Natural molecules as modulators of epigenetic silencing in human cells for cancer care and aging

Authors

  • Aleksandra Kosianova Department of Pharmacy and Pharmacology, School of Biomedicine, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok, 690922, Russian Federation https://orcid.org/0000-0001-5655-5855
  • Vladlena Tiasto Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok, 690922, Russian Federation https://orcid.org/0000-0001-6030-2543
  • Margarita Yatsunskaya Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok, 690922, Russian Federation; Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch of the Russian Academy of Sciences, pr. 100-letiya Vladivostoka, 159, Vladivostok, 690022, Russian Federation https://orcid.org/0000-0002-4718-6186
  • Yuri Khotimchenko Department of Pharmacy and Pharmacology, School of Biomedicine, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok, 690922, Russian Federation https://orcid.org/0000-0002-6979-1934
  • Alexander Kagansky Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok, 690922, Russian Federation https://orcid.org/0000-0002-6219-6892

DOI:

https://doi.org/10.21638/spbu03.2020.405

Abstract

The etiology and pathogenesis of malignant tumor growth are associated with impaired gene expression, leading to accelerated proliferation, evasion of apoptosis, and metabolic deregulations with abnormal blood supply and innervation. Currently, hundreds of tumor suppressor genes and proto-oncogenes are known. Mutations, epigenetic alterations, exposure to viruses, and other environmental factors can cause pathological changes in gene expression. The key mechanisms of carcinogenesis are now considered to be linked to epigenetic events. A better understanding of epigenetic targets and pathways is needed to develop new strategies in antitumor chemotherapy. The majority of modern cancer drugs were taken from nature, yet only a small fraction of natural molecular diversity has been explored to date. Therefore, there is great interest in identifying new natural molecules for modulating gene expression by rewiring epigenetic pathways. This review is focused on examples of known natural molecules available to biomedicine, especially ones capable of modulating epigenetic landscapes and therefore relevant for cancer prevention and aging.

Keywords:

cancer, aging, natural products, silencing, methylation, histone modification, signaling pathways

Downloads

Download data is not yet available.
 

References

Abdelfatah, E., Kerner, Z., Nanda, N., and Ahuja, N. 2016. Epigenetic therapy in gastrointestinal cancer: the right combination. Therapeutic Advances in Gastroenterology 9(4):560–579. https://doi.org/10.1177/1756283X16644247

Adam, S. and Polo, S. E. 2014. Blurring the line between the DNA damage response and transcription: the importance of chromatin dynamics. Experimental Cell Research 329(1):148–53. https://doi.org/10.1016/j.yexcr.2014.07.017

Ahmad, K. and Henikoff, S. 2002. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Molecular Cell 9(6):1191–200. https://doi.org/10.1016/S1097-2765(02)00542-7

AlQathama, A. and Prieto, J. M. 2015. Natural compounds with therapeutic potential in melanoma metastasis. Natural Product Reports 32(8):1170–1182. https://doi.org/10.1039/c4np00130c

Andreoli, V., Gehrau, R. C., and Bocco, J. L. 2010. Biology of Krüppel-like factor 6 transcriptional regulator in cell life and death. IUBMB Life 62(12):896–905. https://doi.org/10.1002/iub.396

Azevedo, C. and Saiardi, A. 2016. Why always lysine? The ongoing tale of one of the most modified amino acids. Advances in Biological Regulation 60:144–150. https://doi.org/10.1016/j.jbior.2015.09.008

Bailon-Moscoso, N., Cevallos-Solorzano, G., Romero-Benavides, J. C., and Orellana, M. 2017. Natural compounds as modulators of cell cycle arrest: application for anticancer chemotherapies. Current Genomics 18(2):106–131. https://doi.org/10.2174/1389202917666160808125645

Bailón-Moscoso, N., González-Arévalo, G., Velásquez-Rojas, G., Malagon, O., Vidari, G., Zentella-Dehesa, A., Ratovitski, E. A., and Ostrosky-Wegman, P. 2015. Phytometabolite dehydroleucodine induces cell cycle arrest, apoptosis, and DNA damage in human astrocytoma cells through p73/p53 regulation. PLoS One 10(8):e0136527. https://doi.org/10.1371/journal.pone.0136527

Bajpe, P. K., Prahallad, A., Horlings, H., Nagtegaal, I., Beijersbergen, R., and Bernards, R. 2014. A chromatin modifier genetic screen identifies SIRT2 as a modulator of response to targeted therapies through the regulation of MEK kinase activity. Oncogene 34(4):531–536. https://doi.org/10.1038/onc.2013.588

Banerjee, S., Kong, D., Wang, Z., Bao, B., Hillman, G. G., and Sarkar, F. H. 2011. Attenuation of multi-targeted proliferation-linked signaling by 3,3'-diindolylmethane (DIM): from bench to clinic. Mutation Research 728(1–2):47–66. https://doi.org/10.1016/j.mrrev.2011.06.001

Bannister, A. J., Eckerman, P., Partridge, J. F., Miska, E. A., Thomas, J. O., Allshire, R. C., and Kouzarides, T. 2001. Selective recognition of methylated lysine 9 on histone H3 by HP1 chromo domain. Nature 410:120–124. https://doi.org/10.1038/35065138

Berletch, J. B., Liu, C., Love, W. K., Andrews, L. G., Katiyar, S. K., and Tollefsbol, T. O. 2008 Epigenetic and genetic mechanisms contribute to telomerase inhibition by EGCG. Journal of Cellular Biochemistry 103(2):509–519. https://doi.org/10.1002/jcb.21417

Bhanot, A., Sharma, R., and Malleshappa, N. 2011. Natural sources as potential anti-cancer agents: A review. International Journal of Phytomedicine 3:9–26.

Bishop, K. and Ferguson, L. 2015. The interaction between epigenetics, nutrition and the development of cancer. Nutrients 7:922–947. https://doi.org/10.3390/nu7020922

Bojang, P. Jr. and Ramos, K. S. 2014.The promise and failures of epigenetic therapies for cancer treatment. Cancer Treatment Reviews 40(1):153–169. https://doi.org/10.1016/j.ctrv.2013.05.009

Bora-Tatar, G., Dayangac-Erden, D., Demir, A. S., Dalkara, S., Yelekci, K., and Erdem-Yurter, H. 2009. Molecular modifications on carboxylic acid derivatives as potent histone deacetylase inhibitors: Activity and docking studies. Bioorganic & Medicinal Chemistry 17:5219–5228. https://doi.org/10.1016/j.bmc.2009.05.042

Brunet, A. and Berger, S. L. 2014. Epigenetics of aging and aging-related disease. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 69(S1):S17–S20. https://doi.org/10.1093/gerona/glu042

Buscaino, A., Allshire, R., and Pidoux, A. 2010. Review of the building the centromere: home sweet home or a nomadic existence? Current Opinion in Genetics & Development 20(2):118–126. https://doi.org/10.1016/j.gde.2010.01.006

