Hemocyte proteome of the Lake Baikal endemic Eulimnogammarus verrucosus (Crustacea: Amphipoda) sheds light on immune-related proteins


Hemocytes are cells circulating in the hemolymph and playing an important role in crustacean immunity. These cells not only function as phagocytes but also express immune compounds to the hemolymph. Here we obtained hemocyte proteome of the endemic amphipod (Amphipoda, Crustacea) Eulimnogammarus verrucosus from Lake Baikal, the first hemocyte proteome of an amphipod, using liquid chromatography/tandem mass spectrometry (LC-MS/MS). A total of 1152 unique proteins were discovered with LC-MS/MS. We discovered both proteins directly involved in the immune response, such as pattern recognition proteins (C-type lectins), and compounds with antimicrobial activity (ctenidin and anti-lipopolysaccharide factor/scygonadin). Moreover, hemocyanins which may act as a phenoloxidase and C-type lectins were among the most diverse protein groups in the hemocyte proteome. The obtained data can be useful for further studies of immune components and mechanisms in Baikal amphipods.


hemocytes, LC-MS/MS, proteome, Lake Baikal, crustacean, amphipod, innate immunity, antimicrobial peptide, lectin


Download data is not yet available.


Adachi, K., Hirata, T., Nagai, K., and Sakaguchi, M. 2001. Hemocyanin a most likely inducer of black spots in kuruma prawn Penaeus japonicus during storage. Journal of Food Science 66(8):1130–1136. https://doi.org/10.1111/j.1365-2621.2001.tb16093.x

Adachi, K., Hirata, T., Nishioka, T., and Sakaguchi, M. 2003. Hemocyte components in crustaceans convert hemocyanin into a phenoloxidase-like enzyme. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 134(1):135–141. https://doi.org/10.1016/S1096-4959(02)00220-8

Amin, O. M., Heckmann, R. A., and Baldanova, D. R. 2015. Revisiting Echinorhynchid acanthocephalans in Lake Baikal with the use of scanning electron microscopy, with some taxonomic reconsiderations. Comparative Parasitology 82(1):29–39. https://doi.org/10.1654/4750.1

Armenteros, J. J. A., Tsirigos, K. D., Sønderby, C. K., Petersen, T. N., Winther, O., Brunak, S., Von Heijne G., and Nielsen, H. 2019. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature Biotechnology 37(4):420–423. https://doi.org/10.1038/s41587-019-0036-z

Armstrong, P. B. 2010. Role of α2-macroglobulin in the immune responses of invertebrates. Invertebrate Survival Journal 7(2):165–180.

Axenov-Gribanov, D., Bedulina, D., Shatilina, Z., Jakob, L., Vereshchagina, K., Lubyaga, Y., Gurkov, A., Shchapova, E., Luckenbach, T., Lucassen, M., Sartoris, F. J., Pörtner, H. O., and Timofeyev, M. 2016. Thermal preference ranges correlate with stable signals of universal stress markers in Lake Baikal endemic and Holarctic amphipods. PloS One 11(10):e0164226. https://doi.org/10.1371/journal.pone.0164226

Baumann, T., Kämpfer, U., Schürch, S., Schaller, J., Largiader, C., Nentwig, W., and Kuhn-Nentwig, L. 2010. Ctenidins: antimicrobial glycine-rich peptides from the hemocytes of the spider Cupiennius salei. Cellular and Molecular Life Sciences 67(16):2787–2798. https://doi.org/10.1007/s00018-010-0364-0

Bazikalova, A. Y. 1945. Amphipods of Lake Baikal. Proceedings of Baikal Limnological Station 11:1–440.

Bedulina, D. S., Gurkov, A. N., Baduev, B. K., Borvinskaya, E. V., Dimova, M. D., and Timofeyev, M. A. 2016. Preliminary analysis of hemocyanins in hemolymph plasma of Baikal endemic amphipods. Journal of Stress Physiology & Biochemistry 12(1):74–86.

