Strontium dynamics in soil and assimilation by plants during dissolution of conversion chalk

  • Anton Lavrishchev Saint Petersburg State Agrarian University, Peterburgskoe Road 2, Saint Petersburg, 196601, Russian Federation http://orcid.org/0000-0003-3086-2608
  • Andrey Litvinovich Saint Petersburg State Agrarian University, Peterburgskoe Road 2, Saint Petersburg, 196601, Russian Federation; Agrophysical Research Institute, Grazhdanskii Ave., 14, Saint Petersburg, 195220, Russian Federation http://orcid.org/0000-0002-4580-1974
  • Vladimir Bure Agrophysical Research Institute, Grazhdanskii Ave., 14, Saint Petersburg, 195220, Russian Federation; Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation http://orcid.org/0000-0001-7018-4667
  • Olga Pavlova Agrophysical Research Institute, Grazhdanskii Ave., 14, Saint Petersburg, 195220, Russian Federation http://orcid.org/0000-0001-5378-007X
  • Elmira Saljnikov Soil Science Institute, Teodora Drajzera 7, Belgrade, 11000, Serbia http://orcid.org/0000-0002-6497-2066

Abstract

In an experiment carried out on Soddy-podzolic soil, limed with conversion chalk in a wide range of doses, the rate of dissolution of strontium-containing chalk and its effect on soil and plant were studied. Here we show that the complete decomposition of chalk applied to soil is achieved in the 3–4 years after its application. Increase in the concentration of plant available strontium in soil lasts until the chalk is completely dissolved. The dose of applied chalk determined the assimilation of strontium by rapeseed plants. We have found differences in accumulation of strontium by rapeseed in the year of application of chalk and in the third and fourth year of its aftereffect. We conclude that chalkmeliorated soil will generate strontium streams into plants for a longer period. We further propose empirical models that adequately describe: a) the processes of chalk dissolution in the soil; b) the dynamics of the content of strontium compounds accessible to plants in the process of interaction between chalk and soil; c) strontium accumulation in vegetative mass of rapeseed at different stages of chalk dissolution.

Keywords:

strontium, conversion chalk, empirical models, soil, rapeseed

Downloads

Download data is not yet available.

References

Alekseyev, Y. V., Subbotin, Y. A., Hnalkov, S. A., and Kravchenko, O. N. 1991. Portativny analizator karbonatov PAK-1 [Portable Analyzer of carbonates PAK-1] Khimia v sel’skohoziastve 12:34−38.

Bure, V. M. 2007. Metodologia statisticheskogo analiza opytnyh dannyh [Methodology of statistical analysis of empirical data]; St. Petersburg University Press, Saint Petersburg, 141 pp.

Ivanov, A. F. and Ermokhin, Yu. I. 1990. O soderzhanii strontsia v pochve i rasteniah v rezul’tate primenenia razlichnyh form fosfornyh udobreni [Strontium content in soil and plants as affected by application of different forms of phosphorus fertilizer]; p. 164 in Proceedings of the XI All-Union Conference, Samarkand, Trace Elements in Biology and Their Use in Agriculture and Medicine.

Kabata-Pendias, A. and Pendias, H. 2001. Trace elements in soils and plants. Third edition. CRC Press. 331 pp.

Karpova, E. A. and Potatuyeva, J. A. 2004. Posledstvia primenenia razlichnyh form fosfornyh udobreni: strontsi v sisteme dernovo-podzolistaya pochva―rastenia. [Consequences of application of various forms of phosphorus fertilizers: strontium in the system of sod-podzolic soil-plants]. Agrokhimia 1:91−96.

Khrustaleva, M. A. 2000. Biochimicheskoe izuchenie landshavtov Moskovskogo regiona [Biogeochemical Study of Landscapes in the Moscow Region]; pp. 185–186 in Proceedings of Third Russian Biogeochemical School: Geochemical Ecology and the Biogeochemical Study of Biosphere Taxon. Novosibirsk.

Lauk, E., Lauk, R., and Lauk, Y. 2004. Experimental planning and methods in regression analysis; pp. 58−64 in Proceedings of the 12th International Conference on Mechanization of Field Experiments. St. Petersburg.

Lavrishchev, A. V. 2016. Izuchenie povedenia stabil’nogo strontsia v agroekosistemah Severo-Zapada Rossii [Study of the behaviour of stable strontium in agro-ecosystems of the North-West of Russia]; PhD thesis, St. Petersburg Agrarian University, 272 pp.

Litvinovich, A. V., Lavrishchev, A. V., and Pavlova, O. Yu. 2013. The behavior of Сa and Sr in the soil−plant system from liming with a strontium-containing ameliorant; pp. 17−34 in Proceedings of the First International Congress on Soil Science: Soil−Water−Plant, Belgrade, Serbia 2013.