Chen, C. C., Chen, H. L., Hsieh, C. W., Yang, Y. L., and Wung, B. S. 2011. Upregulation of NF-E2-related factor-2-dependent glutathione by carnosol provokes a cytoprotective response and enhances cell survival. Acta Pharmacologica Sinica 32(1):62–69. https://doi.org/10.1038/aps.2010.181

Chen, D., Banerjee, S., Cui, Q. C., Kong, D., Sarkar, F. H., and Dou, Q. P. 2012. Activation of AMP-activated protein kinase by 3,3'-Diindolylmethane (DIM) is associated with human prostate cancer cell death in vitro and in vivo. PLoS One 7(10):e47186. https://doi.org/10.1371/journal.pone.0047186

Chen, H. P., Zhao, Y. T., and Zhao, T. C. 2015. Histone deacetylases and mechanisms of regulation of gene expression. Critical Reviews in Oncogenesis 20(1–2):35–47. https://doi.org/10.1615/CritRevOncog.2015012997

Chen, Q., Ganapathy, S., Singh, K. P., Shankar, S., and Srivastava, R. K. 2010. Resveratrol induces growth arrest and apoptosis through activation of FOXO transcription factors in prostate cancer cells. PLoS One 5(12):e15288. https://doi.org/10.1371/journal.pone.0015288

Chen, Y., Shu, W., Chen, W., Wu, Q., Liu, H., and Cui, G. 2007. Curcumin, both histone deacetylase and p300/CBP-specific inhibitor, represses the activity of nuclear factor kappa B and Notch 1 in Raji cells. Basic & Clinical Pharmacology & Toxicology 101:427–433. https://doi.org/10.1111/j.1742-7843.2007.00142.x

Cherblanc, F. L., Davidson, R. W., Di Fruscia, P., Srimongkolpithak, N., and Fuchter M. J. 2013. Perspectives on natural compound epigenetic modulators in chemical biology and medicine. Natural Product Reports 30(5):605–624. https://doi.org/10.1039/c3np20097c

Cheung, K. L. and Kong, A. N. 2010. Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention. The AAPS Journal 12(1):87–97. https://doi.org/10.1208/s12248-009-9162-8

Choi, J. H., Kwon, H. J., Yoon, B. I., Kim, J. H., Han, S. U., Joo, H. J., and Kim, D. Y. 2001. Expression profile of histone deacetylase 1 in gastric cancer tissues. Japanese Journal of Cancer Research 92(12):1300–1304. https://doi.org/10.1111/j.1349-7006.2001.tb02153.x

Choudhary, C., Weinert, B. T., Nishida, Y., Verdin, E., and Mann, M. 2014. The growing landscape of lysine acetylation links metabolism and cell signalling. Nature Reviews. Molecular Cell Biology 8:536–550. https://doi.org/10.1038/nrm3841

Chung, S. S. and Vadgama, J. V. 2015. Curcumin and epigallocatechin gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3-NFκB signaling. Anticancer Research 35(1):39–46.

Clarke, J. D., Dashwood, R. H., and Ho, E. 2008. Multi-targeted prevention of cancer by sulforaphane. Cancer Letters 269(2):291–304. https://doi.org/10.1016/j.canlet.2008.04.018

Cordero-Herrera, I., Martín, M. A., Bravo, L., Goya, L., and Ramos, S. 2013. Epicatechin gallate induces cell death via p53 activation and stimulation of p38 and JNK in human colon cancer SW480 cells. Nutrition and Cancer 65(5):718–728. https://doi.org/10.1080/01635581.2013.795981

Darnell, J. E. 2002. Trascription factors as targets for cancer therapy. Nature Reviews. Cancer 2(10):740–749. https://doi.org/10.1038/nrc906

Das, R., Bhattacharya, K., Samanta, S. K., Pal, B. C., and Mandal, C. 2014. Improved chemosensitivity in cervical cancer to cisplatin: synergistic activity of mahanine through STAT3 inhibition. Cancer Letters 351(1):81–90. https://doi.org/10.1016/j.canlet.2014.05.005

Das, R., Bhattacharya, K., Sarkar, S., Samanta, S. K., Pal, B. C., and Mandal, C. 2014. Mahanine synergistically enhances cytotoxicity of 5-fluorouracil through ROS-mediated activation of PTEN and p53/p73 in colon carcinoma. Apoptosis 19(1):149–164. https://doi.org/10.1007/s10495-013-0907-6

Dhar, S., Kumar, A., Li, K., Tzivion, G., and Levenson, A. S. 2015. Resveratrol regulates PTEN/Akt pathway through inhibition of MTA1/HDAC unit of the NuRD complex in prostate cancer. Biochimica et Biophysica Acta 1853(2):265–275. https://doi.org/10.1016/j.bbamcr.2014.11.004

Di, C., Sun, C., Li, H., Si, J., Zhang, H., Han, L., Zhao, Q., Liu, Y., Liu ,B., Miao, G., Gan, L., and Liu, Y. 2015. Diallyl disulfide enhances carbon ion beams-induced apoptotic cell death in cervical cancer cells through regulating TAp73 /ΔNp73. Cell Cycle 14(23):3725–3733. https://doi.org/10.1080/15384101.2015.1104438

Ding, D. F., Li, X. F., Xu, H., Wang, Z., Liang, Q. Q., Li, C. G., and Wang, Y. J. 2013. Mechanism of resveratrol on the promotion of induced pluripotent stem cells. Journal of Integrative Medicine 11(6):389–396. https://doi.org/10.3736/jintegrmed2013039

Dokmanovic, M., Clarke, C., and Marks, P. A. 2007. Histone deacetylase inhibitors: overview and perspectives. Molecular Cancer Research 5(10):981–989. https://doi.org/10.1158/1541-7786.MCR-07-0324

Dou, Q. P. 2009. Molecular mechanisms of green tea polyphenols. Nutrition and Cancer 61(6):827–835. https://doi.org/10.1080/01635580903285049

Dyshlovoy, S. A., Fedorov, S. N., Shubina, L. K., Kuzmich, A. S., Bokemeyer, C., Keller-von Amsberg, G., and Honecker, F. 2014. Aaptamines from the marine sponge Aaptos sp. display anticancer activities in human cancer cell lines and modulate AP1-, NF-κB-, and p53-dependent transcriptional activity in mouse JB6 Cl41 cells. BioMed Research International https://doi.org/10.1155/2014/469309

Easwaran, H., Tsai, H. C., and Baylin, S. B. 2014. Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Molecular Cell 54(5):716–727. https://doi.org/10.1016/j.molcel.2014.05.015

Fang, M., Chen, D., and Yang, C. S. 2007. Dietary polyphenols may affect DNA methylation. The Journal of Nutrition 223S–228S. https://doi.org/10.1093/jn/137.1.223S

Feitelson, M. A., Arzumanyan, A., Kulathinal, R. J., Blain, S. W., Holcombe, R. F., et al. 2015. Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. Seminars in Cancer Biology 35:S25–S54. https://doi.org/10.1016/j.semcancer.2015.02.006

Feng, B., Ng, J. H., Heng, J. C., and Ng, H. H. 2009. Molecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cells. Cell Stem Cell 4(4):301–312. https://doi.org/10.1016/j.stem.2009.03.005

Fraga, M. F., Ballestar, E., Villar-Garea, A., Boix-Chornet, M., Espada, J., Schotta, G., et al. 2005. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature Genetics 37(4):391–400. https://doi.org/10.1038/ng1531

Fujiwara, Y., Komohara, Y., Ikeda, T., and Takeya, M. 2011. Corosolic acid inhibits glioblastoma cell proliferation by suppressing the activation of signal transducer and activator of transcription-3 and nuclear factor-kappa B in tumor cells and tumor-associated macrophages. Cancer Science 102(1):206–211. https://doi.org/10.1111/j.1349-7006.2010.01772.x

Furumai, R., Matsuyama, A., Kobashi, N., Lee, K. H., Nishiyama, M., Nakajima, H., Tanaka, A., Komatsu, Y., Nishino, N., Yoshida, M., and Horinouchi, S. 2002. FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Research 62(17):4916–4921.

