Osteogenic differentiation: a universal cell program of heterogeneous mesenchymal cells or a similar extracellular matrix mineralizing phenotype?

  • Arseniy Lobov Laboratory of Regenerative Biomedicine, Institute of Cytology, Russian Academy of Sciences, Tikhoretskiy pr., 4, Saint Petersburg, 194064, Russian Federation https://orcid.org/0000-0002-0930-1171
  • Anna Malashicheva Laboratory of Regenerative Biomedicine, Institute of Cytology, Russian Academy of Sciences, Tikhoretskiy pr., 4, Saint Petersburg, 194064, Russian Federation https://orcid.org/0000-0002-0820-2913

Abstract

Despite the popularity of mesenchymal stem cells (MSCs), many fundamental aspects of their physiology still have not been understood. The information accumulated to date argues that MSCs from different sources vary in their differentiation potential and, probably, in molecular mechanisms of trilineage differentiation. Therefore, this review consists of two parts. Firstly, we focus on the data on inter- and intra-source variation of MSCs. We discuss in detail MSC variation at the single-cell level and direct omics comparison of MSCs from four main tissue sources: bone marrow, adipose tissue, umbilical cord and tooth. MSCs from all tissues represent heterogeneous populations in vivo with sub-populational structures reflecting their functional role in the tissue. After in vitro cultivation MSCs lose their natural heterogeneity, but obtain a new one, which might be regarded as a cultivation artifact. Nevertheless, MSCs from various sources still keep their functional differences after in vitro cultivation. In the second part of the review, we discuss how these differences influence molecular mechanisms of osteogenic differentiation. We highlight at least one subtype of mesenchymal cells differentiation with matrix mineralization — odontoblastic differentiation. We also discuss differences in molecular mechanisms of pathological heterotopic osteogenic differentiation of valve interstitial and tumor cells, but these assumptions need additional empirical confirmation. Finally, we observe differences in osteogenic differentiation molecular mechanisms of several MSC types and argue that this differentiation might be influenced by the cell context. Nevertheless, bone marrow and adipose MSCs seem to undergo osteogenic differentiation similarly, by the same mechanisms.

Keywords:

mesenchymal stem cells, osteogenic differentiation, MSCs, MSC heterogeneity, scRNA-seq, cell differentiation, systems biology

Downloads

Download data is not yet available.
 

References

Acosta, J. R., Joost, S., Karlsson, K., Ehrlund, A., Li, X., Aouadi, M., Kasper, M., Arner, P., Rydén, M., and Laurencikiene, J. 2017. Single cell transcriptomics suggest that human adipocyte progenitor cells constitute a homogeneous cell population. Stem Cell Research & Therapy 8(1):1–6. https://doi.org/10.1186/s13287-017-0701-4

Addo, R. K., Heinrich, F., Heinz, G. A., Schulz, D., Sercan-Alp, Ö., Lehmann, K., Tran, C. L., Bardua, M., Matz, M., Löhning, M., and Hauser, A. E. 2019. Single-cell transcriptomes of murine bone marrow stromal cells reveal niche-associated heterogeneity. European Journal of Immunology 49(9):1372–1379. https://doi.org/10.1002/eji.201848053

Alraies, A., Alaidaroos, N. Y., Waddington, R. J., Moseley, R., and Sloan, A. J. 2017. Variation in human dental pulp stem cell ageing profiles reflect contrasting proliferative and regenerative capabilities. BMC Cell Biology 18(1):1–4. https://doi.org/10.1186/s12860-017-0128-x

Alraies, A., Canetta, E., Waddington, R. J., Moseley, R., and Sloan, A. J. 2019. Discrimination of dental pulp stem cell regenerative heterogeneity by single-cell Raman spectroscopy. Tissue Engineering Part C: Methods 25(8):489–499. https://doi.org/10.1089/ten.TEC.2019.0129

Alraies, A., Waddington, R. J., Sloan, A. J., and Moseley, R. 2020. Evaluation of dental pulp stem cell heterogeneity and behaviour in 3D type I collagen gels. BioMed Research International 2020:3034727. https://doi.org/10.1155/2020/3034727

Arai, Y., Choi, B., Kim, B. J., Park, S., Park, H., Moon, J. J., and Lee, S. H. 2021. Cryptic ligand on collagen matrix unveiled by MMP13 accelerates bone tissue regeneration via MMP13/Integrin α3/RUNX2 feedback loop. Acta Biomaterialia 125:219–230. https://doi.org/10.1016/j.actbio.2021.02.042

