The normalized difference vegetation index (NDVI) as a proxy of soil fertility under no-tillage: Features for different Chernozems and applied treatments in Russian forest-steppe region

Authors

  • Sofia Sushko Laboratory of Carbon Monitoring in Terrestrial Ecosystems, Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, ul. Institutskaya, 2, Pushchino, Moscow Region, 142290, Russian Federation https://orcid.org/0000-0003-0664-7641
  • Kristina Ivashchenko Laboratory of Carbon Monitoring in Terrestrial Ecosystems, Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, ul. Institutskaya, 2, Pushchino, Moscow Region, 142290, Russian Federation
  • Aleksei Dobrokhotov Agrophysical Research Institute, Grazhdansky pr., 14, Saint Petersburg, 195220, Russian Federation https://orcid.org/0000-0002-9368-6229
  • Ludmila Orlova National Conservation Agriculture Movement, ul. Kuibysheva, 88, Samara, 443099, Russian Federation; Agro-Innovation Center “Orlovka”, ul. Tsentral’naya, 42, Stary Amanak, 446472, Russian Federation
  • Elena Zakharova Samara State Medical University, ul. Chapaevskaya, 89, Samara, 443099, Russian Federation https://orcid.org/0000-0002-7287-5960
  • Eugeny Gerasimov Agro-Innovation Center “Orlovka”, ul. Tsentral’naya, 42, Stary Amanak, 446472, Russian Federation
  • Svetlana Neprimerova Agrophysical Research Institute, Grazhdansky pr., 14, Saint Petersburg, 195220, Russian Federation https://orcid.org/0000-0001-7018-9994

DOI:

https://doi.org/10.21638/spbu03.2024.405

Abstract

Using the normalized difference vegetation index (NDVI) as a proxy for soil fertility would be highly useful for adapting no-tillage to specific environmental conditions and for monitoring soil quality. Therefore, our study aimed to evaluate the relationship between satellite-based NDVI (May-August 2022) and soil fertility under no-tillage in the forest-steppe of Russia, considering different Chernozems (Haplic and Luvic) and treatments (none / with microbial inoculation and irrigation). Among the soil fertility indices (0–10 cm), content of organic and in organic C (SOC and Cinorg), total N, available P and K, SOC:N, pH, microbial bio mass (MBC) and respiration were assessed. Overall, soil nutrient dependence of NDVI was found for Luvic Chernozem in both microbe-inoculated (SOC, N, K with R2 = 0.72 – 0.95) and untreated sites (SOC, SOC:N with R2 = 0.58 – 0.66). For Haplic Chernozem, only a negative relationship between NDVI and Cinorg was found (R2 = 0.47) at an untreated site, which was eliminated by using irrigation with microbial inoculation. Thus, NDVI can be a robust tool for predicting soil nutrient levels for no-tilled Luvic Chernozem, but not for Haplic Chernozem. At the same time, applied treatments can significantly change the specifics of this relationship, which is important to consider in remote sensing of soil fertility.

Keywords:

microbial inoculants, irrigation, Haplic / Luvic Chernozems, soil nutrient levels, microbial biomass, inorganic carbon

Downloads

Download data is not yet available.
 

References

Anderson, J. P. E. and Domsch, K. H. 1978. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biology and Biochemistry 10:215–221. https://doi.org/10.1016/0038-0717(78)90099-8

Barboza, T. O. C., Ardigueri, M., Souza, G. F. C, Ferraz, M. A. J., Gaudencio, J. R. F., and Santos, A. F. 2023. Performance of vegetation indices to estimate green biomass accumulation in common bean. AgriEngineering 5:840–854. https://doi.org/10.3390/agriengineering5020052

Cabrera-Bosquet, L., Molero, G., Stellacci, A. M., Bort, J., Nogués, S., and Araus, J. L. 2011. NDVI as a potential tool for predicting biomass, plant nitrogen content and growth in wheat genotypes subjected to different water and nitrogen conditions. Cereal Research Communications 39:147–159. https://doi.org/10.1556/CRC.39.2011.1.15

Cassan, F. and Diaz-Zorita, M. 2016. Azospirillum sp. in current agriculture: From the laboratory to the field. Soil Biology and Biochemistry 103:117e130. https://doi.org/10.1016/j.soilbio.2016.08.020