Ganapathy, S., Chen, Q., Singh, K. P., Shankar, S., and Srivastava, R. K. 2010. Resveratrol enhances antitumor activity of TRAIL in prostate cancer xenografts through activation of FOXO transcription factor. PLoS One 5(12):e15627. https://doi.org/10.1371/journal.pone.0015627

Gao, Z., Xu, Z., Hung, M. S., Lin, Y. C., Wang, T., Gong, M., Zhi, X., Jablon, D. M., and You, L. 2009. Promoter demethylation of WIF-1 by epigallocatechin-3-gallate in lung cancer cells. Anticancer Research 29(6):2025–2030.

Gerhauser, C. 2013. Cancer chemoprevention and nutriepigenetics: state of the art and future challenges. Topics in Current Chemistry 329:73–132. https://doi.org/10.1007/128_2012_360

Gibbons, R. J. 2005. Histone modifying and chromatin remodelling enzymes in cancer and dysplastic syndromes. Human Molecular Genetics 14:R85–92. https://doi.org/10.1093/hmg/ddi106

Gillespie, S., Borrow, J., Zhang, X.D., and Hersey, P. 2006. Bim plays a crucial role in synergistic induction of apoptosis by the histone deacetylase inhibitor SBHA and TRAIL in melanoma cells. Apoptosis 11:2251–2265. https://doi.org/10.1007/s10495-006-0283-6

Grewal, S. I. and Jia, S. 2007. Heterochromatin revisited. Nature Reviews. Genetics 8(1):35–46. https://doi.org/10.1038/nrg2008

Guo, H., Xu, Y., and Fu, Q. 2015. Curcumin inhibits growth of prostate carcinoma via miR-208-mediated CDKN1A activation. Tumour Biology 36(11):8511–8517. https://doi.org/10.1007/s13277-015-3592-y

Haack, M., Löwinger, M., Lippmann, D., Kipp, A., Pagnotta, E., Iori, R., Monien, B. H., Glatt, H., Brauer, M. N., Wessjohann, L. A., and Brigelius-Flohé, R. 2010. Breakdown compounds of neoglucobrassicin inhibit activation of Nrf2 target genes mediated by myrosinase-derived glucoraphanin hydrolysis compounds. Biological Chemistry 391(11):1281–1293. https://doi.org/10.1515/BC.2010.134

Hajjouli, S., Chateauvieux, S., Teiten, M. H., Orlikova, B., Schumacher, M., Dicato, M., Choo, C. Y., and Diederich, M. 2014. Eurycomanone and eurycomanol from Eurycoma longifolia Jack as regulators of signaling pathways involved in proliferation, cell death and inflammation. Molecules 19(9):14649–14666. https://doi.org/10.3390/molecules190914649

Halkidou, K., Gaughan, L., Cook, S, Leung, H. Y., Neal, D. E., and Robson, C. N. 2004. Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate 59(2):177–189. https://doi.org/10.1002/pros.20022

Hassan, M. Q., Tye, C. E., Stein, G. S., and Lian, J. B. 2015. Non-coding RNAs: Epigenetic regulators of bone development and homeostasis. Bone 81:746–756. https://doi.org/10.1016/j.bone.2015.05.026

Henning, S. M., Wang, P., Carpenter, C. L., and Heber, D. 2013. Epigenetic effects of green tea polyphenols in cancer. Epigenomics 5(6):729–741. https://doi.org/10.2217/epi.13.57

Henning, S. M., Wang, P., Said, J., Magyar, C., Castor, B., Doan, N., Tosity, C., Moro, A., Gao, K., Li, L., and Heber, D. 2012. Polyphenols in brewed green tea inhibit prostate tumor xenograft growth by localizing to the tumor and decreasing oxidative stress and angiogenesis The Journal of Nutritional Biochemistry 23(11):1537–1542. https://doi.org/10.1016/j.jnutbio.2011.10.007

Ho, E., Beaver, L. M., Williams, D. E., and Dashwood, R. H. 2011. Dietary factors and epigenetic regulation for prostate cancer prevention. Advances in Nutrition (Bethesda, Md.) 2(6):497–510. https://doi.org/10.3945/an.111.001032

Hong, K. J., Wu, D. C., Cheng, K. H., Chen, L. T., and Hung, W. C. 2014. RECK inhibits stemness gene expression and tumorigenicity of gastric cancer cells by suppressing ADAM-mediated Notch1 activation. Journal of Cellular Physiology 229(2):191–201. https://doi.org/10.1002/jcp.24434

Huang, J., Plass, C., and Gerhauser, C. 2011. Cancer chemoprevention by targeting the epigenome. Current Drug Targets 12(13):1925–1956. https://doi.org/10.2174/138945011798184155

Huang, M. T., Newmark, H. L., and Frenkel, K. 1997. Inhibitory effects of curcumin on tumorigenesis in mice. Journal of Cellular Biochemistry 27:26–34. https://doi.org/10.1002/(SICI)1097-4644(1997)27+%3C26::AID-JCB7%3E3.0.CO;2-3

Huisinga, K. L., Brower-Toland, B., and Elgin, S. C. 2006. The contradictory definitions of heterochromatin: transcription and silencing. Chromosoma 115(2):110–122. https://doi.org/10.1007/s00412-006-0052-x

Jandial, D. D., Blair, C. A., Zhang, S., Krill, L. S., Zhang, Y. B., and Zi, X. 2014. Molecular targeted approaches to cancer therapy and prevention using chalcones. Current Cancer Drug Targets 14(2):181–200. https://doi.org/10.2174/1568009614666140122160515

Jenuwein, T. and Allis, C. D. 2001. Translating the histone code. Science 293(5532):1074–1080. https://doi.org/10.1126/science.1063127

Jia, Y. and Guo, M. 2013. Epigenetic changes in colorectal cancer. Chinese Journal of Cancer 32(1):21–30. https://doi.org/10.5732/cjc.011.10245

Jones, P. A. and Baylin, S. B. 2007. The epigenomics of cancer. Cell 128(4):683–692. https://doi.org/10.1016/j.cell.2007.01.029