Baccin, C., Al-Sabah, J., Velten, L., Helbling, P. M., Grünschläger, F., Hernández-Malmierca, P., Nombela-Arrieta, C., Steinmetz, L. M., Trumpp, A., and Haas, S. 2020. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nature Cell Biology 22(1):38–48. https://doi.org/10.1038/s41556-019-0439-6

Baroncelli, M., van der Eerden, B. C., Kan, Y. Y., Alves, R. D., Demmers, J. A., van de Peppel, J., and van Leeuwen, J. P. 2018. Comparative proteomic profiling of human osteoblast-derived extracellular matrices identifies proteins involved in mesenchymal stromal cell osteogenic differentiation and mineralization. Journal of Cellular Physiology 233(1):387–395. https://doi.org/10.1002/jcp.25898

Bogdanova, M., Zabirnyk, A., Malashicheva, A., Enayati, K. Z., Karlsen, T. A., Kaljusto, M. L., Kvitting, J. P., Dissen, E., Sullivan, G. J., Kostareva, A., and Stensløkken, K. O. 2019. Interstitial cells in calcified aortic valves have reduced differentiation potential and stem cell-like properties. Scientific Reports 9(1):1–3. https://doi.org/10.1038/s41598-019-49016-0

Bragdon, B. C. and Bahney, C. S. 2018. Origin of reparative stem cells in fracture healing. Current Osteoporosis Reports 16(4):490–503. https://doi.org/10.1007/s11914-018-0458-4

Brooks, A. E., Boss, A. L., Lehnert, K., and Dunbar, P. R. 2020. Dissecting adipose tissue derived mesenchymal stromal cell heterogeneity using single cell rna sequencing and multiparameter spectral flow cytometry. Cytotherapy 22(5):S70–S71. https://doi.org/10.1016/j.jcyt.2020.03.110

Caplan, A. I. 1991. Mesenchymal stem cells. Journal of Orthopaedic Research 9(5):641–650. https://doi.org/10.1002/jor.1100090504

Caplan, A. I. 2017a. New MSC: MSCs as pericytes are sentinels and gatekeepers. Journal of Orthopaedic Research 35(6):1151–1159. https://doi.org/10.1002/jor.23560

Caplan, A. I. 2017b. Mesenchymal stem cells: time to change the name! Stem Cells Translational Medicine 6(6):1445–1451. https://doi.org/10.1002/sctm.17-0051

Carvalho, M. M., Teixeira, F. G., Reis, R. L., Sousa, N., and Salgado, A. J. 2011. Mesenchymal stem cells in the umbilical cord: phenotypic characterization, secretome and applications in central nervous system regenerative medicine. Current Stem Cell Research & Therapy 6(3):221–228. https://doi.org/10.2174/157488811796575332

Chang, P. L., Blair, H. C., Zhao, X., Chien, Y. W., Chen, D., Tilden, A. B., Chang, Z., Cao, X., Faye-Petersen, O. M., and Hicks, P. 2006. Comparison of fetal and adult marrow stromal cells in osteogenesis with and without glucocorticoids. Connective Tissue Research 47(2):67–76. https://doi.org/10.1080/03008200600584074

Chen, S., Rani, S., Wu, Y., Unterbrink, A., Gu, T. T., Gluhak-Heinrich, J., Chuang, H. H., and MacDougall, M. 2005. Differential regulation of dentin sialophosphoprotein expression by Runx2 during odontoblast cytodifferentiation. Journal of Biological Chemistry 280(33):29717–29727. https://doi.org/10.1074/jbc.M502929200

Cheng, K. H., Kuo, T. L., Kuo, K. K., and Hsiao, C. C. 2011. Human adipose-derived stem cells: Isolation, characterization and current application in regeneration medicine. Genomic Medicine, Biomarkers, and Health Sciences 3(2):53–62. https://doi.org/10.1016/j.gmbhs.2011.08.003

Chiba, Y., Saito, K., Martin, D., Boger, E. T., Rhodes, C., Yoshizaki, K., Nakamura, T., Yamada, A., Morell, R. J., Yamada, Y., and Fukumoto, S. 2020. Single-cell RNA-sequencing from mouse incisor reveals dental epithelial cell-type specific genes. Frontiers in Cell and Developmental Biology 8:841. https://doi.org/10.3389/fcell.2020.00841

Christy, B. A., Herzig, M. C., Delavan, C., Cantu, C., Salgado, C., Bynum, J. A., and Cap, A. P. 2019. Human primary fibroblasts perform similarly to MSCs in assays used to evaluate MSC safety and potency. Transfusion 59(S2):1593–1600. https://doi.org/10.1111/trf.15187