Bedulina, D., Drozdova, P., Gurkov, A., Von Bergen, M., Stadler, P. F., Luckenbach, T., Timofeyev M., and Kalkhof, S. 2020. Proteomics reveals sex-specific heat shock response of Baikal amphipod Eulimnogammarus cyaneus. Science of the Total Environment 763:43008. https://doi.org/10.1016/j.scitotenv.2020.143008

Bondad-Reantaso, M. G., Subasinghe, R. P., Josupeit, H., Cai, J., and Zhou, X. 2012. The role of crustacean fisheries and aquaculture in global food security: past, present and future. Journal of Invertebrate Pathology 110(2):158–165. https://doi.org/10.1016/j.jip.2012.03.010

Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1–2):248–254. https://doi.org/10.1016/0003-2697(76)90527-3

Buchfink, B., Xie, C., and Huson, D. H. 2015. Fast and sensitive protein alignment using DIAMOND. Nature Methods 12(1):59–60. https://doi.org/10.1038/nmeth.3176

Buckanovich, R. J. and Darnell, R. B. 1997. The neuronal RNA binding protein Nova-1 recognizes specific RNA targets in vitro and in vivo. Molecular and Cellular Biology 17(6):3194–3201. https://doi.org/10.1128/mcb.17.6.3194

Cerenius, L., Jiravanichpaisal, P., Liu, H. P., and Soderhall, I. 2010. Crustacean immunity. Invertebrate Immunity 708:239–259. https://doi.org/10.1007/978-1-4419-8059-5_13

Chang, E. S. and Thiel, M. V. 2015. Physiological Regulation. The natural history of the Crustacea. 512 p. Oxford University Press, Oxford; New York.

Charif, D. and Lobry, J. R. 2007. SeqinR 1.0-2: a contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis; pp. 207–232 in Bastolla, U., Porto, M., Roman, H. E., and Vendruscolo, M. (eds), Structural approaches to sequence evolution. Biological and medical physics, biomedical engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-35306-5_10

Chongsatja, P. O., Bourchookarn, A., Lo, C. F., Thongboonkerd, V., and Krittanai, C. 2007. Proteomic analysis of differentially expressed proteins in Penaeus vannamei hemocytes upon Taura syndrome virus infection. Proteomics 7(19):3592–3601. https://doi.org/10.1002/pmic.200700281

Coates, C. J. and Costa-Paiva, E. M. 2020. Multifunctional roles of hemocyanins. Vertebrate and Invertebrate Respiratory Proteins, Lipoproteins and other Body Fluid Proteins 94:233–250. https://doi.org/10.1007/978-3-030-41769-7_9

Collins, A. J., Schleicher, T. R., Rader, B. A., and Nyholm, S. V. 2012. Understanding the role of host hemocytes in a squid/vibrio symbiosis using transcriptomics and proteomics. Frontiers in Immunology 3:91. https://doi.org/10.3389/fimmu.2012.00091

Dimova, M., Madyarova, E., Gurkov, A., Drozdova, P., Lubyaga, Y., Kondrateva, E., Adelshin, R., and Timofeyev, M. 2018. Genetic diversity of Microsporidia in the circulatory system of endemic amphipods from different locations and depths of ancient Lake Baikal. PeerJ 6:e5329. https://doi.org/10.7717/peerj.5329

Dinguirard, N., Cavalcanti, M. G., Wu, X. J., Bickham-Wright, U., Sabat, G., and Yoshino, T. P. 2018. Proteomic analysis of Biomphalaria glabrata hemocytes during in vitro encapsulation of Schistosoma mansoni sporocysts. Frontiers in Immunology 9:2773. https://doi.org/10.3389/fimmu.2018.02773

