Publication-based analysis of miR-210 dependent biomarkers of pre-eclampsia

Authors

  • Alexander Tkachenko Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleyevskaya liniya, 3, Saint Petersburg, 199034, Russian Federation; Computer Technologies Laboratory, ITMO University, Kronverkskiy pr., 49, Saint Petersburg, 197101, Russian Federation https://orcid.org/0000-0001-7985-0216
  • Roman Illarionov Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleyevskaya liniya, 3, Saint Petersburg, 199034, Russian Federation; Department of Chemical and Biotechnology, Saint Petersburg State Technological Institute (Technical University), Moskovskiy pr., 26, Saint Petersburg, 190013, Russian Federation https://orcid.org/0000-0003-2711-748X
  • Elena Vashukova Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleyevskaya liniya, 3, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-6996-8891
  • Andrei Glotov Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleyevskaya liniya, 3, Saint Petersburg, 199034, Russian Federation; Laboratory of Biobanking and Genomic Medicine, Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-7465-4504

DOI:

https://doi.org/10.21638/spbu03.2020.203

Abstract

MicroRNAs (miRNAs) are potential biomarkers of most pregnancy complications. In recent years, miR-210 has been shown as one of the main biomarkers, detected at different stages of pregnancy and associated with various diseases, including pre-eclampsia (PE). However, miR-210 is not reported as a marker of PE in about half of the studies. We filtered available published RNA-seq data and miRNAs associated with PE, including or excluding miR-210, obtained from the PregMiR database. For further analysis we only considered miRNAs appearing in at least four different studies. We observed that miR-152, miR-1 and miR-193b were only detected in studies with a changed miR-210 level, whereas miR-27a, miR-29a, miR-130a and miR-519b were detected in studies without miRNA-210 differential expression. Common biomarkers of PE are miR-182, miR-126, miR-155, miR-181a, miR-18a, miR-195, miR-21, miR-223, miR-335, miR-517c, miR-518b, miR-518e and let-7f. Based on the obtained data and taking into account the direction of differential miRNA expression, it can be assumed that the most likely mechanisms of PE development in the early pregnancy stage are either upregulation of miR-210, miR-152, miR-518b and downregulation of miR-126; or upregulation of miR-126 and downregulation of miR-182 and miR-518b. Late stages of PE are determined by miR-210, miR-152, miR-518b, miR-21, miR-155, miR-181a, miR-182, miR-193b-3p, miR-517c, miR-518e (upregulation) and miR-126, miR-18a, miR-195, miR-223, let-7f (downregulation); or miR-27a, miR-29a, miR-130a and miR-519d, miR-517c, miR-518e miR-155, miR-126, miR-181a, miR-195 (upregulation) and miR-223, miR-18a, miR-182 (downregulation). The presented results allow speculation about the influence of certain miRNAs on PE development in the context of the presence or absence of miR-210 differential expression, but additional experimental studies are required to evaluate the findings.

Keywords:

miRNA, pregnancy complications, miR-210, pre-eclampsia, bioinformatics analysis

Downloads

Download data is not yet available.
 

References

Awamleh, Z., Gloor, G. B., and Han, V. K. M. 2019. Placental microRNAs in pregnancies with early onset intrauterine growth restriction and preeclampsia: Potential impact on gene expression and pathophysiology. BMC Medical Genomics 12:1–10. https://doi.org/10.1186/s12920-019-0548-x

Bavelloni, A., Ramazzotti, G., Poli, A., Piazzi, M., Focaccia, E., Blalock, W., and Faenza, I. 2017. Mirna-210: A current overview. Anticancer Research 37:6511–6521. https://doi.org/10.21873/anticanres.12107

Betoni, J. S., Derr, K., Pahl, M. C., Rogers, L., Muller, C. L., Packard, R. E., Carey, D. J., Kuivaniemi, H., and Tromp, G. 2013. MicroRNA analysis in placentas from patients with preeclampsia: Comparison of new and published results. Hypertension in Pregnancy 32:321–339. https://doi.org/10.3109/10641955.2013.807819

Cai, M., Wang, K., and Ahmed, A., Preeclampsia, Pub, no. WO/2016/151287. Int. Appl., no. PCT/GB2016/050710, 2016.