Kai, L., Samuel, S. K., and Levenson, A. S. 2010. Resveratrol enhances p53 acetylation and apoptosis in prostate cancer by inhibiting MTA1/NuRD complex. International Journal of Cancer 126(7):1538–1548. https://doi.org/10.1002/ijc.24928

Kao, C. L., Cho, J., Lee, Y. Z., Cheng, Y. B., Chien, C. Y., Hwang, C. F., Hong, Y. R., Tseng, C. N., and Cho, C. L. 2015. Ethanolic extracts of Pluchea indica induce apoptosis and antiproliferation effects in human nasopharyngeal carcinoma cells. Molecules 20(6):11508–11523. https://doi.org/10.3390/molecules200611508

Kato, K., Long, N. K., Makita, H., Toida, M., Yamashita, T., Hatakeyama, D., Hara, A., Mori, H., and Shibata, T. 2008. Effects of green tea polyphenol on methylation status of RECK gene and cancer cell invasion in oral squamous cell carcinoma cells. British Journal of Cancer 99(4):647–654. https://doi.org/10.1038/sj.bjc.6604521

Khoury, G. A., Baliban, R. C., and Floudas, C. A. 2011. Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Scientific Reports 1:90. https://doi.org/10.1038/srep00090

Kikuno, N., Shiina, H., Urakami, S., Kawamoto, K., Hirata, H., Tanaka, Y., Majid, S., Igawa, M., and Dahiya, R. 2008. Mediated histone acetylation and demethylation activates tumor suppressor genes in prostate cancer cells. International Journal of Cancer 123(3):552–560. https://doi.org/10.1002/ijc.23590

Kim, H. J. and Bae, S. C. 2011. Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. American Journal of Transational Research 3(2):166–179.

Kim, S. M., Lee, J. H., Sethi, G., Kim, C., Baek, S. H., Nam, D., Chung, W. S., Kim, S. H., Shim, B. S., and Ahn, K. S. 2014. Bergamottin, a natural furanocoumarin obtained from grapefruit juice induces chemosensitization and apoptosis through the inhibition of STAT3 signaling pathway in tumor cells. Cancer Letters 354(1):153–163. https://doi.org/10.1016/j.canlet.2014.08.002

Kim, Y. Z. 2014. Altered histone modifications in gliomas. Brain Tumor Research and Treatment 2(1):7–21. https://doi.org/10.14791/btrt.2014.2.1.7

Kong, D., Heath, E., Chen, W., Cher, M. L., Powell, I., Heilbrun, L., Li, Y., Ali, S., Sethi, S., Hassan, O., Hwang, C., Gupta, N., Chitale, D., Sakr, W. A., Menon, M., and Sarkar, F. H. 2012. Loss of let-7 up-regulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM. PLoS One 7(3):e33729. https://doi.org/10.1371/journal.pone.0033729

Konstantinopoulos, P. A., Vandoros, G. P., and Papavassiliou, A. G. 2006. FK228 (depsipeptide): a HDAC inhibitor with pleiotropic antitumor activities. Cancer Chemotherapy and Pharmacology 58(5):711–715. https://doi.org/10.1007/s00280-005-0182-5

Krishnan, M., Singh, A. B., Smith, J. J., Sharma, A., Chen, X., Eschrich, S., Yeatman, T. J., Beauchamp, R. D., and Dhawan, P. 2010. HDAC inhibitors regulate claudin-1 expression in colon cancer cells through modulation of mRNA stability. Oncogene 29(2):305–312. https://doi.org/10.1038/onc.2009.324

Lee, E. Y. and Muller, W. J. 2010. Oncogenes and tumor suppressor genes. Cold Spring Harbor Perspectives in Biology 2(10):a003236. https://doi.org/10.1101/cshperspect.a003236

Lee, J. S. 2007. Functional link between DNA damage responses and transcriptional regulation by ATM in response to a histone deacetylase inhibitor TSA. Cancer Research and Treatment: Official Journal of Korean Cancer Association 39:116–124. https://doi.org/10.4143/crt.2007.39.3.116

Lee, T. I. and Young, R. A. 2013. Transcriptional regulation and its misregulation in disease. Cell 152(6):1237–1251. https://doi.org/10.1016/j.cell.2013.02.014

Lee, W. J., Shim, J. Y., and Zhu, B. T. 2005. Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Molecular Pharmacology 68(4):1018–1030. https://doi.org/10.1124/mol.104.008367

Levenson, A. S., Kumar, A., and Zhang, X. 2014. MTA family of proteins in prostate cancer: biology, significance, and therapeutic opportunities. Cancer Metastasis Reviews 33(4):929–942. https://doi.org/10.1007/s10555-014-9519-z

Li, B., Zhao, J., Wang, C. Z., Searle, J., He, T. C., Yuan, C. S., and Du, W. 2011. Ginsenoside Rh2 induces apoptosis and paraptosis-like cell death in colorectal cancer cells through activation of p53. Cancer Letters 301(2):185–192. https://doi.org/10.1016/j.canlet.2010.11.015

Li, K., Dias, S. J., Rimando, A. M., Dhar, S., Mizuno, C. S., Penman, A. D., Lewin, J. R., and Levenson, A. S. 2013. Pterostilbene acts through metastasis-associated protein 1 to inhibit tumor growth, progression and metastasis in prostate cancer. PLoS One 8(3):e57542. https://doi.org/10.1371/journal.pone.0057542

Li, Y., Kong, D., Wang, Z., and Sarkar, F. H. 2010. Regulation of microRNAs by natural agents: an emerging field in chemoprevention and chemotherapy research. Pharmaceutical Research 27(6):1027–1041. https://doi.org/10.1007/s11095-010-0105-y

Lin, J. K. 2007. Molecular targets of curcumin. Advances in Experimental Medicine and Biology 595:227–243. https://doi.org/10.1007/978-0-387-46401-5_10

Link, A., Balaguer, F., and Goel, A. 2010.Cancer chemoprevention by dietary polyphenols: promising role for epigenetics. Biochemical Pharmacology 80(12):1771–1792. https://doi.org/10.1016/j.bcp.2010.06.036

Liu, H. L., Chen, Y., Cui, G. H., and Zhou, J. F. 2005. Curcumin, a potent anti-tumor reagent, is a novel histone deacetylase inhibitor regulating B-NHL cell line Raji proliferation. Acta Pharmacologica Sinica 26(5):603–609. https://doi.org/10.1111/j.1745-7254.2005.00081.x

Liu, J. D., Chen, S. H., Lin, C. L., Tsai, S. H., and Liang, Y. C. 2001. Inhibition of melanoma growth and metastasis by combination with (-)-epigallocatechin-3-gallate and dacarbazine in mice. Journal of Cellular Biochemistry 83(4):631–642. https://doi.org/10.1002/jcb.1261

Liu, Z., Xie, Z., Jones, W., Pavlovicz, R. E., Liu, S., Yu, J., Li, P. K., Lin, J., Fuchs, J. R., Marcucci, G., Li, C., and Chan, K. K. 2009. Curcumin is a potent DNA hypomethylation agent. Bioorganic & Medicinal Chemistry Letters 19(3):706–709. https://doi.org/10.1016/j.bmcl.2008.12.041