Drozdova, P., Rivarola-Duarte, L., Bedulina, D., Axenov-Gribanov, D., Schreiber, S., Gurkov, A., Shatilina, Z., Vereshchagina, K., Lubyaga, Y., Madyarova, E., Otto, C., Jühling, F., Busch, W., Jakob, L., Lucassen, M., Sartoris, F. J., Hackermüller, J., Hoffmann, S., Pörtner, H. O., Luckenbach, T., Timofeyev, M., and Stadler, P. F. 2019. Comparison between transcriptomic responses to short-term stress exposures of a common Holarctic and endemic Lake Baikal amphipods. BMC Genomics 20(1):1–14. https://doi.org/10.1186/s12864-019-6024-3

Du, X. J., Zhao, X. F., and Wang, J. X. 2007. Molecular cloning and characterization of a lipopolysaccharide and β-1, 3-glucan binding protein from fleshy prawn (Fenneropenaeus chinensis). Molecular Immunology 44(6):1085–1094. https://doi.org/10.1016/j.molimm.2006.07.288

Fort, P., Kajava, A. V., Delsuc, F., and Coux, O. 2015. Evolution of proteasome regulators in eukaryotes. Genome Biology and Evolution 7(5):1363–1379. https://doi.org/10.1093/gbe/evv068

Gatto, M., Iaccarino, L., Ghirardello, A., Bassi, N., Pontisso, P., Punzi, L., Shoenfeld, Y., and Doria, A. 2013. Serpins, immunity and autoimmunity: old molecules, new functions. Clinical Reviews in Allergy & Immunology 45(2):267–280. https://doi.org/10.1007/s12016-013-8353-3

George, S. K. and Dhar, A. K. 2010. An improved method of cell culture system from eye stalk, hepatopancreas, muscle, ovary, and hemocytes of Penaeus vannamei. In Vitro Cellular & Developmental Biology-Animal 46(9):801–810. https://doi.org/10.1007/s11626-010-9343-x

Goncalves, P., Vernal, J., Rosa, R. D., Yepiz-Plascencia, G., de Souza, C. R. B., Barracco, M. A., and Perazzolo, L. M. 2012. Evidence for a novel biological role for the multifunctional β-1, 3-glucan binding protein in shrimp. Molecular Immunology 51(3–4):363–367. https://doi.org/10.1016/j.molimm.2012.03.032

Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden, J., Couger, M. B., Eccles, D., Li, B., Lieber, M., and MacManes, M. D., 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols 8(8):1494–1512. https://doi.org/10.1038/nprot.2013.084

Hartl, F. U. and Hayer-Hartl, M. 2002. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295(5561):1852–1858. https://doi.org/10.1126/science.1068408

Hernández-Pérez, A., Zamora-Briseño, J. A., Ruiz-May, E., Pereira-Santana, A., Elizalde-Contreras, J. M., Pozos-González, S., Torres-Irineoe, E., Hernández-López, J., Gaxiola-Cortés, M. G., and Rodríguez-Canul, R. 2019. Proteomic profiling of the white shrimp Litopenaeus vannamei (Boone, 1931) hemocytes infected with white spot syndrome virus reveals the induction of allergy-related proteins. Developmental & Comparative Immunology 91:37–49. https://doi.org/10.1016/j.dci.2018.10.002

Holmblad, T. and Söderhäll, K. 1999. Cell adhesion molecules and antioxidative enzymes in a crustacean, possible role in immunity. Aquaculture 172(1–2):111–123. https://doi.org/10.1016/S0044-8486(98)00446-3

Hou, F., Liu, Y., He, S., Wang, X., Mao, A., Liu, Z., Sun, C., and Liu, X. 2015. A galectin from shrimp Litopenaeus vannamei is involved in immune recognition and bacteria phagocytosis. Fish & Shellfish Immunology 44(2):584–591. https://doi.org/10.1016/j.fsi.2015.03.017

Hou, L., Xiu, Y., Wang, J., Liu, X., Liu, Y., Gu, W., Wang, W., and Meng, Q. 2016. iTRAQ-based quantitative proteomic analysis of Macrobrachium rosenbergii hemocytes during Spiroplasma eriocheiris infection. Journal of Proteomics 136:112–122. https://doi.org/10.1016/j.jprot.2015.12.026