Dadras, M., May, C., Wagner, J. M., Wallner, C., Becerikli, M., Dittfeld, S., Serschnitzki, B., Schilde, L., Guntermann, A., Sengstock, C., and Köller, M. 2020. Comparative proteomic analysis of osteogenic differentiated human adipose tissue and bone marrow-derived stromal cells. Journal of Cellular and Molecular Medicine 24(20):11814–11827. https://doi.org/10.1111/jcmm.15797

Davies, O. G., Cooper, P. R., Shelton, R. M., Smith, A. J., and Scheven, B. A. A 2015. Comparison of the in vitro mineralisation and dentinogenic potential of mesenchymal stem cells derived from adipose tissue, bone marrow and dental pulp. Journal of Bone and Mineral Metabolism 33(4):371–382. https://doi.org/10.1007/s00774-014-0601-y

Della Bella, E., Buetti-Dinh, A., Licandro, G., Ahmad, P., Basoli, V., Alini, M., and Stoddart, M. J. 2021. Dexamethasone induces changes in osteogenic differentiation of human mesenchymal stromal cells via SOX9 and PPARG, but not RUNX2. International Journal of Molecular Sciences 22(9):4785. https://doi.org/10.3390/ijms22094785

Di Maggio, N., Mehrkens, A., Papadimitropoulos, A., Schaeren, S., Heberer, M., Banfi, A., and Martin, I. 2012. Fibroblast growth factor-2 maintains a niche-dependent population of self-renewing highly potent non-adherent mesenchymal progenitors through FGFR2c. Stem Cells 30(7):1455–1464. https://doi.org/10.1002/stem.1106

Doi, H., Kitajima, Y., Luo, L., Yan, C., Tateishi, S., Ono, Y., Urata, Y., Goto, S., Mori, R., Masuzaki, H., and Shimokawa, I. 2016. Potency of umbilical cord blood-and Wharton’s jelly-derived mesenchymal stem cells for scarless wound healing. Scientific Reports 6(1):1–10. https://doi.org/10.1038/srep18844

Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., Krause, D. S., Deans, R. J., Keating, A., Prockop, D. J., and Horwitz, E. M. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317. https://doi.org/10.1080/14653240600855905

Dong, Q., Wang, Y., Mohabatpour, F., Zheng, L., Papagerakis, S., Chen, D., and Papagerakis, P. 2019. Dental pulp stem cells: isolation, characterization, expansion, and odontoblast differentiation for tissue engineering; pp. 91–101 in Odontogenesis, Humana Press, New York. https://doi.org/10.1007/978-1-4939-9012-2_9

D’Souza, R. N., Aberg, T., Gaikwad, J., Cavender, A., Owen, M., Karsenty, G., and Thesleff, I. 1999. Cbfa1 is required for epithelial-mesenchymal interactions regulating tooth development in mice. Development 126(13):2911–2920. https://doi.org/10.1242/dev.126.13.2911

Dukes, C. E. 1939. Ossification in rectal cancer. Proceedings of the Royal Society of Medicine 32(11):1489–1494. https://doi.org/10.1177/003591573903201153

Felthaus, O., Gosau, M., Klein, S., Prantl, L., Reichert, T. E., Schmalz, G., and Morsczeck, C. 2014. Dexamethasone-related osteogenic differentiation of dental follicle cells depends on ZBTB16 but not Runx2. Cell and Tissue Research 357(3):695–705. https://doi.org/10.1007/s00441-014-1891-z

Freeman, B. T., Jung, J. P., and Ogle, B. M. 2015. Single-cell RNA-Seq of bone marrow-derived mesenchymal stem cells reveals unique profiles of lineage priming. PLoS One 10(9):e0136199. https://doi.org/10.1371/journal.pone.0136199

Ghali, O., Broux, O., Falgayrac, G., Haren, N., van Leeuwen, J. P., Penel, G., Hardouin, P., and Chauveau, C. 2015. Dexamethasone in osteogenic medium strongly induces adipocyte differentiation of mouse bone marrow stromal cells and increases osteoblast differentiation. BMC Cell Biology 16(1):1–5. https://doi.org/10.1186/s12860-015-0056-6

Gomez-Stallons, M. V., Hassel, K., and Yutzey, K. E. 2020. Developmental pathways and aortic valve calcification; pp. 47–71 in Aikawa, E., Hutcheson, J. D. (eds), Cardiovascular Calcification and Bone Mineralization, Humana Press, Cham. https://doi.org/10.1007/978-3-030-46725-8_3

Gomez-Stallons, M. V., Wirrig-Schwendeman, E. E., Hassel, K. R., Conway, S. J., and Yutzey, K. E. 2016. Bone morphogenetic protein signaling is required for aortic valve calcification. Arteriosclerosis, Thrombosis, and Vascular Biology 36(7):1398–1405. https://doi.org/10.1161/AT-VBAHA.116.307526