Lizcano, F. and Garcia, J. 2012. Epigenetic control and cancer: the potential of histone demethylases as therapeutic targets. Pharmaceuticals 5(9):963–999. https://doi.org/10.3390/ph5090963

Losson, H., Schnekenburger, M., Dicato, M., and Diederich, M. 2016. Natural compound histone deacetylase inhibitors (HDACi): Synergy with inflammatory signaling pathway modulators and clinical applications in cancer. Molecules 21(11):1608. https://doi.org/10.3390/molecules21111608

Lou, C., Takahashi, K., Irimura, T., Saiki, I., and Hayakawa, Y. 2014. Identification of Hirsutine as an anti-metastatic phytochemical by targeting NF-κB activation. International Journal of Oncology 45(5):2085–2091. https://doi.org/10.3892/ijo.2014.2624

Lu, Q. Y., Jin, Y. S., Zhang, Z. F., Le, A. D., Heber, D., Li, F. P., Dubinett, S. M., and Rao, J. Y. 2007. Green tea induces annexin-I expression in human lung adenocarcinoma A549 cells: involvement of annexin-I in actin remodeling. Laboratory Investigation 87(5):456–465. https://doi.org/10.1038/labinvest.3700534

Luo, X., Yu, X., Liu, S., Deng, Q., Liu, X., Peng, S., Li, H., Liu, J., and Cao, Y. 2015. The role of targeting kinase activity by natural compounds in cancer chemoprevention and chemotherapy. Oncology Reports 34(2):547–554. https://doi.org/10.3892/or.2015.4029

Ma, N., Luo, Y., Wang, Y., Liao, C., Ye, W. C., and Jiang, S. 2016 Selective histone deacetylase inhibitors with anticancer activity. Current Topics in Medicinal Chemistry 16(4):415–426. https://doi.org/10.2174/1568026615666150813145629

Manal, M., Chandrasekar, M., Jeyapal, G. P., and Nanjan, M. 2016. Inhibitors of histone deacetylase as antitumor agents: A critical review. Bioorganic Chemistry 67:18–42. https://doi.org/10.1016/j.bioorg.2016.05.005

Marks, P. A. 2010. The clinical development of histone deacetylase inhibitors as targeted anticancer drugs. Expert Opinion on Investigational Drugs 19(9):1049–1066. https://doi.org/10.1517/13543784.2010.510514

Marquardt, J. U., Gomez-Quiroz, L., Arreguin Camacho, L. O., Pinna, F., Lee, Y. H., Kitade, M., Domínguez, M. P., Castven, D., Breuhahn, K., Conner, E. A., Galle, P. R., Andersen, J. B., Factor, V. M., and Thorgeirsson, S. S. 2015. Curcumin effectively inhibits oncogenic NF-κB signaling and restrains stemness features in liver cancer. Journal of Hepatology 63(3):661–669. https://doi.org/10.1016/j.jhep.2015.04.018

Mayboroda, A. A. 2013. Genes and proteins of oncogenesis. Sibirskiy meditsinskiy zhurnal 2:132–138. (In Russian)

Maze, I., Wenderski, W., Noh, K. M., Bagot, R. C., Tzavaras, N., et al. 2015. Critical role of histone turnover in neuronal transcription and plasticity. Neuron 87(1):77–94. https://doi.org/10.1016/j.neuron.2015.06.014

Medina-Franco, J. L., López-Vallejo, F., Kuck, D., and Lyko, F. 2011. Natural compounds as DNA methyltransferase inhibitors: a computer-aided discovery approach. Molecular Diversity 15(2):293–304. https://doi.org/10.1007/s11030-010-9262-5

Meeran, S. M., Patel, S. N., and Tollefsbol, T. O. 2010. Sulforaphane causes epigenetic repression of human TERT expression in human breast cancer cell lines. PLoS One 5(7):e11457. https://doi.org/10.1371/journal.pone.0011457

Minucci, S. and Pelicci, P. G. 2006. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nature Reviews. Cancer 6:38–51. https://doi.org/10.1038/nrc1779

Mitani, T., Harada, N., Tanimori, S., Nakano, Y., Inui, H., and Yamaji, R. 2014. Resveratrol inhibits hypoxia-inducible factor-1α-mediated androgen receptor signaling and represses tumor progression in castration-resistant prostate cancer. Journal of Nutritional Science and Vitaminology 60(4):276–282. https://doi.org/10.3177/jnsv.60.276

Mitani, T., Ito, Y., Harada, N., Nakano, Y., Inui, H., Ashida, H., and Yamaji, R. 2014. Resveratrol reduces the hypoxia-induced resistance to doxorubicin in breast cancer cells. Journal of Nutritional Science and Vitaminology 60(2):122–128. https://doi.org/10.3177/jnsv.60.122

Moghadamtousi, S. Z., Kadir, H. A., Paydar, M., Rouhollahi, E., and Karimian, H. 2014. Annona muricata leaves induced apoptosis in A549 cells through mitochondrial-mediated pathway and involvement of NF-κB. BMC Complementary and Alternative Medicine 14:299. https://doi.org/10.1186/1472-6882-14-299

Morey, L., Santanach, A., and Di Croce, L. 2015. Pluripotency and epigenetic factors in mouse embryonic stem cell fate regulation. Molecular and Cell Biology 35(16):2716–2728. https://doi.org/10.1128/MCB.00266-15

Moseley, V. R., Morris, J., Knackstedt, R. W., and Wargovich, M. J. 2013. Green tea polyphenol epigallocatechin. Anticancer Research 33(12):5325–5333.

Mudduluru, G., George-William, J. N., Muppala, S., Asangani, I. A., Kumarswamy, R., Nelson, L. D., and Allgayer, H. 2011. Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Bioscience Reports 31(3):185–197. https://doi.org/10.1042/BSR20100065

Mukhopadhyay, A., Bueso-Ramos, C., Chatterjee, D., Pantazis, P., and Aggarwal, B. B. 2001. Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene 20(52):7597–7609. https://doi.org/10.1038/sj.onc.1204997

Murugan, R. S., Vinothini, G., Hara, Y., and Nagini, S. 2009. Black tea polyphenols target matrix metalloproteinases, RECK, proangiogenic molecules and histone deacetylase in a rat hepatocarcinogenesis model. Anticancer Research 29(6):2301–2305.