Ceribelli, A., Satoh, M., and Chan, E. K. L. 2012. MicroRNAs and autoimmunity. Current Opinion in Immunology 24:686–691. https://doi.org/10.1016/j.coi.2012.07.011

Chen, Y. and Gorski, D. H. 2008. Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5. Blood 111:1217–1226. https://doi.org/10.1182/blood-2007-07-104133

Choi, S. Y., Yun, J., Lee, O. J., Han, H. S., Yeo, M. K., Lee, M. A., and Suh, K. S. 2013. MicroRNA expression profiles in placenta with severe preeclampsia using a PNA-based microarray. Placenta 34:799–804. https://doi.org/10.1016/j.placenta.2013.06.006

Dong, F., Zhang, Y., Xia, F., Yang, Y., Xiong, S., Jin, L., and Zhang, J. 2014. Genome-wide miRNA profiling of villus and decidua of recurrent spontaneous abortion patients. Reproduction 1481:33–41. https://doi.org/10.1530/rep-14-0095

Enquobahrie, D. A., Hensley, M., Qiu, C., Abetew, D. F., Hevner, K., Tadesse, M. G., and Williams, M. A. 2016. Candidate gene and microRNA expression in fetal membranes and preterm delivery risk. Reproductive Sciences 23:731–737. https://doi.org/10.1177/1933719115612925

Enquobahrie, D. A., Meller, M., Rice, K., Psaty, B. M., Siscovick, D. S., and Williams, M. A. 2008. Differential placental gene expression in preeclampsia. American Journal of Obstetrics and Gynecology 199:566.e1-566.e11. https://doi.org/10.1016/j.ajog.2008.04.020

Fang, Y. N., Huang, Z. L., Li, H., Tan, W. B., Zhang, Q. G., Wang, L., and Wu, J. L. 2018. Highly expressed miR-182-5p can promote preeclampsia progression by degrading RND3 and inhibiting HTR-8/SVneo cell invasion. European review for medical and pharmacological sciences 22:6583–6590. https://doi.org/10.26355/eurrev_201810_16132

Gray, C., McCowan, L. M., Patel, R., Taylor, R. S., and Vickers, M. H. 2017. Maternal plasma miRNAs as biomarkers during mid-pregnancy to predict later spontaneous preterm birth: A pilot study. Scientific Reports 7:1–7. https://doi.org/10.1038/s41598-017-00713-8

Gunel, T., Kamali, N., Hosseini, M. K., Gumusoglu, E., Benian, A., and Aydinli, K. 2018. Regulatory effect of miR-195 in the placental dysfunction of preeclampsia. The Journal of Maternal-Fetal and Neonatal Medicine 33(6):901–908. https://doi.org/10.1080/14767058.2018.1508439

Gunel, T., Zeybek, Y. G., Akçakaya, P., Kalelioğlu, I., Benian, A., Ermis, H., and Aydınlı, K. 2011. Serum microRNA expression in pregnancies with preeclampsia. Genetics and Molecular Research 10:4034–4040. https://doi.org/10.4238/2011.November.8.5

Gunel, T., Hosseini, M. K., Gumusoglu, E., Kisakesen, H. I., Benian, A., and Aydinli, K. 2017. Expression profiling of maternal plasma and placenta microRNAs in preeclamptic pregnancies by microarray technology. Placenta 52:77–85. https://doi.org/10.1016/j.placenta.2017.02.019

Guo, L., Yang, Q., Lu, J., Li, H., Ge, Q., Gu, W., Bai, Y., and Lu, Z. 2011. A comprehensive survey of miRNA repertoire and 3′ addition events in the placentas of patients with pre-eclampsia from high-throughput sequencing. PLoS ONE 6(6):e21072. https://doi.org/10.1371/journal.pone.0021072

Hong, F., Li, Y., and Xu, Y. 2014. Decreased placental miR-126 expression and vascular endothelial growth factor levels in patients with pre-eclampsia. Journal of International Medical Research 42:1243–1251. https://doi.org/10.1177/0300060514540627

Hromadnikova, I., Kotlabova, K., Ivankova, K., Vedmetskaya, Y., and Krofta, L. 2017. Profiling of cardiovascular and cerebrovascular disease associated microRNA expression in umbilical cord blood in gestational hypertension, preeclampsia and fetal growth restriction. International Journal of Cardiology 249:402–409. https://doi.org/10.1016/j.ijcard.2017.07.045

Hu, Y., Li, P., Hao, S., Liu, L., Zhao, J., and Hou, Y. 2009. Differential expression of microRNAs in the placentae of Chinese patients with severe pre-eclampsia. Clinical Chemistry and Laboratory Medicine 47:923–929. https://doi.org/10.1515/CCLM.2009.228

