle, P. 2016. Using near infrared spectroscopy (NIRS) to identify the contribution of earthworms to soil macroaggregation in field conditions. Applied Soil Ecology 104:138–147. http://dx.doi.org/10.1016/j.apsoil.2015.09.014

Downloads

Published

2024-12-31

How to Cite

Kniazev, S., Babiy, K., Abramenko, A., Golovanova, E., Efremov, A., & Solomatin, D. (2024). Possibility of studying earthworm feeding ecology using mid-range infrared spectrometry. Biological Communications, 69(4), 257–262. https://doi.org/10.21638/spbu03.2024.406

Issue

Section

Brief communications

Categories

Most read articles by the same author(s)