Nakayama, J., Rice, J. C., Strahl, B. D., Allis, C. D., and Grewal, S. I. 2001. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292(5514):110–113. https://doi.org/10.1126/science.1060118

Nandakumar, V., Vaid, M., and Katiyar, S. K. 2011. (-)-Epigallocatechin-3-gallate reactivates silenced tumor suppressor genes, Cip1/p21 and p16INK4a, by reducing DNA methylation and increasing histones acetylation in human skin cancer cells. Carcinogenesis 32(4):537–544. https://doi.org/10.1093/carcin/bgq285

Neergheen-Bhujun, V., Taj Awan, A., Baran, Y., et al. 2017. Biodiversity, drug discovery, and the future of global health: Introducing the biodiversity to biomedicine consortium, a call to action. Journal of Global Health 7(2):020304. https://doi.org/10.7189/jogh.07.020304

Newman, D. J. and Cragg, G. M. 2007. Natural products as sources of new drugs over the last 25 years. Journal of Natural Products 70(3):461–477. https://doi.org/10.1021/np068054v

Orlikova, B., Schumacher, M., Juncker, T., Yan, C. C., Inayat-Hussain, S. H., Hajjouli, S., Cerella, C., Dicato, M., and Diederich, M. 2013. Styryl-lactone goniothalamin inhibits TNF-α-induced NF-κB activation. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 59:572–578. https://doi.org/10.1016/j.fct.2013.06.051

Pandey, M., Shukla, S., and Gupta, S. 2010. Promoter demethylation and chromatin remodeling by green tea polyphenols leads to re-expression of GSTP1 in human prostate cancer cells. International Journal of Cancer 126(11):2520–2533. https://doi.org/10.1002/ijc.24988

Park, C. H., Lee, J. H., and Yang, C. H. 2005. Curcumin derivatives inhibit the formation of Jun-Fos-DNA complex independently of their conserved cysteine residues. Journal of Biochemistry and Molecular Biology 38(4):474–480. https://doi.org/10.5483/BMBRep.2005.38.4.474

Paszkowski, J. and Whitham, S. 2001. Gene silencing and DNA methylation processes. Current Opinion in Plant Biology 4(2):123–129. https://doi.org/10.1016/S1369-5266(00)00147-3

Pera, B., Tang, T., Marullo, R., Yang, S. N., Ahn, H., Patel, J., Elstrom, R., Ruan, J., Furman, R., Leonard, J., Cerchietti, L., and Martin, P. 2016. Combinatorial epigenetic therapy in diffuse large B cell lymphoma pre-clinical models and patients. Clinical Epigenetics 8:79. https://doi.org/10.1186/s13148-016-0245-y

Pietrocola, F., Mariño, G., Lissa, D., Vacchelli, E., Malik, S. A., Niso-Santano, M., Zamzami, N., Galluzzi, L., Maiuri, M. C., and Kroemer, G. 2012. Pro-autophagic polyphenols reduce the acetylation of cytoplasmic proteins. Cell Cycle 11(20):3851–3860. https://doi.org/10.4161/cc.22027

Pradhan, S. J., Mishra, R., Sharma, P., and Kundu, G. C. 2010. Quercetin and sulforaphane in combination suppress the progression of melanoma through the down-regulation of matrix metalloproteinase-9. Experimental and Therapeutic Medicine 1(6):915–920. https://doi.org/10.3892/etm.2010.144

Pratheeshkumar, P., Sreekala, C., Zhang, Z., Budhraja, A., Ding, S., Son, Y. O., Wang, X., Hitron, A., Hyun-Jung, K., Wang, L., Lee, J. C., and Shi, X. 2012. Cancer prevention with promising natural products: mechanisms of action and molecular targets. Anticancer Agents in Medicinal Chemistry 12(10):1159–1184. https://doi.org/10.2174/187152012803833035

Prusty, B. K. and Das, B. C. 2005. Constitutive activation of transcription factor AP-1 in cervical cancer and suppression of human papillomavirus (HPV) transcription and AP-1 activity in HeLa cells by curcumin. International Journal of Cancer 113(6):951–960. https://doi.org/10.1002/ijc.20668

Rahman, K. M., Sarkar, F. H., Banerjee, S., Wang, Z., Liao, D. J., Hong, X., and Sarkar, N. H. 2006. Therapeutic intervention of experimental breast cancer bone metastasis by indole-3-carbinol in SCID-human mouse model. Molecular Cancer Therapeutics 5(11):2747–2756. https://doi.org/10.1158/1535-7163.MCT-06-0221

Rea, S., Eisenhaber, F., O'Carroll, D., Strahl, B. D., Sun, Z. W., Schmid, M., Opravil, S., Mechtler, K., Ponting, C. P., Allis, C. D., and Jenuwein, T. 2000. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406(6796):593–599. https://doi.org/10.1038/35020506

Roy, S. K., Chen, Q., Fu, J., Shankar, S., and Srivastava, R. K. 2011. Resveratrol inhibits growth of orthotopic pancreatic tumors through activation of FOXO transcription factors. PLoS One 6(9):e25166. https://doi.org/10.1371/journal.pone.0025166

Royston, K. J. and Tollefsbol, T. O. 2015. The epigenetic impact of cruciferous vegetables on cancer prevention. Current Pharmacology Reports 1(1):46–51. https://doi.org/10.1007/s40495-014-0003-9

Rummun, N., Hughes, R. E., Beesoo, R., Li, W. W., et al. 2019. Mauritian endemic medicinal plant extracts induce G2/M phase cell cycle arrest and growth inhibition of oesophageal squamous cell carcinoma in vitro. Acta Naturae 11(1):81–90. https://doi.org/10.32607/20758251-2019-11-1-81-90

Safa, M., Tavasoli, B., Manafi, R., Kiani, F., Kashiri, M., Ebrahimi, S., and Kazemi, A. 2015. Indole-3-carbinol suppresses NF-κB activity and stimulates the p53 pathway in pre-B acute lymphoblastic leukemia cells. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine 36(5):3919–3930. https://doi.org/10.1007/s13277-014-3035-1

Saha, K., Hornyak, T. J., and Eckert, R. L. 2013. Epigenetic cancer prevention mechanisms in skin cancer. An Official Journal of the American Association of Pharmaceutical Scientists 15(4):1064–1071. https://doi.org/10.1208/s12248-013-9513-3

Samantarrai, D., Dash, S., Chhetri, B., and Mallick, B. 2013. Genomic and epigenomic cross-talks in the regulatory landscape of miRNAs in breast cancer. Molecular Cancer Research 4:315–328. https://doi.org/10.1158/1541-7786

Santos, F. P., Kantarjian, H., Garcia-Manero, G., Issa, J. P., and Ravandi, F. 2010. Decitabine in the treatment of myelodysplastic syndromes. Expert Review of Anticancer Therapy 10(1):9–22. https://doi.org/10.1586/era.09.164

Schubert, T. and Langst, G. 2015. Study of epigenetic interactions using Microscale Thermophoresis (MST). AIMS Biophysics 2(3):370–380. https://doi.org/10.3934/biophy.2015.3.370

Seligson, D. B., Horvath, S., Shi, T., Yu, H., Tze, S., Grunstein, M., and Kurdistani, S. K. 2005. Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435(7046):1262–1266. https://doi.org/10.1038/nature03672

Shankar, S., Nall, D., Tang, S. N., Meeker, D., Passarini, J., Sharma, J., and Srivastava, R. K. 2011. Resveratrol inhibits pancreatic cancer stem cell characteristics in human and KrasG12D transgenic mice by inhibiting pluripotency maintaining factors and epithelial-mesenchymal transition. PLoS One 6(1):e16530. https://doi.org/10.1371/journal.pone.0016530

