Nitrogen use by plants and nitrogen flows after application of standard and biomodified nitrogen fertilizers on barley

Authors

  • Alexey Zavalin All-Russian Scientific Research Institute of Agrochemistry named after D.N. Pryanishnikov, ul. Pryanishnikova, 31a, Moscow, 127434, Russian Federation https://orcid.org/0000-0001-7717-877X
  • Vladimir Chebotar All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 196608, Russian Federation https://orcid.org/0000-0001-9762-989X
  • Alexey Alferov All-Russian Scientific Research Institute of Agrochemistry named after D.N. Pryanishnikov, ul. Pryanishnikova, 31a, Moscow, 127434, Russian Federation https://orcid.org/0000-0001-7988-6809
  • Lyudmila Chernova All-Russian Scientific Research Institute of Agrochemistry named after D.N. Pryanishnikov, ul. Pryanishnikova, 31a, Moscow, 127434, Russian Federation https://orcid.org/0000-0001-8424-1175
  • Elena Shcherbakova All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 196608, Russian Federation https://orcid.org/0000-0002-7871-034X
  • Elena Chizhevskaya All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 196608, Russian Federation https://orcid.org/0000-0002-7715-8696

DOI:

https://doi.org/10.21638/spbu03.2021.401

Abstract

The aim of our study was to assess the efficiency of application of biomodified nitrogen fertilizers for barley, to reveal the sources of nitrogen used for biomass formation with the use of the 15N stable isotope, and to study nitrogen flows in the system of fertilizers–soil–plants–atmosphere. We demonstrated in a model experiment the ability of the plant growth-promoting bacteria Bacillus subtilis Ch-13 to move from the granules of mineral fertilizers to plant roots and to colonize them effectively. The effectiveness of biomodified nitrogen fertilizers for barley, Nur variety, was assessed in a microfield trial. After the application of biomodified nitrogen fertilizers, the accumulation of 15N in the plants increased by 2–5 %, its incorporation in the soil decreased and gaseous losses were decreased by 7 % as compared with the use of the usual forms of fertilizers. The application of biomodified nitrogen fertilizers can be used in agricultural practice as a novel technology to regulate nitrogen flows in the system of fertilizers–soil–plants–atmosphere.

Keywords:

PGPB, nitrogen fertilizers, biomodified fertilizers, nitrogen isotope, barley biomass, nitrogen flows

Downloads

Download data is not yet available.
 

References

Adesemoye, A. O., Torbert, H. A., and Kloepper, J. W. 2008. Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Canadian Journal of Microbiology 54:876–886. https://doi.org/10.1139/W08-081

Adesemoye, A. O. and Kloepper, J. W. 2009. Plant-microbes interactions in enhanced fertilizer-use efficiency. Applied Microbiology and Biotechnology 85:1–12. https://doi.org/10.1007/s00253-009-2196-0

Barraquio, W. L., Revilla, L., and Ladha, J. K. 1997. Isolation of endophytic diazotrophic bacteria from wetland rice. Plant and Soil 194:15–24. https://doi.org/10.1023/A:1004246904803

Bertrand, H., Plassard, C., Pinochet, X., Touraine, B., Normand, P., and Cleyet-Marel, J. C. 2000. Stimulation of the ionic transport system in Brassica napus by a plant growth-promoting rhizobacterium (Achromobacter sp.). Canadian Journal of Microbiology 46:229–236. https://doi.org/10.1139/w99-137

Bhat, M. A. 2019. Plant growth promoting rhizobacteria (PGPR) for sustainable and eco-friendly agriculture. Acta Scientific Agriculture 3:23–25.

Bloemberg, G. and Lugtenberg, B. J. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Current Opinion in Plant Biology 4:343–350. https://doi.org/10.1016/S1369-5266(00)00183-7

Chebotar, V. K., Makarova, N. M., Shaposhnikov, A. I., and Kravchenko, L. V. 2009. Antifungal and phytostimulating characteristics of Bacillus subtilis Ch-13 rhizospheric strain, producer of bioprepations. Applied Biochemistry and Microbiology 45:419–423. https://doi.org/10.1134/S0003683809040127

Chebotar, V. K., Shcherbakov, A. V., Shcherbakova, E. N., Maslennikova, S. N., Zaplatkin, A. N., and Malfanova, N. V. 2015. Biodiversity of endophytic bacteria as a promising biotechnological resource. Sel’skokhozyaistvennaya Biologiya 50:648–654. https://doi.org/10.15389/agrobiology.2015.5.648eng

Chebotar, V. K., Shcherbakov, A. V., Maslennikova, S. N., Zaplatkin, A. N., Kanarsky, A. V., and Zavalin, A. A. 2016a. Endophytic bacteria of woody plants as the basis of complex microbial preparations for agriculture and forestry. Russian Agricultural Sciences 42:339–342. https://doi.org/10.3103/S1068367416050037

Chebotar, V. K., Zaplatkin, A. N., Shcherbakov, A. V., Malfanova, N. V., Startseva, A. A., and Kostin, Ya. V. 2016b. Microbial preparations on the basis of endophytic and rhizobacteria to increase the productivity in vegetable crops and spring barley (Hordeum vulgare L.), and the mineral fertilizer use efficiency. Sel’skokhozyaistvennaya Biologiya 51:335–342. https://doi.org/10.15389/agrobiology.2016.3.335eng

Chebotar, V. K., Zavalin, A. A., and Aritkin, A. G. 2017. Biomodified mineral fertilizers: efficiency of use and mode of actions. LAМBERT Academic Publishing, Saarbrucken, Germany.