Chabbi, A., Lehmann, J., Ciais, P., Loescher, H. W., Cotrufo, M. F., Don, A., SanClements, M., Schipper, L., Six, J., Smith, P., and Rumpel, C. 2017. Aligning agriculture and climate policy. Nature Climate Change 7:307–309. https://doi.org/10.1038/nclimate3286

Cherkasov, G. N., Pykhtin, I. G., and Gostev, A. V. 2017. Areal of application of zero and surface tillage in the cultivation of cereal crops in the European part of the Russian Federation. Zemledelie 2:10–14. (In Russian)

de Soto, I. S., Virto, I., Barré, P., Fernández-Ugalde, O., Antón, R., Martínez, I., Chaduteau, C., and Enrique, A. 2017. A model for field-based evidences of the impact of irrigation on carbonates in the tilled layer of semi-arid Mediterranean soils. Geoderma 297:48–60. https://doi.org/10.1016/j.geoderma.2017.03.005

FAO. 2019. Soil organic carbon Walkley-black method: Titration and Colorimetric Method. Global Soil Laboratory Network GLOSOLAN. Available at: https://www.fao.org/3/ca7471en/ca7471en.pdf.

Funk, C. and Budde, M. E. 2009. Phenologically-tuned MODIS NDVI-based production anomaly estimates for Zimbabwe. Remote Sensing of Environment 113:115–125. https://doi.org/10.1016/j.rse.2008.08.015

Gopp, N. V. and Savenkov, O. A. 2019. Relationships between the NDVI, yield of spring wheat, and properties of the plow horizon of eluviated Clay-Illuvial Chernozems and Dark Gray Soils. Eurasian Soil Science 52:339–347. https://doi.org/10.1134/S1064229319030050

Gopp, N. V., Meshalkina J. L., Narykova, A. N., Plotnikova, A. S., and Chernova, O. V. 2023. Mapping of soil organic carbon content and stock at the regional and local levels: The analysis of modern methodological approaches. Voprosy lesnoi nauki 6 (1):1–59. https://doi.org/10.31509/2658-607x-202361-120 (In Russian)

Gopp, N. V., Nechaeva, T. V., Savenkov, O. A., Smirnova, N. V., and Smirnov, V. V. 2017. Indicative capacity of NDVI in predictive mapping of the properties of plow horizons of soils on slopes in the south of Western Siberia. Eurasian Soil Science 50:1332–1343. https://doi.org/10.1134/S1064229317110060

Gopp, N. V., Nechaeva, T. V., Savenkov, O. A., Smirnova, N. V., and Smirnov, V. V. 2019a. Effect of slope mesorelief on the spatial variability of soil properties and vegetation index based on remote sensing data. Izvestiya, Atmospheric and Oceanic Physics. 55:1329–1337. https://doi.org/10.1134/S0001433819090202

Gopp, N. V., Savenkov, O. A., Nechaeva, T. V., Smirnova, N. V., and Smirnov A. V. 2019b. Application of NDVI in digital mapping of phosphorus content in soils and phosphorus supply assessment in plants. Izvestiya, Atmospheric and Oceanic Physics 55:1322–1328. https://doi.org/10.1134/S0001433819090196

Goswami, S., Gamon, J., Vargas, S., and Tweedie, C. 2015. Relationships of NDVI, Biomass, and Leaf Area Index (LAI) for six key plant species in Barrow, Alaska. PeerJ Preprints 3:e913v1. https://doi.org/10.7287/peerj.preprints.913v1

Hunsaker, D. J., Fitzgerald, G. J., French, A. N., Clarke, T. R., Ottman, M. J., and Pinter, P. J. 2007. Wheat irrigation management using multispectral crop coefficients: II. Irrigation scheduling performance, grain yield, and water use efficiency. Transactions of the ASABE 50:2035–2050. https://doi.org/10.13031/2013.24106

ISO. 1997. Soil quality — Determination of soil microbial biomass — Part 1: substrate-induced respiration method (ISO standard no. 14240–1:1997). Geneva: International Organization for Standardization.

ISO. 2002. Soil quality — Laboratory methods for determination of microbial soil respiration (ISO standard no. 16072:2002). Geneva: International Organization for Standardization.

Jones, R. J. A, Verheijen F. G. A, Reuter H. I., and Jones A. R. 2008. Environmental assessment of soil for monitoring. Procedures and Protocols (EUR 23490 EN/5). Luxembourg: Office for the Official Publications of the European Communities.