Shi, Y., Dong, M., Hong, X., Zhang, W., Feng, J., Zhu, J., Yu, L., Ke, X., Huang, H., Shen, Z., Fan, Y., Li, W., Zhao, X., et al. 2015. Results from a multicenter, open-label, pivotal phase II study of chidamide in relapsed or refractory peripheral T-cell lymphoma. Annals of Oncology: Official Journal of the European Society for Medical Oncology 26(8):1766–1771. https://doi.org/10.1093/annonc/mdv237

Shukla, S., Meeran, S. M., and Katiyar, S. K. 2014. Epigenetic regulation by selected dietary phytochemicals in cancer chemoprevention. Cancer Letters 355(1):9–17. https://doi.org/10.1016/j.canlet.2014.09.017

Siddiqui, I. A., Adhami, V. M., Saleem, M., and Mukhtar, H. 2006.Beneficial effects of tea and its polyphenols against prostate cancer. Molecular Nutrition & Food Research 50(2):130–143. https://doi.org/10.1002/mnfr.200500113

Song, J., Noh, J. H., Lee, J. H., Eun, J. W., Ahn, Y. M., Kim, S. Y., Lee, S. H., et al. 2005. Increased expression of histone deacetylase 2 is found in human gastric cancer. APMIS: Acta Pathologica, Microbiologica, et Immunologica Scandinavica 113(4):264–268. https://doi.org/10.1111/j.1600-0463.2005.apm_04.x

Su, Z. Y., Khor, T. O., Shu, L., Lee, J. H., Saw, C. L., Wu, T. Y., Huang, Y., et al. 2013. Epigenetic reactivation of Nrf2 in murine prostate cancer TRAMP C1 cells by natural phytochemicals Z-ligustilide and Radix angelica sinensis via promoter CpG demethylation. Chemical Research in Toxicology 26(3):477–485. https://doi.org/10.1021/tx300524p

Subramaniam, D., Ponnurangam, S., Ramamoorthy, P., Standing, D., Battafarano, R. J., Anant, S., and Sharma, P. 2012. Curcumin induces cell death in esophageal cancer cells through modulating Notch signaling. PloS One 7(2):e30590. https://doi.org/10.1371/journal.pone.0030590

Sui, X., Zhu, J., Zhou, J., et al. 2015. Epigenetic modifications as regulatory elements of autophagy in cancer. Cancer Letters 360(2):106–113. https://doi.org/10.1016/j.canlet.2015.02.009

Sun, L., Zhou, W., Zhang, H., Guo, Q., Yang, W., Li, B., Sun, Z., Gao, S., and Cui, R. 2019. Modulation of multiple signaling pathways of the plant-derived natural products in cancer. Frontiers in Oncology 9:1153. https://doi.org/10.3389/fonc.2019.01153

Sutherland, J. and Costa, M. 2003. Epigenetics and the environment. Annals of the New York Academy of Sciences 983:151–160. https://doi.org/10.1111/j.1749-6632.2003.tb05970.x

Taby, R. and Issa, J. P. 2010. Cancer epigenetics. CA: A Cancer Journal for Clinicians 60(6):376–392. https://doi.org/10.3322/caac.20085

Teif, V. and Rippe, K. 2011. Nucleosome mediated crosstalk between transcription factors at eukaryotic enhancers. Physical Biology 8(4):044001. https://doi.org/10.1088/1478-3975/8/4/044001

Teiten, M. H., Eifes, S., Dicato, M., and Diederich, M. 2010. Curcumin — the paradigm of a multi-target natural compound with applications in cancer prevention and treatment. Toxins 2(1):128–162. https://doi.org/10.3390/toxins2010128

Teiten, M. H., Gaascht, F., Eifes, S., Dicato, M., and Diederich, M. 2010. Chemopreventive potential of curcumin in prostate cancer. Genes & Nutrition 5(1):61–74. https://doi.org/10.1007/s12263-009-0152-3

Thakur, V. S., Deb, G., Babcook, M. A., and Gupta, S. 2014. Plant phytochemicals as epigenetic modulators: role in cancer chemoprevention. The AAPS Journal 16(1):151–163. https://doi.org/10.1208/s12248-013-9548-5

Toden, S., Okugawa, Y., Buhrmann, C., Nattamai, D., Anguiano, E., Baldwin, N., Shakibaei, M., Boland, C. R., and Goel, A. 2015. Novel evidence for curcumin and boswellic acid-induced chemoprevention through regulation of miR-34a and miR-27a in colorectal cancer. Cancer Prevention Research 8(5):431–443. https://doi.org/10.1158/1940-6207.CAPR-14-0354

Traka, M., Gasper, A. V., Smith, J. A., Hawkey, C. J., Bao, Y., and Mithen, R. F. 2005. Transcriptome analysis of human colon Caco-2 cells exposed to sulforaphane. The Journal of Nutrition 135(8):1865–1872. https://doi.org/10.1093/jn/135.8.1865

Tuntiwechapikul, W., Taka, T., Songsomboon, C., Kaewtunjai, N., Imsumran, A., Makonkawkeyoon, L., Pompimon, W., and Lee, T. R. 2010. Ginger extract inhibits human telomerase reverse transcriptase and c-Myc expression in A549 lung cancer cells. Journal of Medical Food 13(6):1347–1354. https://doi.org/10.1089/jmf.2010.1191

Udugama, M., Chang, F. T. M., Chan, F. L, et al. 2015. Histone variant H3.3 provides the heterochromatic H3 lysine 9 tri-methylation mark at telomeres. Nucleic Acids Research 43(21):10227–10237. https://doi.org/10.1093/nar/gkv847

Urnov, F. D. and Wolffe, A. P. 2001. Above and within the genome: epigenetics past and present. Journal of Mammary Gland Biology and Neoplasia 6(2):153–167. https://doi.org/10.1023/A:1011304606604

Venkatasubramani, A. V., McLaughlin, K., Blanco, R. G., Larionov V., and Kagansky, A. 2015. The pilot screening RNA using the system based on mammalian cells reveals new putative silencing factors, including Kat5 / Tip60. AIMS Biophysics 2(4):570–584. https://doi.org/10.3934/biophy.2015.4.570

Verhoeven, D. T., Verhagen, H., Goldbohm, R. A., van den Brandt, P. A., van Poppel, G. 1997. A review of mechanisms underlying anticarcinogenicity by brassica vegetables Chemico-biological Interactions 103(2):79–129. https://doi.org/10.1016/s0009-2797(96)03745-3

Volate, S. R., Muga, S. J., Issa, A. Y., Nitcheva, D., Smith, T., and Wargovich, M. J. 2009. Epigenetic modulation of the retinoid X receptor alpha by green tea in the azoxymethane-Apc Min/+ mouse model of intestinal cancer. Molecular Carcinogenesis 48(10):920–933. https://doi.org/10.1002/mc.20542

Wai-Leng, L., Jing-Ying, H., and Lie-Fen, S. 2013. Phytoagents for cancer management: Regulation of nucleic acid oxidation, ROS, and related mechanisms. Oxidative Medicine and Cellular Longevity https://doi.org/10.1155/2013/925804