Dobbelaere, S., Croonenborghs, A., and Thys, A. 2001. Responses of agronomically important crops to inoculation with Azospirillum. Australian Journal of Plant Physiology 28:871–879. https://doi.org/10.1071/PP01074

Han, H. S. and Lee, K. D. 2005. Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability, and growth of egg plant. Research Journal of Agriculture and Biological Sciences 1:176–180.

Hassan, M. K., McInroy, J. A., and Kloepper, J. W. 2019. Review the interactions of rhizodeposits with plant growth-promoting rhizobacteria in the rhizosphere: A Review. Agriculture 9:142. https://doi.org/10.3390/agriculture9070142

IUSS Working Group WRB. 2015 World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106 FAO, Rome.

Kozhemyakov, A. P., Laktionov, Yu. V., Popova, T. A., Orlova, A. G., Kokorina, A. L., Vayshlya, O. B., Agafonov, E. V., Guzhvin, S. A., Churakov, A. A., and Yakovleva, M. T. 2015. The scientific basis for the creation of new forms of microbial biochemical. Sel’skokhozyaistvennaya Biologiya 50:369–376. https://doi.org/10.15389/agrobiology.2015.3.369eng

Laguerre, G., Masurier, S. I., and Amarger, N. 1992. Plasmid profiles and restriction fragment length polymorphism of Rhizobium leguminosarum bv. viceae in field populations. FEMS Microbiology Ecology 10:17–26. https://doi.org/10.1111/j.1574-6941.1992.tb01644.x

Ohkama-Ohtsu, N. and Wasaki, J. 2010. Recent progress in plant nutrition research: cross-talk between nutrients, plant physiology and soil microorganisms. Plant and Cell Physiology 51:1255–1264. https://doi.org/10.1093/pcp/pcq095

Okon, Y. and Vanderleyden, J. 1997. Root-associated Azospirillum species can stimulate plants. ASM News 63:364–370.

Onishchuk, O. P., Chizhevskaya, E. P., Kurchak, O. N., Andronov, E. E., and Simarov, B. V. 2015. Identification of new genes of nodule bacteria Sinorhizobium meliloti involved in the control of efficiency of symbiosis with alfalfa Medicago sativa. Russian Journal of Genetics: Applied Research 5:126–131. https://doi.org/10.1134/S2079059715020070

Pishchik, V. N., Provorov, N. A., Vorobyov, N. I., Chizevskaya, E. P., Safronova, V. I., Kozhemyakov, A. P., and Tuev, A. N. 2009. Interactions between plants and associated bacteria in soils contaminated with heavy metals. Microbiology 78:785–793. https://doi.org/10.1134/S0026261709060162

Rothballer, M., Schmid, M., and Hartmann, A. 2007. Diazotrophic bacterial endophytes in Gramineae and other plants; pp. 273–302 in Pawlowski, K. (ed), Prokaryotic symbionts in plants. Microbiology monographs, vol. 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7171_2007_103

Ruby, E. J. and Raghunath, T. M. 2011. A Review: Bacterial endophytes and their bioprospecting. Journal of Pharmacy Research 4:795–799.

Shaposhnikov, A. I., Belimov, A. A., Kravchenko, L. V., and Vivanko, D. M. 2011. Interaction of rhizosphere bacteria with plants: mechanisms of formation and factors of efficiency in associative symbiosis (review). Sel’skokhozyaistvennaya Biologiya 46:16–22. (In Russian)

Vessey, J. K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil 255:571–586. https://doi.org/10.1023/A:1026037216893

Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., and Zabeau, M. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23:4407–4414. https://doi.org/10.1093/nar/23.21.4407

Weisburg, W. G., Barns, S. M., Pelletier, D. A., and Lane, D. J. 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology 173(2):697–703. https://doi.org/10.1128/jb.173.2.697-703.1991

Zavalin, A. A., Chernova, L. S., Gavrilova, A. Yu., and Chebotar, V. K. 2015. The influence of mineral fertilizers biomodification by microbial preparation bisolbifit on spring barley yield. Agrokhimiya 4:21–32.

Zavalin, A. A. and Sokolov, O. A. 2019. Utilization by plants of nitrogen fertilizer and its regulation. International Agricultural Journal 4:71–75.

Zavalin, A. A., Dukhanina, T. M., Chistotin, M. V., Ladonin, V. F., Vinogradova, L. V., Afanasyev, R. A. Sologub, D. B., Kozhemyakov, A. P., Vasyuk, L. V., Khotyanovich, A. V., Tsygutkin, A. S., and Pasynkov, A. V. 2000. Assessment of effectiveness of microbial preparations in agriculture. 82 p. Tipografiya Rossel'hozakademii, Moscow. (In Russian)

Downloads

Published

2021-12-30

How to Cite

Zavalin, A. ., Chebotar, V., Alferov, A. ., Chernova, L., Shcherbakova, E., & Chizhevskaya, E. (2021). Nitrogen use by plants and nitrogen flows after application of standard and biomodified nitrogen fertilizers on barley. Biological Communications, 66(4), 283–289. https://doi.org/10.21638/spbu03.2021.401

Issue

Section

Full communications

Categories