Hardy, W. R., Moldovan, N. I., Moldovan, L., Livak, K. J., Datta, K., Goswami, C., Corselli, M., Traktuev, D. O, Murray, I. R., Péault, B., and March, K. 2017. Transcriptional networks in single perivascular cells sorted from human adipose tissue reveal a hierarchy of mesenchymal stem cells. Stem Cells 35(5):1273–1289. https://doi.org/10.1002/stem.2599

Harman, R. M., Patel, R. S., Fan, J. C., Park, J. E., Rosenberg, B. R., and Van de Walle, G. R. 2020. Single-cell RNA sequencing of equine mesenchymal stromal cells from primary donor-matched tissue sources reveals functional heterogeneity in immune modulation and cell motility. Stem Cell Research & Therapy 11(1):1–5. https://doi.org/10.1186/s13287-020-02043-5

Harrington, J., Sloan, A. J., and Waddington, R. J. 2014. Quantification of clonal heterogeneity of mesenchymal progenitor cells in dental pulp and bone marrow. Connective Tissue Research 55(sup1):62–67. https://doi.org/10.3109/03008207.2014.923859

Hartmann, C. and Yang, Y. 2020. Molecular and cellular regulation of intramembranous and endochondral bone formation during embryogenesis; pp. 5–44 in Bilezikian, J. P., Martin, T. J., Clemens, Th. L., and Rosen, C. J. (eds), Principles of Bone Biology, Academic Press. https://doi.org/10.1016/B978-0-12-814841-9.00001-4

Hou, W., Duan, L., Huang, C., Li, X., Xu, X., Qin, P., Hong, N., Wang, D., and Jin, W. 2021. Mesenchymal stem cell subpopulations and their heterogeneity of response to inductions revealed by single-cell RNA-seq. bioRxiv. Jan 1. https://doi.org/10.1101/2021.05.07.443197

Huang, L., Niu, C., Willard, B., Zhao, W., Liu, L., He, W., Wu, T., Yang, S., Feng, S., Mu, Y., Zheng, L., and Li, K. 2015. Proteomic analysis of porcine mesenchymal stem cells derived from bone marrow and umbilical cord: implication of the proteins involved in the higher migration capability of bone marrow mesenchymal stem cells. Stem Cell Research & Therapy 6(1):1–8. https://doi.org/10.1186/s13287-015-0061-x

Jääger, K., Islam, S., Zajac, P., Linnarsson, S., and Neuman, T. 2012. RNA-seq analysis reveals different dynamics of differentiation of human dermis-and adipose-derived stromal stem cells. PLoS One 7(6):e38833. https://doi.org/10.1371/journal.pone.0038833

Jaiswal, N., Haynesworth, S. E., Caplan, A. I., and Bruder, S. P. 1997. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. Journal of Cellular Biochemistry 64(2):295–312. https://doi.org/10.1002/(SICI)1097-4644(199702)64:2<295::AIDJCB12>3.0.CO;2-I

Janowicz, K., Mozdziak, P., Bryja, A., Kempisty, B., and Dyszkiewicz-Konwińska, M. 2019. Human dental pulp stem cells: recent findings and current research. Medical Journal of Cell Biology 7(3):119–124. https://doi.org/10.2478/acb-2019-0016

Kannan, S., Ghosh, J., and Dhara, S. K. 2020. Osteogenic differentiation potential of porcine bone marrow mesenchymal stem cell subpopulations selected in different basal media. Biology Open 9(10). https://doi.org/10.1242/bio.053280

Katono, N., Tsuda, M., Suzuka, J., Oda, Y., Wang, L., Tanei, Z. I., Tanino, M., Ohata, T., Nagabuchi, E., Ishida, Y., and Kimura, S. 2021. Involvement of BMP and Wnt Signals Leadingto Epithelial-Mesenchymal Transition in Colon Adenocarcinoma with Heterotopic Ossification. Annals of Clinical & Laboratory Science 51(2):271–276.