Jairajpuri, D. S., Malalla, Z. H., Mahmood, N., and Almawi, W. Y. 2017. Circulating microRNA expression as predictor of preeclampsia and its severity. Gene 627:543–548. https://doi.org/10.1016/j.gene.2017.07.010

Jiang, F., Li, J., Wu, G., Miao, Z., Lu, L., Ren, G., and Wang, X. 2015. Upregulation of microRNA-335 and microRNA-584 contributes to the pathogenesis of severe preeclampsia through downregulation of endothelial nitric oxide synthase. Molecular Medicine Reports 12:5383–5390. https://doi.org/10.3892/mmr.2015.4018

Johnnidis, J. B., Harris, M. H., Wheeler, R. T., Stehling-Sun, S., Lam, M. H., Kirak, O., Brummelkamp, T. R., Fleming, M. D., and Camargo, F. D. 2008. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451:1125–1129. https://doi.org/10.1038/nature06607

Kan, C., Cao, J., Hou, J., Jing, X., Zhu, Y., Zhang, J., Guo, Y., and Chen, X. 2019. Correlation of miR-21 and BNP with pregnancy-induced hypertension complicated with heart failure and the diagnostic value. Experimental and Therapeutic Medicine 17(4):3129–3135. https://doi.org/10.3892/etm.2019.7286

Kilby, M. 2011. Pre-eclampsia is a risk marker. BMJ 342:d1631. https://doi.org/10.1136/bmj.d1631

Kapinas, K. and Delany, A. M. 2011. MicroRNA biogenesis and regulation of bone remodeling. Arthritis Research and Therapy 13:1–11. https://doi.org/10.1186/ar3325

Li, H., Ge, Q., Guo, L., and Lu, Z. 2013. Maternal plasma miRNAs expression in preeclamptic pregnancies. BioMed Research International. https://doi.org/10.1155/2013/970265

Li, Q., Long, A., Jiang, L., Cai, L., Xie, L., Gu, J., Chen, X., and Tan, L. 2015. Quantification of preeclampsia-related microRNAs in maternal serum. Biomedical Reports 3:792–796. https://doi.org/10.3892/br.2015.524

Lim, L. P., Lau, N. C., Garrett-Engele, P., Grimson, A., Schelter, J. M., Castle, J., Bartel, D. P., Linsley, P. S., and Johnson, J. M. 2005. Microarray analysis shows that some microRNAs downregulate large numbers of-target mRNAs. Nature 433:769–773. https://doi.org/10.1038/nature03315

Lykoudi, A., Kolialexi, A., Lambrou, G. I., Braoudaki, M., Siristatidis, C., Papaioanou, G. K., Tzetis, M., Mavrou, A., and Papantoniou, N. 2018. Dysregulated placental microRNAs in early and late onset preeclampsia. Placenta 61:24–32. https://doi.org/10.1016/j.placenta.2017.11.005

Maharaj, N. R., Ramkaran, P., Pillay, S., and Chuturgoon, A. A. 2016. microRNA-27a rs895819 is associated with obesity in HIV infected preeclamptic Black South African women on HAART. BMC Medical Genetics 17:1–8. https://doi.org/10.1186/s12881-016-0353-8

Martinez-Fierro, M. L., Garza-Veloz, I., Gutierrez-Arteaga, C., Delgado-Enciso, I., Barbosa-Cisneros, O. Y., Flores-Morales, V., Hernandez-Delgadillo, G. P., Rocha-Pizaña, M. R., Rodriguez-Sanchez, I. P., Badillo-Almaraz, J. I., Ortiz-Rodriguez, J. M., Castañeda-Miranda, R., Solis-Sanchez, L. O., and Ortiz-Castro, Y. 2018. Circulating levels of specific members of chromosome 19 microRNA cluster are associated with preeclampsia development. Archives of Gynecology and Obstetrics 297:365–371. https://doi.org/10.1007/s00404-017-4611-6

Mayor-Lynn, K., Toloubeydokhti, T., Cruz, A. C., and Chegini, N. 2011. Expression profile of microRNAs and mRNAs in human placentas from pregnancies complicated by preeclampsia and preterm labor. Reproductive Sciences 18:46–56. https://doi.org/10.1177/1933719110374115

Menon, R., Debnath, C., Lai, A., Guanzon, D., Bhatnagar, S., Kshetrapal, P. K., Sheller-Miller, S., and Salomon, C. 2019. Circulating exosomal miRNA profile during term and preterm birth pregnancies: A longitudinal study. Endocrinology 160:249–275. https://doi.org/10.1210/en.2018-00836