Huerta-Cepas, J., Forslund, K., Coelho, L.P., Szklarczyk, D., Jensen, L.J., Von Mering, C., and Bork, P. 2017. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Molecular Biology and Evolution 34(8):2115–2122. https://doi.org/10.1093/molbev/msx148

Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forslund, S. K., Cook, H., Mende, D. R., Letunic, I., Rattei, T., Jensen, L. J., and von Mering, C. 2019. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Research 47(D1):D309–D314. https://doi.org/10.1093/nar/gky1085

Ironside, J. E. and Wilkinson, T. J. 2018. Accumulation and exchange of parasites during adaptive radiation in an ancient lake. International Journal for Parasitology 48(3–4):297–307. https://doi.org/10.1016/j.ijpara.2017.10.003

Junprung, W., Supungul, P., and Tassanakajon, A. 2020. Structure, gene expression, and putative functions of crustacean heat shock proteins in innate immunity. Developmental & Comparative Immunology 103875. https://doi.org/10.1016/j.dci.2020.103875

Kamaltynov, R. M. 1999. On the evolution of Lake Baikal amphipods. Crustaceana 72(8):921–931. https://doi.org/10.1163/156854099503825

Kaygorodova, I. A. and Natyaganova, A. V. 2012. The first cytogenetic report of the endemic fish leech Baicalobdella torquata (Hirudinida, Piscicolidae) from Lake Baikal. Lauterbornia 75:63–70.

Kravtsova, L. S., Kamaltynov, R. M., Karabanov, E. B., Mekhanikova, I. V., Sitnikova, T. Y., Rozhkova, N. A., Slugina, Z. V., Izhboldina, L. A., Weinberg, I. V., Akinshina, T. V., and Sherbakov, D. Y. 2004. Macrozoobenthic communities of underwater landscapes in the shallow-water zone of southern Lake Baikal. Hydrobiologia 522(1):193–205. https://doi.org/10.1023/B:HYDR.0000029979.68265.3e

Krogh, A., Larsson, B., Von Heijne, G., and Sonnhammer, E. L. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of Molecular Biology 305(3):567–580. https://doi.org/10.1006/jmbi.2000.4315

Lai, A. G. and Aboobaker, A. A. 2017. Comparative genomic analysis of innate immunity reveals novel and conserved components in crustacean food crop species. BMC Genomics 18(1):1–26. https://doi.org/10.1186/s12864-017-3769-4

Lai, X., Kong, J., Wang, Q., Wang, W., and Meng, X. 2011. Cloning and characterization of a β-1, 3-glucan-binding protein from shrimp Fenneropenaeus chinensis. Molecular Biology Reports 38(7):4527–4535. https://doi.org/10.1007/s11033-010-0583-3

Leprêtre, M., Almunia, C., Armengaud, J., Salvador, A., Geffard, A., and Palos-Ladeiro, M. 2019. The immune system of the freshwater zebra mussel, Dreissena polymorpha, decrypted by proteogenomics of hemocytes and plasma compartments. Journal of Proteomics 202:103366. https://doi.org/10.1016/j.jprot.2019.04.016

Li, W., Tang, X., Xing, J., Sheng, X., and Zhan, W. 2014. Proteomic analysis of differentially expressed proteins in Fenneropenaeus chinensis hemocytes upon white spot syndrome virus infection. PloS One 9(2):e89962. https://doi.org/10.1371/journal.pone.0089962

Madyarova, E. V., Adelshin, R. V., Dimova, M. D., Axenov-Gribanov, D. V., Lubyaga, Y. A., and Timofeyev, M. A. 2015. Microsporidian parasites found in the hemolymph of four baikalian endemic amphipods. PloS One 10(6):e0130311. https://doi.org/10.1371/journal.pone.0130311