Khalid, S., Yamazaki, H., Socorro, M., Monier, D., Beniash, E., and Napierala, D. 2020. Reactive oxygen species (ROS) generation as an underlying mechanism of inorganic phosphate (Pi)-induced mineralization of osteogenic cells. Free Radical Biology and Medicine 153:103–111. https://doi.org/10.1016/j.freeradbiomed.2020.04.008

Kita, K., Gauglitz, G. G., Phan, T. T., Herndon, D. N., and Jeschke, M. G. 2010. Isolation and characterization of mesenchymal stem cells from the sub-amniotic human umbilical cord lining membrane. Stem Cells and Development 19(4):491–502. https://doi.org/10.1089/scd.2009.0192

Kobayashi, T., Torii, D., Iwata, T., Izumi, Y., Nasu, M., and Tsutsui, T. W. 2020. Characterization of proliferation, differentiation potential, and gene expression among clonal cultures of human dental pulp cells. Human Cell 33:490–501. https://doi.org/10.1007/s13577-020-00327-9

Kobayashi, Y., Uehara, S., Udagawa, N., and Takahashi, N. 2016. Regulation of bone metabolism by Wnt signals. The Journal of Biochemistry 159(4):387–392. https://doi.org/10.1093/jb/mvv124

Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., Shimizu, Y., Bronson, R. T., Gao, Y. H., Inada, M., and Sato, M. 1997. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89(5):755–764. https://doi.org/10.1016/s0092-8674(00)80258-5

Kozlowska, U., Krawczenko, A., Futoma, K., Jurek, T., Rorat, M., Patrzalek, D., and Klimczak, A. 2019. Similarities and differences between mesenchymal stem/progenitor cells derived from various human tissues. World Journal of Stem Cells 11(6):347–374. https://doi.org/10.4252/wjsc.v11.i6.347

Krivanek, J., Soldatov, R. A., Kastriti, M. E., Chontorotzea, T., Herdina, A. N., Petersen, J., Szarowska, B., Landova, M., Matejova, V. K., Holla, L. I., and Kuchler, U. 2020. Dental cell type atlas reveals stem and differentiated cell types in mouse and human teeth. Nature Communications 11(1):1–8. https://doi.org/10.1038/s41467-020-18512-7

Kumar, A., Kumar, V., Rattan, V., Jha, V., and Bhattacharyya, S. 2018. Secretome proteins regulate comparative osteogenic and adipogenic potential in bone marrow and dental stem cells. Biochimie 155:129–139. https://doi.org/10.1016/j.biochi.2018.10.014

Langenbach, F. and Handschel, J. 2013. Effects of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Research & Therapy 4(5):1–7. https://doi.org/10.1186/scrt328

Li, T. X., Yuan, J., Chen, Y., Pan, L. J., Song, C., Bi, L. J., and Jiao, X. H. 2013. Differentiation of mesenchymal stem cells from human umbilical cord tissue into odontoblast-like cells using the conditioned medium of tooth germ cells in vitro. BioMed Research International 218543. https://doi.org/10.1155/2013/218543

Lin, Y., Xiao, Y., Lin, C., Zhang, Q., Zhang, S., Pei, F., Liu, H., and Chen, Z. 2020. SALL1 regulates commitment of odontoblast lineages by interacting with RUNX2 to remodel open chromatin regions. Stem Cells 39(2):196–209. https://doi.org/10.1002/stem.3298

Lyons, F. G. and Mattei, T. A. 2019. Sources, identification, and clinical implications of heterogeneity in human umbilical cord stem cells; pp. 243–256 in Stem Cells Heterogeneity in Different Organs. Springer, Cham. https://doi.org/10.1007/978-3-030-24108-7_13

Marie, P. J., Miraoui, H., and Sévère, N. 2012. FGF/FGFR signaling in bone formation: progress and perspectives. Growth Factors 30(2):117–123. https://doi.org/10.3109/08977194.2012.656761

Mastrolia, I., Foppiani, E. M., Murgia, A., Candini, O., Samarelli, A. V., Grisendi, G., Veronesi, E., Horwitz, E. M., and Dominici, M. 2019. Challenges in clinical development of mesenchymal stromal/stem cells: concise review. Stem Cells Translational Medicine 8(11):1135–1148. https://doi.org/10.1002/sctm.19-0044

Mehrkens, A., Di Maggio, N., Gueven, S., Schaefer, D., Scherberich, A., Banfi, A., and Martin, I. 2014. Non-adherent mesenchymal progenitors from adipose tissue stromal vascular fraction. Tissue Engineering Part A 20(5–6):1081–1088. https://doi.org/10.1089/ten.TEA.2013.0273

Méndez-Ferrer, S., Michurina, T. V., Ferraro, F., Mazloom, A. R., MacArthur, B. D., Lira, S. A., Scadden, D. T., Ma’ayan, A., Enikolopov, G. N., and Frenette, P. S. 2010. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466(7308):829–834. https://doi.org/10.1038/nature09262

Mohamed-Ahmed, S., Fristad, I., Lie, S. A., Suliman, S., Mustafa, K., Vindenes, H., and Idris, S. B. 2018. Adipose-derived and bone marrow mesenchymal stem cells: a donor-matched comparison. Stem Cell Research & Therapy 9(1):1–5. https://doi.org/10.1186/s13287-018-0914-1

Monaco, E., Bionaz, M., Rodriguez-Zas, S., Hurley, W. L., and Wheeler, M. B. 2012. Transcriptomics comparison between porcine adipose and bone marrow mesenchymal stem cells during in vitro osteogenic and adipogenic differentiation. PLoS One 7(3):e32481. https://doi.org/10.1371/journal.pone.0032481

Monzack, E. L. and Masters, K. S. 2011. Can valvular interstitial cells become true osteoblasts? A side-by-side comparison. The Journal of heart Valve Disease 20(4):449.