Kan, Z. R., Liu, W. X., Liu, W. S., Lal, R., Dang, Y. P., Zhao, X., and Zhang, H.-L. 2022. Mechanisms of soil organic carbon stability and its response to no-till: A global synthesis and perspective. Global Change Biology 28(3):693–710. https://doi.org/10.1111/gcb.15968

Kassam, A., Friedrich, T., and Derpsch, R. 2019. Global spread of conservation agriculture. International Journal of Environmental Studies 76(1):29–51. https://doi.org/10.1080/00207233.2018.1494927

Khokhlova, O. S., Arlashina, E. A, and Kovalevskaya I. S. 1997. The effect of irrigation on the carbonate status of Chernozems of Central Precaucasus (Russia). Soil Technology 11:171–184. https://doi.org/10.1016/S0933-3630(96)00134-1

Kimaro, O. D., Gebre, S. L., Hieronimo, P., Kihupi, N., Feger, K. H., and Kimaro, D. N. 2023. Handheld NDVI sensor based rice productivity assessment under combinations of fertilizer soil amendment and irrigation water management in lower Moshi irrigation scheme, North Tanzania. Environmental Earth Sciences 82:78. https://doi.org/10.1007/s12665-022-10730-0

Kuzyakov, Y. 2002. Review: Factors affecting rhizosphere priming effects. Journal of Plant Nutrition and Soil Science 165:382–396. https://doi.org/10.1002/1522-2624(200208)165:4<382::AID-JPLN382>3.0.CO;2-%23

Liu, X., Yu, M., Ma, J., Luo, Z., Chen, F., and Yang, Y. 2018. Identifying the relationship between soil properties and rice growth for improving consoli-dated land in the Yangtze River Delta, China. Sustainability 10:3072. https://doi.org/10.3390/su10093072

Ogle, S. M., Alsaker, C., Baldock, J., Bernoux, M., Breidt, F. J., McConkey, B., Regina, K., and Vazquez-Amabile, G. G. 2019. Climate and soil characteris-tics determine where no-till management can store carbon in soils and mitigate greenhouse gas emissions. Scientific Reports 9:11665. https://doi.org/10.1038/s41598-019-47861-7

Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J. M., Tucker, C. J., and Stenseth, N. C. 2005. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology and Evolution 20:503–510. https://doi.org/10.1016/j.tree.2005.05.011

Poudel, U., Stephen, H., and Ahmad, S. 2021. Evaluating irrigation performance and water productivity using EEFlux ET and NDVI. Sustainability 13:7967. https://doi.org/10.3390/su13147967

Prakasha, G. M., Somashekar, K. S., and Shivanand, G. 2020. A novel approach for increasing productivity under precision nitrogen management in maize (Zea mays L.) through crop sensors. Journal of Pharmacognosy and Phytochemistry 9(5):97–103.

Radočaj, D., Šiljeg, A., Marinović, R., and Jurišić, M. 2023. State of major vegetation indices in precision agriculture studies indexed in Web of Science: A Review. Agriculture 13: 707. https://doi.org/10.3390/agriculture13030707

Rahman, M. R., Islam A. H. M. H., and Rahman, M. A. 2004. NDVI derived sugarcane area identification and crop condition assessment. Plan Plus 1:1–9.

Rouse, J. W., Haas, R. H., Schell, J. A., and Deering, D. W. 1974. Monitoring vegetation systems in the Great Plains with ERTS. Proceedings of ERTS-1 Symposium NASA. Washington DC. p. 309-317.

RStudio Team. 2023. RStudio: integrated development for R. Boston: Posit PBC. Available at: http://www.rstudio.com.

Shafi, U., Mumtaz, R., Iqbal, N., Hassan Zaidi, S. M., Raza Zaidi, S. A., and Hussain, I. 2020. A multimodal approach for crop health mapping using low altitude remote sensing, internet of things (IoT) and machine learning. IEEE Access 8:112708–112724. https://doi.org/10.1109/ACCESS.2020.3002948

Shukry, W. M., Khattab, H. K. I., and EL-Bassiouny, H. M. S. 2007. Physiological and biochemical studies on flax plant grew in calcareous soil amended with water hyacinth dry manure. Journal of Applied Sciences Research 3:64–72.