Litvinovich, A. V. and Nebolsina, Z. P. 2012. Prodolzhitel’nost deistvia meliorantov v pochvah i effektivnost izvestkovania [The duration of action of ameliorants in soils and the effectiveness of liming]. Agrokhimia 10:79−94.

Litvinovich, A. V. and Pavlova, O. Y. 2010. Izmenenie velichiny pochvennoy kislotnosti v processe vzaiomodeistvia meliorantov s pochvami (po dannym laboratornyh I vegetacionnogo opyta) [Change of soil acidity value during the interaction of ameliorants with soil (laboratory and vegetation experiments)]. Agrokhimia 10:3−10.

Litvinovich, A. V., Pavlova, O. Yu., Lavrishchev, A. V., and Vitkovskaya S. E. 2005. Ekologicheskie aspekty izvestkovania pochv konversionnym melom [Ecological aspects of soil liming with conversion chalk]. Plodorodie 1:23–26.

Litvinovich, A. V., Pavlova, O. Yu., Maslova, A. I., and Lavrishchev, A. V. 2000. Nakoplenie stabil’nogo strontsia sel’skohozaistvennymi kul’turami pri izvestkovanii dernovo-podzolistyh pochv konversionnym melom [Accumulation of stable strontium by agricultural crops on soddy-podzolic soils limed with conversion chalk]. Agrokhimiya 9:80–88.

Litvinovich, A. V., Pavlova, O. Yu., Yuzmukhametov, D. N., and Lavrishchev, A. V. 2008. The migration capacity of stable strontium in Soddy-podzolic soils of the Russian northwest (data of simulation experiments). Eurasian Soil Science 41(5):502−508. https://doi.org/10.1134/S1064229308050050

Myrvang, M. B., Heim, M., Krogstad, T., Almås, A. R., Gjengedal, E. 2017. The use of carbonatite rock powder as a liming agent. Journal of Plant Nutrition and Soil Science 180:326–335. https://doi.org/10.1002/jpln.201600455

Public Health Statement, 2004. Department of Health and Human Services, Public Health Service Agency for Toxic Substances and Disease Registry Strontium. CAS: 7440-24-6; Springfield, VA; www.atsdr.cdc.gov

Qi, L., Qin, X., Li, F. M., Siddique, K. H., Brandl, H., Xu, J., and Li, X. 2015. Uptake and distribution of stable strontium in 26 cultivars of three crop species: oats, wheat, and barley for their potential use in phytoremediation. International Journal of Phytoremediation 17(1−6):264−271. https://doi.org/10.1080/15226514.2014.898016

Semendyaeva, N. V. and Dobrotvorskaya, N. I. 1992. Strontsi i ftor v solontsovyh kompleksah Zapadnoi Sibiri [Strontium and Fluorine in Solonetzic Complexes of Western Siberia]; pp. 74–79 in Methods of Studying the Soil Cover Degraded under the Effect of Chemical Contamination: Proceedings of the Dokuchaev Soil Institute, Moscow.

Seregin, I. V. and Kozhevnikova, A. D. 2004. Transport, raspredelenie i toksicheskoe deistvie strontsia na rost prorostkov kukuruzy [Transport, distribution and toxic effect of strontium on the growth of corn seedlings]. Fiziologia rasteni 51(2):241−248.

Spravochnik himika [Chemist directory] 1964. Volume 3. Second edition, Moscow: Chemistry, 1005 pp.

Vinogradov, A. P. 1939. Geokhimicheskie issledovania v oblasti rasprostranenia urovskoi endemii [Geochemical Studies in the Region of the UrovEndemical Disease]; Doklady Akaemii Nauk USSR 23(1):2–11.

Yakushev, V. P. and Bure, V. 2003. Podhody k obnaruzheniyu karbonatov PAK-1 [Approaches to detect statistical dependencies PAK-1]. St. Petersburg University Press, 64 pp.

Yusan, S. and Erenturk, S. 2011. Adsorption Characterization of Strontium on PAN/Zeolite Composite Adsorbent. World Journal of Nuclear Science and Technology 1(1):7. https://doi.org/10.4236/wjnst.2011.11002
Published
2018-11-30
How to Cite
Lavrishchev, A., Litvinovich, A., Bure, V., Pavlova, O., & Saljnikov, E. (2018). Strontium dynamics in soil and assimilation by plants during dissolution of conversion chalk. Biological Communications, 63(3), 163–173. https://doi.org/10.21638/spbu03.2018.302
Section
Full communication