Nagata, M., Ono, N., and Ono, W. 2021. Unveiling diversity of stem cells in dental pulp and apical papilla using mouse genetic models: a literature review. Cell and Tissue Research 383:603–616. https://doi.org/10.1007/s00441-020-03271-0

Nantavisai, S., Pisitkun, T., Osathanon, T., Pavasant, P., Kalpravidh, C., Dhitavat, S., Makjaroen, J., and Sawangmake, C. 2020. Systems biology analysis of osteogenic differentiation behavior by canine mesenchymal stem cells derived from bone marrow and dental pulp. Scientific Reports 10(1):1–8. https://doi.org/10.1038/s41598-020-77656-0

Omatsu, Y., Sugiyama, T., Kohara, H., Kondoh, G., Fujii, N., Kohno, K., and Nagasawa, T. 2010. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33(3):387–399. https://doi.org/10.1016/j.immuni.2010.08.017

Phinney, D. G. 2012. Functional heterogeneity of mesenchymal stem cells: implications for cell therapy. Journal of Cellular Biochemistry 113(9):2806–2812. https://doi.org/10.1002/jcb.24166

Pitkänen, S. 2020. In vitro and in vivo osteogenesis and vasculogenesis in synthetic bone grafts. PhD thesis.

Prazeres, P. H., Sena, I. F., da Terra Borges, I., de Azevedo, P. O., Andreotti, J. P., de Paiva, A. E., de Almeida, V. M., de Paula Guerra, D. A., Dos Santos, G. S., Mintz, A., and Delbono, O. 2017. Pericytes are heterogeneous in their origin within the same tissue. Developmental Biology 427(1):6–11. https://doi.org/10.1016/j.ydbio.2017.05.001

Rahman, M. S., Akhtar, N., Jamil, H. M., Banik, R. S., and Asaduzzaman, S. M. 2015. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Research 3(1):1–20. https://doi.org/10.1038/boneres.2015.5

Rosa, V., Della Bona, A., Cavalcanti, B. N., and Nör, J. E. 2012. Tissue engineering: from research to dental clinics. Dental Materials 28(4):341–348. https://doi.org/10.1016/j.dental.2011.11.025

Rutkovskiy, A., Malashicheva, A., Sullivan, G., Bogdanova, M., Kostareva, A., Stensløkken, K. O., Fiane, A., and Vaage, J. 2017. Valve interstitial cells: the key to understanding the pathophysiology of heart valve calcification. Journal of the American Heart Association 6(9):e006339. https://doi.org/10.1161/JAHA.117.006339

Salasznyk, R. M., Williams, W. A., Boskey, A., Batorsky, A., and Plopper, G. E. 2004. Adhesion to vitronectin and collagen I promotes osteogenic differentiation of human mesenchymal stem cells. Journal of Biomedicine and Biotechnology 2004(1):24–34. https://doi.org/10.1155/S1110724304306017

Salhotra, A., Shah, H. N., Levi, B., and Longaker, M. T. 2020. Mechanisms of bone development and repair. Nature Reviews Molecular Cell Biology 21:696–711. https://doi.org/10.1038/s41580-020-00279-w

Saugspier, M., Felthaus, O., Viale-Bouroncle, S., Driemel, O., Reichert, T. E., Schmalz, G., and Morsczeck, C. 2010. The differentiation and gene expression profile of human dental follicle cells. Stem Cells and Development 19(5):707–717. https://doi.org/10.1089/scd.2010.0027

Sawa, N., Fujimoto, H., Sawa, Y., and Yamashita, J. 2019. Alternating differentiation and dedifferentiation between mature osteoblasts and osteocytes. Scientific Reports 9(1):1–9. https://doi.org/10.1038/s41598-019-50236-7

Semenova, D., Bogdanova, M., Kostina, A., Golovkin, A., Kostareva, A., and Malashicheva, A. 2020. Dose-dependent mechanism of Notch action in promoting osteogenic differentiation of mesenchymal stem cells. Cell and Tissue Research 379(1):169–179. https://doi.org/10.1007/s00441-019-03130-7