Mohr, A. M. and Mott, J. L. 2015. Overview of microRNA biology. Seminars in Liver Disease 35:3–11. https://doi.org/10.1055/s-0034-1397344

Munaut, C., Tebache, L., Blacher, S., Noël, A., Nisolle, M., and Chantraine, F. 2016. Dysregulated circulating miRNAs in preeclampsia. Biomedical Reports 5:686–692. https://doi.org/10.3892/br.2016.779

Noack, F., Ribbat-Idel, J., Thorns, C., Chiriac, A., Axt-Fliedner, R., Diedrich, K., and Feller, A. C. 2011. miRNA Expression profiling in formalin-fixed and paraffin-embedded placental tissue samples from pregnancies with severe preeclampsia. Journal of Perinatal Medicine 39:267–271. https://doi.org/10.1515/JPM.2011.012

Östling, H., Kruse, R., Helenius, G., and Lodefalk, M. 2019. Placental expression of microRNAs in infants born small for gestational age. Placenta 81:46–53. https://doi.org/10.1016/j.placenta.2019.05.001

Pineles, B. L., Romero, R., Montenegro, D., Tarca, A. L., Han, Y. M., Kim, Y. M., Draghici, S., Espinoza, J., Kusanovic, J. P., Mittal, P., Hassan, S. S., and Kim, C. J. 2007. Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia. American Journal of Obstetrics and Gynecology 196:261.e1-261.e6. https://doi.org/10.1016/j.ajog.2007.01.008

Poirier, C., Desgagné, V., Guérin, R., and Bouchard, L. 2017. MicroRNAs in pregnancy and gestational diabetes mellitus: emerging role in maternal metabolic regulation. Current Diabetes Reports 17. https://doi.org/10.1007/s11892-017-0856-5

Sanders, A. P., Burris, H. H., Just, A. C., Motta, V., Svensson, K., Mercado-Garcia, A., Pantic, I., Schwartz, J., Tellez-Rojo, M. M., Wright, R. O., and Baccarelli, A. A. 2015. microRNA expression in the cervix during pregnancy is associated with length of gestation. Epigenetics 10(3):221–228. https://doi.org/10.1080/15592294.2015.1006498

Sandrim, V. C., Luizon, M. R., Palei, A. C., Tanus-Santos, J. E., and Cavalli, R. C. 2016. Circulating microRNA expression profiles in pre-eclampsia: evidence of increased miR-885-5p levels. BJOG : an international journal of obstetrics and gynaecology 123:2120–2128. https://doi.org/10.1111/1471-0528.13903

Shore, V. H., Wang, T. H., Wang, C. L., Torry, R. J., Caudle, M. R., and Torry, D. S. 1997. Vascular endothelial growth factor, placenta growth factor and their receptors in isolated human trophoblast. Placenta 18:657–665. https://doi.org/10.1016/S0143-4004(97)90007-2

Song, C., Liu, B., Shi, Y., Liu, N., Yan, Y., and Zhang, J. 2016. MicroRNA-130a alleviates human coronary artery endothelial cell injury and inflammatory responses by targeting PTEN via activating PI3K / Akt / eNOS signaling pathway. Oncotarget 44:71922–71936. https://doi.org/10.18632/oncotarget.12431

Su, L., Liu, R., Cheng, W., Zhu, M., Li, X., Zhao, S., and Yu, M. 2014. Expression patterns of microRNAs in porcine endometrium and their potential roles in embryo implantation and placentation. PLoS ONE 9(2):e87867. https://doi.org/10.1371/journal.pone.0087867

Takizawa, T., Ishibashi, O., Ohkuchi, A., Moksed, A. M., Kurashina, R., Luo, S. S., Ishikawa, T., Takizawa, T., Hirashima, C., Takahashi, K., Migita, M., Ishikawa, G., Yoneyama, K., Asakura, H., Izumi, A., Matsubara, S., and Takeshita, T. 2012. Hydroxysteroid (17-β) dehydrogenase 1 is dysregulated by miR-210 and miR-518c that are aberrantly expressed in preeclamptic placentas: A novel marker for predicting preeclampsia. Hypertension 59:265–273. https://doi.org/10.1161/HYPERTENSIONAHA.111.180232

Taïbi, F., Metzinger-Le, M. V., Massy, Z. A., and Metzinger, L. 2014. MiR-223: An inflammatory oncomiR enters the cardiovascular field. Biochimica et Biophysica Acta — Molecular Basis of Disease 1842:1001–1009. https://doi.org/10.1016/j.bbadis.2014.03.005

Tang, Y., Ji, H., Liu, H., Gu, W., Li, X., and Peng, T. 2015. Identification and functional analysis of microRNA in myometrium tissue from spontaneous preterm labor. International Journal of Clinical and Experimental Pathology 8(10):12811–12819.