Soane, B. D., Ball, B. C., Arvidsson, J., Basch, G., Moreno, F., and Roger-Estrade, J. 2012. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil and Tillage Research 118:66–87. https://doi.org/10.1016/j.still.2011.10.015

Suleymanov, A., Arrouays, D., and Savin, I. 2024. Digital soil mapping in the Russian Federation: A review. Geoderma Regional 36:e00763. https://doi.org/10.1016/j.geodrs.2024.e00763

Suleymanov, A., Gabbasova, I., Suleymanov, R., Abakumov, E., Polyakov, V., and Liebelt, P. 2021. Mapping soil organic carbon under erosion processes using remote sensing. Hungarian Geographical Bulletin 70:49–64. https://doi.org/10.15201/hungeobull.70.1.4

Sumfleth, K. and Duttmann, R. 2008. Prediction of soil property distribution in paddy soil landscapes using terrain data and satellite information as indicators. Ecological Indicators 8:485–501. https://doi.org/10.1016/j.ecolind.2007.05.005

Trabelsi, D. and Mhamdi, R. 2013. Microbial inoculants and their impact on soil microbial communities: A review. BioMed Research International 2013:863240. https://doi.org/10.1155/2013/863240

Tucker, C. J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8:127–150. https://doi.org/10.1016/0034-4257(79)90013-0

Turin, E. N. 2020. Advantages and disadvantages of no-till farming around the world (review). Tauride Bulletin of Agrarian Science 2(22):150–168. https://doi.org/10.33952/2542-0720-2020-2-22-150-168 (In Russian)

Vázquez, M. M., César, S., Azcón, R., and Barea, J. M. 2000. Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Applied Soil Ecology 15:261–272. https://doi.org/10.1016/S0929-1393(00)00075-5

Verhulst, N., Govaerts, B., Sayre, K. D., Deckers, J., François, I. M., and Dendooven, L. 2009. Using NDVI and soil quality analysis to assess influence of agronomic management on within-plot spatial variability and factors limiting production. Plant Soil 317:41–59. https://doi.org/10.1007/s11104-008-9787-x

Vermote, E., Roger, J. C., Franch, B., and Skakun, S. 2018. LaSRC (Land Surface Reflectance Code): Overview, application and validation using MODIS, VIIRS, LANDSAT and Sentinel 2 data’s. Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2018). Spain. P. 8173–8176.

Wahba, M. M., Labib, F., and Zaghloul, A. 2019. Management of calcareous soils in arid region. International Journal of Environmental Pollution and Environmental Modelling 2(5):248–258.

Wander, M. 2004. Soil organic matter fractions and their relevance to soil function; pp. 67–102 in: Magdoff, F. and Weil, R. R. (eds), Soil organic matter in sustainable agriculture. 1st ed. CRC Press, Boca Raton.

Whetton, R., Zhao, Y., Shaddad, S., and Mouazen, A. M. 2017. Nonlinear parametric modelling to study how soil properties affect crop yields and NDVI. Computers and Electronics in Agriculture 138:127–136. https://doi.org/10.1016/j.compag.2017.04.016

Yousaf, W., Awan, W. K., Kamran, M., Ahmad, S. R., Bodla, H. U., Riaz, M., Umar, M., and Chohan, K. 2021. A paradigm of GIS and remote sensing for crop water deficit assessment in near real time to improve irrigation distribution plan. Agricultural Water Management 243:106443. https://doi.org/10.1016/j.agwat.2020.106443

Zeffa, D. M., Perini, L. J., Silva, M. B., de Sousa, N. V., Scapim, C. A., de Oliveira, A. L. M., de Amaral Júnior, A. T., and Gonçalves, L. S. A. 2019. Azospirillum brasilense promotes increases in growth and nitrogen use efficiency of maize genotypes. PLOS ONE 14:e0215332. https://doi.org/10.1371/journal.pone.0215332

Zhang, Y., Guo, L., Chen, Y., Shi, T., Luo, M., Ju, Q. L., Zhang, H., and Wang, S. 2019. Prediction of soil organic carbon based on Landsat 8 monthly NDVI data for the Jianghan Plain in Hubei Province, China. Remote Sensing 11:1683. https://doi.org/10.3390/rs11141683

Downloads

Published

2024-12-31

How to Cite

Sushko, S., Ivashchenko, K., Dobrokhotov, A., Orlova, L., Zakharova, E., Gerasimov, E., & Neprimerova, S. (2024). The normalized difference vegetation index (NDVI) as a proxy of soil fertility under no-tillage: Features for different Chernozems and applied treatments in Russian forest-steppe region. Biological Communications, 69(4), 249–256. https://doi.org/10.21638/spbu03.2024.405

Issue

Section

Full communications

Categories