Meng, Q., Hou, L., Zhao, Y., Huang, X., Huang, Y., Xia, S., Gu, W., and Wang, W. 2014. iTRAQ-based proteomic study of the effects of Spiroplasma eriocheiris on Chinese mitten crab Eriocheir sinensis hemocytes. Fish & Shellfish Immunology 40(1):182–189. https://doi.org/10.1016/j.fsi.2014.06.029

Mi, H., Muruganujan, A., Huang, X., Ebert, D., Mills, C., Guo, X., and Thomas, P. D. 2019. Protocol update for large-scale genome and gene function analysis with the PANTHER classification system (v. 14.0). Nature Protocols 14(3):703–721. https://doi.org/10.1038/s41596-019-0128-8

Mydlarz, L. D., Jones, L. E., and Harvell, C. D. 2006. Innate immunity, environmental drivers, and disease ecology of marine and freshwater invertebrates. Annual Review of Ecology, Evolution, and Systematics 37:251–288. https://doi.org/10.1146/annurev.ecolsys.37.091305.110103

Perez-Riverol, Y., Csordas, A., Bai, J., Bernal-Llinares, M., Hewapathirana, S., Kundu, D. J., Inuganti, A., Griss, J., Mayer, G., Eisenacher, M., Pérez, E., Uszkoreit, J., Pfeuffer, J., Sachsenberg, T., Yılmaz, Ş., Tiwary, S., Cox, J., Audain, E., Walzer, M., Jarnuczak, A. F., Ternent, T., Brazma, A., and Vizcaíno, J. A. 2019. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Research 47(D1):D442–D450. https://doi.org/10.1093/nar/gky1106

Protasov, E. S., Axenov-Gribanov, D. V., Rebets, Y. V., Voytsekhovskaya, I. V., Tokovenko, B. T., Shatilina, Z. M., Luzhetskyy, A. N., and Timofeyev, M. A. 2017. The diversity and antibiotic properties of actinobacteria associated with endemic deepwater amphipods of Lake Baikal. Antonie Van Leeuwenhoek 110(12):1593–1611. https://doi.org/10.1007/s10482-017-0910-y

Rich, R., Fleisher, T., Shearer, W., Schroeder, H., Frew, A., and Weyand, C. 2008 Clinical immunology: Principles and practice, 3rd edition, Mosby, 1616 p. https://doi.org/10.1016/B978-0-323-04404-2.X0110-8

Robert, J. 2003. Evolution of heat shock protein and immunity. Developmental & Comparative Immunology 27(6–7):449–464. https://doi.org/10.1016/S0145-305X(02)00160-X

Rowley, A. F. 2016. The immune system of Crustaceans. Encyclopedia of immunobiology. Academic Press, Elsevier 1:437-453. https://doi.org/10.1016/B978-0-12-374279-7.12005-3

Shchapova, E., Nazarova, A., Gurkov, A., Borvinskaya, E., Rzhechitskiy, Y., Dmitriev, I., Meglinski I., and Timofeyev, M. 2019. Application of PEG-Covered non-biodegradable polyelectrolyte microcapsules in the crustacean circulatory system on the example of the amphipod Eulimnogammarus verrucosus. Polymers 11(8):1246. https://doi.org/10.3390/polym11081246

Sivakamavalli, J. and Vaseeharan, B. 2013. Purification, characterization and functional analysis of a novel β-1, 3-glucan binding protein from green tiger shrimp Penaeus semisulcatus. Fish & Shellfish Immunology 35(3):689–696. https://doi.org/10.1016/j.fsi.2013.05.017

Sket, B., Morino, H., Takhteev, V., and Rogers, D. C. 2019. Phylum Arthropoda: Malacostraca: Amphipoda. Thorp and Covich’s Freshwater Invertebrates 4:808–836.