Shen, C., Yang, C., Xu, S., and Zhao, H. 2019. Comparison of osteogenic differentiation capacity in mesenchymal stem cells derived from human amniotic membrane (AM), umbilical cord (UC), chorionic membrane (CM), and decidua (DC). Cell & Bioscience 9(1):1–11. https://doi.org/10.1186/s13578-019-0281-3

Shi, S. and Gronthos, S. 2003. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. Journal of Bone and Mineral Research 18(4):696–704. https://doi.org/10.1359/jbmr.2003.18.4.696

Shin, S., Lee, J., Kwon, Y., Park, K. S., Jeong, J. H., Choi, S. J., Bang, S. I., Chang, J. W., and Lee, C. 2021. Comparative proteomic analysis of the mesenchymal stem cells secretome from adipose, bone marrow, placenta and Wharton’s jelly. International Journal of Molecular Sciences 22(2):845. https://doi.org/10.3390/ijms22020845

Subramanian, A., Fong, C. Y., Biswas, A., and Bongso, A. 2015. Comparative characterization of cells from the various compartments of the human umbilical cord shows that the Wharton’s jelly compartment provides the best source of clinically utilizable mesenchymal stem cells. PLoS One 10(6):e0127992. https://doi.org/10.1371/journal.pone.0127992

Sugiyama, T., Kohara, H., Noda, M., and Nagasawa, T. 2006. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25(6):977–988. https://doi.org/10.1016/j.immuni.2006.10.016

Sun, C., Wang, L., Wang, H., Huang, T., Yao, W., Li, J., and Zhang, X. 2020. Single-cell RNA-seq highlights heterogeneity in human primary Wharton’s jelly mesenchymal stem/stromal cells cultured in vitro. Stem Cell Research & Therapy 11:1–6. https://doi.org/10.1186/s13287-020-01660-4

Supakul, S., Yao, K., Ochi, H., Shimada, T., Hashimoto, K., Sunamura, S., Mabuchi, Y., Tanaka, M., Akazawa, C., Nakamura, T., and Okawa, A. 2019. Pericytes as a source of osteogenic cells in bone fracture healing. International Journal of Molecular Sciences 20(5):1079. https://doi.org/10.3390/ijms20051079

Suzuki, J., Kanauchi, N., Endo, M., Hamada, A., and Watanabe, H. 2019. Pulmonary adenocarcinoma with heterotopic ossification. The Japanese Journal of Thoracic Surgery 72(5):363–366.

Tada, H., Nemoto, E., Foster, B. L., Somerman, M. J., and Shimauchi, H. 2011. Phosphate increases bone morphogenetic protein-2 expression through cAMP-dependent protein kinase and ERK1/2 pathways in human dental pulp cells. Bone 48(6):1409–1416. https://doi.org/10.1016/j.bone.2011.03.675

Tikhonova, A. N., Dolgalev, I., Hu, H., Sivaraj, K. K., Hoxha, E., Cuesta-Domínguez, Á., Pinho, S., Akhmetzyanova, I., Gao, J., Witkowski, M., and Guillamot, M. 2019. The bone marrow microenvironment at single-cell resolution. Nature 569(7755):222–228. https://doi.org/10.1038/s41586-019-1104-8

Vijay, J., Gauthier, M. F., Biswell, R. L., Louiselle, D. A., Johnston, J. J., Cheung, W. A., Belden, B., Pramatarova, A., Biertho, L., Gibson, M., Simon, M.-M., Djambazian, H., Staffa, A., Bourque, G., Laitinen, A., Nystedt, J., Vohl, M.-C., Fraser, J. D., Pastinen, T., Tchernof, A., and Grundberg, E. 2020. Single-cell analysis of human adipose tissue identifies depot-and disease-specific cell types. Nature Metabolism 2(1):97–109. https://doi.org/10.1038/s42255-019-0152-6

Wang, H. H., Cui, Y. L., Zaorsky, N. G., Lan, J., Deng, L., Zeng, X. L., Wu, Z. Q., Tao, Z., Guo, W. H., Wang, Q. X., and Zhao, L. J. 2016. Mesenchymal stem cells generate pericytes to promote tumor recurrence via vasculogenesis after stereotactic body radiation therapy. Cancer Letters 375(2):349–359. https://doi.org/10.1016/j.canlet.2016.02.033

Whitfield, M. J., Lee, W. C., and Van Vliet, K. J. 2013. Onset of heterogeneity in culture-expanded bone marrow stromal cells. Stem Cell Research 11(3):1365–1377. https://doi.org/10.1016/j.scr.2013.09.004