Wang, J., Xie, H., Gao, F., Zhao, T., Yang, H., and Kang, B. 2016. Curcumin induces apoptosis in p53-null Hep3B cells through a TAp73/DNp73-dependent pathway. Tumour biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine 37(3):4203–4212. https://doi.org/10.1007/s13277-015-4029-3

Wang, L. G., Beklemisheva, A., Liu, X. M., Ferrari, A. C., Feng, J., and Chiao, J. W. 2007. Dual action on promoter demethylation and chromatin by an isothiocyanate restored GSTP1 silenced in prostate cancer Molecular Carcinogenesis 46(1):24–31. https://doi.org/10.1002/mc.20258

Wang, L., Liou, J., Li, Y., Liu, Y., Pan, S., and Teng, C. 2014. A novel class I HDAC inhibitor, MPT0G030, induces cell apoptosis and differentiation in human colorectal cancer cells via HDAC1/PKCδ and E-cadherin. Oncotarget 5:5651–5662. https://doi.org/10.18632/oncotarget.2155

Wang, Y., Li, Y., Liu, X., and Cho, W. C. 2013. Genetic and epigenetic studies for determining molecular targets of natural compound anticancer agents. Current Cancer Drug Targets 13(5):506–518. https://doi.org/10.2174/15680096113139990033

Weichert, W., Roske, A., Niesporek, S., Noske, A., Buckendahl, A. C., Dietel, M., Gekeler, V., Boehm, M., Beckers, T., and Denkert, C. 2008. Class I histone deacetylase expression has independent prognostic impact in human colorectal cancer: specific role of class I histone deacetylases in vitro and in vivo. Clinical Cancer Research 14(6):1669–1677. https://doi.org/10.1158/1078-0432

West, A. C. and Johnstone, R. W. 2014. New and emerging HDAC inhibitors for cancer treatment. The Journal of Clinical Investigation 124(1):30–39. https://doi.org/10.1172/JCI69738

Wilson, A. J., Byun, D. S., Popova, N., Murray, L. B., L’Italien, K., Sowa, Y., et al. 2006. Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. The Journal of Biological Chemistry 281(19):13548–13558. https://doi.org/10.1074/jbc.M510023200

Wong, C. P., Hsu, A., Buchanan, A., Palomera-Sanchez, Z., Beaver, L. M., Houseman, E. A., Williams, D. E., Dashwood, R. H., and Ho, E. 2014. Effects of sulforaphane and 3,3'-diindolylmethane on genome-wide promoter methylation in normal prostate epithelial cells and prostate cancer cells. PLoS One 9(1):e86787. https://doi.org/10.1371/journal.pone.0086787

Woo, H. J., Lee, S. J., Choi, B. T., Park, Y. M., and Choi, Y. H. 2007. Induction of apoptosis and inhibition of telomerase activity by trichostatin A, a histone deacetylase inhibitor, in human leukemic U937 cells. Experimental and Molecular Pathology 82(1):77–84. https://doi.org/10.1016/j.yexmp.2006.02.004

Xiao, G. S., Jin, Y. S., Lu, Q. Y., Zhang, Z. F., Belldegrun, A. et al. 2007. Annexin-I as a potential target for green tea extract induced actin remodeling. International Journal of Cancer 120(1):111–120. https://doi.org/10.1002/ijc.22164

Ye, M., Zhang, J., Zhang, J., Miao, Q., Yao, L., and Zhang, J. 2015. Curcumin promotes apoptosis by activating the p53-miR-192-5p/215-XIAP pathway in non-small cell lung cancer. Cancer Letters 357(1):196–205. https://doi.org/10.1016/j.canlet.2014.11.028

Yoon, D. S., Choi, Y., Jang, Y., Lee, M., Choi, W. J., Kim, S. H., and Lee, J. W. 2014. SIRT1 directly regulates SOX2 to maintain self-renewal and multipotency in bone marrow-derived mesenchymal stem cells. Stem Cells 32(12):3219–3231. https://doi.org/10.1002/stem.1811

Yu, X. D. and Guo, Z. S. 2010 Epigenetic drugs for cancer treatment and prevention: mechanisms of action. Biomolecular Concepts 1(3–4):239–251. https://doi.org/10.1515/bmc.2010.020

Zang, S., Liu, T., Shi, J., and Qiao, L. 2014. Curcumin: a promising agent targeting cancer stem cells. Anti-cancer Agents in Medicinal Chemistry 14(6):787–792. https://doi.org/10.2174/1871520614666140521114735

Zaridze, D. G. 2004 in Carcinogenesis (Zaridze, D. G., ed.), Meditsina, Moscow, pp. 29–85. (In Russian)

Zhang, M., Bian, Z. G., Zhang, Y., Wang, J. H., Kan, L., Wang, X., Niu, H. Y., He, P. 2014. Cucurbitacin B inhibits proliferation and induces apoptosis via STAT3 pathway inhibition in A549 lung cancer cells. Molecular Medicine Reports 10(6):2905–2911. https://doi.org/10.3892/mmr.2014.2581

Zhang, Z., Yamashita, H., Toyama, T., Sugiura, H., Ando, Y., Mita, K., Hamaguchi, M., Hara, Y., Kobayashi, S., and Iwase, H. 2005. Quantitation of HDAC1 mRNA expression in invasive carcinoma of the breast*. Breast Cancer Research and Treatment 94(1):11–16. https://doi.org/10.1007/s10549-005-6001-1

Zhao, Y., Tan, J., Zhuang, L., Jiang, X., Liu, E. T., and Yu, Q. 2005. Inhibitors of histone deacetylases target the Rb-E2F1 pathway for apoptosis induction through activation of proapoptotic protein Bim. Proceedings of the National Academy of Sciences of the United States of America 102:16090–16095. https://doi.org/10.1073/pnas.0505585102

Zhdanov, R., Schirmer, E. C., Venkatasubramani A. V., et al. 2015. Lipids contribute to epigenetic control via chromatin structure and functions. Science Open Research 10(15). https://doi.org/10.14293/S2199-1006.1.SOR-LIFE.AUXYTR.v1

Zhu, P., Martin, E. Mengwasser, J., Schlag, P., Janssen, K. P., and Gottlicher, M. 2004. Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell 5(5):455–463. https://doi.org/10.1016/S1535-6108(04)00114-X

Zwergel, C., Valente, S., Jacob, C., and Mai, A. 2015. Emerging approaches for histone deacetylase inhibitor drug discovery. Expert Opinion on Drug Discovery 10(6):599–613. https://doi.org/10.1517/17460441.2015.1038236

Downloads

Published

2020-12-30

How to Cite

Kosianova, A., Tiasto, V., Yatsunskaya, M., Khotimchenko, Y., & Kagansky, A. (2020). Natural molecules as modulators of epigenetic silencing in human cells for cancer care and aging. Biological Communications, 65(4), 315–330. https://doi.org/10.21638/spbu03.2020.405

Issue

Section

Review communications