Söderhäll, I. and Junkunlo, K. 2019. A comparative global proteomic analysis of the hematopoietic lineages in the crustacean Pacifastacus leniusculus. Developmental & Comparative Immunology 92:170–178. https://doi.org/10.1016/j.dci.2018.11.016

Sricharoen, S., Kim, J. J., Tunkijjanukij, S., and Söderhäll, I. 2005. Exocytosis and proteomic analysis of the vesicle content of granular hemocytes from a crayfish. Developmental & Comparative Immunology 29(12):1017–1031. https://doi.org/10.1016/j.dci.2005.03.010

Sun, B., Wang, Z., Wang, Z., Ma, X., and Zhu, F. 2017. A proteomic study of hemocyte proteins from mud crab (Scylla paramamosain) infected with white spot syndrome virus or Vibrio alginolyticus. Frontiers in Immunology 8:468. https://doi.org/10.3389/fimmu.2017.00468

Sun, D., Wang, N., and Li, L. 2012. Integrated SDS removal and peptide separation by strong-cation exchange liquid chromatography for SDS-assisted shotgun proteome analysis. Journal of Proteome Research 11(2):818–828. https://doi.org/10.1021/pr200676v

Tang, H., Finn, R. D., and Thomas, P. D. 2019. TreeGrafter: phylogenetic tree-based annotation of proteins with Gene Ontology terms and other annotations. Bioinformatics 35(3):518–520. https://doi.org/10.1093/bioinformatics/bty625

Team, R. C. 2019. R: A Language and Environment for Statistical Computing.

Terwilliger, N. B. 2015. Oxygen transport proteins in Crustacea: hemocyanin and hemoglobin. Physiology (4):359–390.

Vaudel, M., Burkhart, J. M., Zahedi, R. P., Oveland, E., Berven, F. S., Sickmann, A., Martens, L., and Barsnes, H. 2015. PeptideShaker enables reanalysis of MS-derived proteomics data sets. Nature Biotechnology 33(1):22–24. https://doi.org/10.1038/nbt.3109

Watling, L. and Thiel, M. 2013. Functional Morphology and Diversity. The natural history of the Crustacea. 516 p. Oxford University Press, Oxford; New York.

Wickham, H. 2016. ggplot2-Elegant graphics for data analysis. Springer International Publishing. Cham, Switzerland.

Xu, Y., Shi, J., Hao, W., Xiang, T., Zhou, H., Wang, W., Meng, Q., and Ding, Z. 2018. iTRAQ-based quantitative proteomic analysis of Procambarus clakii hemocytes during Spiroplasma eriocheiris infection. Fish & Shellfish Immunology 77:438–444. https://doi.org/10.1016/j.fsi.2018.04.005

Yang, Q., Sun, Z., Zhou, Y., Tran, N. T., Zhang, X., Lin, Q., Zhou, C., Zhang, Y., and Li, S. 2020. SpATF2 participates in maintaining the homeostasis of hemolymph microbiota by regulating dual oxidase expression in mud crab. Fish & Shellfish Immunology 104:252–261. https://doi.org/10.1016/j.fsi.2020.05.049

Zelensky, A. N. and Gready, J. E. 2005. The C-type lectin-like domain superfamily. The FEBS Journal 272(24):6179–6217. https://doi.org/10.1111/j.1742-4658.2005.05031.x

Zhu, L., Tang, X., Xing, J., Sheng, X., and Zhan, W. 2018. Differential proteome of haemocyte subpopulations responded to white spot syndrome virus infection in Chinese shrimp Fenneropenaeus chinensis. Developmental & Comparative Immunology 84:82–93. https://doi.org/10.1016/j.dci.2018.02.003

How to Cite
Zolotovskaya, E., Nazarova, A., Saranchina, A., Mutin, A., Drozdova, P., Lubyaga, Y., & Timofeyev, M. (2021). Hemocyte proteome of the Lake Baikal endemic <em>Eulimnogammarus verrucosus</em&gt; (Crustacea: Amphipoda) sheds light on immune-related proteins. Biological Communications, 66(4), 290–301. https://doi.org/10.21638/spbu03.2021.402
Full communications