Wolock, S. L., Krishnan, I., Tenen, D. E., Matkins, V., Camacho, V., Patel, S., Agarwal, P., Bhatia, R., Tenen, D. G., Klein, A. M., and Welner, R. S. 2019. Mapping distinct bone marrow niche populations and their differentiation paths. Cell Reports 28(2):302–311. https://doi.org/10.1016/j.celrep.2019.06.031

Wu, L., Zhu, F., Wu, Y., Lin, Y., Nie, X., Jing, W., Qiao, J., Liu, L., Tang, W., Zheng, X., and Tian, W. 2008. Dentin sialophosphoprotein-promoted mineralization and expression of odontogenic genes in adipose-derived stromal cells. Cells Tissues Organs 187(2):103–112. https://doi.org/10.1159/000110079

Xie, H., Chua, M., Islam, I., Bentini, R., Cao, T., Viana-Gomes, J. C., Neto, A. H., and Rosa, V. 2017. CVD-grown monolayer graphene induces osteogenic but not odontoblastic differentiation of dental pulp stem cells. Dental Materials 33(1):e13–21. https://doi.org/10.1016/j.dental.2016.09.030

Xu, R., Hu, J., Zhou, X., and Yang, Y. 2018. Heterotopic ossification: mechanistic insights and clinical challenges. Bone 109:134–142. https://doi.org/10.1016/j.bone.2017.08.025

Yamazaki, T. and Mukouyama, Y. S. 2018. Tissue specific origin, development, and pathological perspectives of pericytes. Frontiers in Cardiovascular Medicine 5:78. https://doi.org/10.3389/fcvm.2018.00078

Yang, Y., Liu, Z., Zhao, W., Huang, L., Wu, T., Mu, Y., and Li, K. 2019. Integrated analysis of DNA methylome and transcriptome reveals the differences in biological characteristics of porcine mesenchymal stem cells from bone marrow and umbilical cord. Research Square https://doi.org/10.21203/rs.2.9875/v1

Yianni, V. and Sharpe, P. T. 2019. Perivascular-derived mesenchymal stem cells. Journal of Dental Research 98(10):1066–1072. https://doi.org/10.1177/0022034519862258

Yu, S., Zhao, Y., Ma, Y., and Ge, L. 2016. Profiling the secretome of human stem cells from dental apical papilla. Stem Cells and Development 25(6):499–508. https://doi.org/10.1089/scd.2015.0298

Zajdel, A., Kałucka, M., Kokoszka-Mikołaj, E., and Wilczok, A. 2017. Osteogenic differentiation of human mesenchymal stem cells from adipose tissue and Wharton’s jelly of the umbilical cord. Acta Biochimica Polonica 64(2):365–369. https://doi.org/10.18388/abp.2016_1488

Zha, K., Li, X., Yang, Z., Tian, G., Sun, Z., Sui, X., Dai, Y., Liu, S., and Guo, Q. 2021. Heterogeneity of mesenchymal stem cells in cartilage regeneration: from characterization to application. NPJ Regenerative Medicine 6(1):1–5. https://doi.org/10.1038/s41536-021-00122-6

Zhang, S., Wang, J. Y., Li, B., Yin, F., and Liu, H. 2021. Single-cell transcriptome analysis of uncultured human umbilical cord mesenchymal stem cells. Stem Cell Research & Therapy 12(1):1–5. https://doi.org/10.1186/s13287-020-02055-1

Zhou, W., Lin, J., Zhao, K., Jin, K., He, Q., Hu, Y., Feng, G., Cai, Y., Xia, C., Liu, H., and Shen, W. 2019. Single-cell profiles and clinically useful properties of human mesenchymal stem cells of adipose and bone marrow origin. The American Journal of Sports Medicine 47(7):1722–1733. https://doi.org/10.1177/0363546519848678

Zhou, B. O., Yue, R., Murphy, M. M., Peyer, J. G., and Morrison, S. J. 2014. Leptin-receptor expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15(2):154–168. https://doi.org/10.1016/j.stem.2014.06.008

Zuttion, M. S., Câmara, D. A., Dariolli, R., Takimura, C., Wenceslau, C., and Kerkis, I. 2019. In vitro heterogeneity of porcine adipose tissue-derived stem cells. Tissue and Cell 58:51–60. https://doi.org/10.1016/j.tice.2019.04.001

Published
2022-05-04
How to Cite
Lobov, A., & Malashicheva, A. (2022). Osteogenic differentiation: a universal cell program of heterogeneous mesenchymal cells or a similar extracellular matrix mineralizing phenotype?. Biological Communications, 67(1), 32–48. https://doi.org/10.21638/spbu03.2022.104
Section
Review communications