Timofeeva, A. V., Gusar, V. A., Kan, N. E., Prozorovskaya, K. N., Karapetyan, A. O., Bayev, O. R., Chagovets, V. V., Kliver, S. F., Iakovishina, D. Y., Frankevich, V. E., and Sukhikh, G. T. 2018. Identification of potential early biomarkers of preeclampsia. Placenta 61:61–71. https://doi.org/10.1016/j.placenta.2017.11.011

Tsai, P. Y., Li, S. H., Chen, W. N., Tsai, H. L., and Su, M. T. 2017. Differential miR-346 and miR-582-3p expression in association with selected maternal and fetal complications. International Journal of Molecular Sciences 18. https://doi.org/10.3390/ijms18071570

Ura, B., Feriotto, G., Monasta, L., Bilel, S., Zweyer, M., and Celeghini, C. 2014. Potential role of circulating microRNAs as early markers of preeclampsia. Taiwanese Journal of Obstetrics and Gynecology 53:232–234. https://doi.org/10.1016/j.tjog.2014.03.001

Vashukova, E. S., Glotov, A. S., Fedotov, P. V., Efimova, O. A., Pakin, V. S., Mozgovaya, E. V., Pendina, A. A., Tikhonov, A. V., Koltsova, A. S., and Baranov, V. S. 2016. Placental microRNA expression in pregnancies complicated by superimposed pre-eclampsia on chronic hypertension. Molecular Medicine Reports 14:22–32. https://doi.org/10.3892/mmr.2016.5268

Wang, W., Feng, L., Zhang, H., Hachy, S., Satohisa, S., Laurent, L. C., Parast, M., Zheng, J., and Chen, D. B. 2012. Preeclampsia up-regulates angiogenesis-associated microRNA (i.e., miR-17, -20a, and -20b) that target ephrin-B2 and EPHB4 in human placenta. Journal of Clinical Endocrinology and Metabolism 97:1051–1059. https://doi.org/10.1210/jc.2011-3131

Wander, P. L., Boyko, E. J., Hevner, K., Parikh, V. J., Tadesse, M. G., Sorensen, T. K., Williams, M. A., and Enquobahrie, D. A. 2017. Circulating early- and mid-pregnancy microRNAs and risk of gestational diabetes. Diabetes Research and Clinical Practice 132:1–9. https://doi.org/10.1016/j.diabres.2017.07.024

Weedon-Fekjær, M. S., Sheng, Y., Sugulle, M., Johnsen, G. M., Herse, F., Redman, C. W., Lyle, R., Dechend, R., and Staff, A. C. 2014. Placental miR-1301 is dysregulated in early-onset preeclampsia and inversely correlated with maternal circulating leptin. Placenta 35:709–717. https://doi.org/10.1016/j.placenta.2014.07.002

Winger, E. E., Reed, J. L., and Ji, X. 2017. Early first trimester peripheral blood cell microRNA predicts risk of preterm delivery in pregnant women: Proof of concept. PLoS ONE 12(7):e0180124. https://doi.org/10.1371/journal.pone.0180124

Wu, L., Song, W. Y., Xie, Y., Hu, L. L., Hou, X. M., Wang, R., Gao, Y., Zhang, J. N., Zhang, L., Li, W. W., Zhu, C., Gao, Z. Y., and Sun, Y. P. 2018. MiR-181a-5p suppresses invasion and migration of HTR-8/SVneo cells by directly targeting IGF2BP2 article. Cell Death and Disease 9. https://doi.org/10.1038/s41419-017-0045-0

Wu, L., Zhou, H., Lin, H., Qi, J., Zhu, C., Gao, Z., and Wang, H. 2012. Circulating microRNAs are elevated in plasma from severe preeclamptic pregnancies. Reproduction 143:389–397. https://doi.org/10.1530/REP-11-0304

Xiang, Y., Zhang, X., Li, Q., Xu, J., Zhou, X., Wang, T., Xing, Q., Liu, Y., Wang, L., He, L., and Zhao, X. 2013. Promoter hypomethylation of TIMP3 is associated with pre-eclampsia in a Chinese population. Molecular Human Reproduction 19:153–159. https://doi.org/10.1093/molehr/gas054

Xu, P., Zhao, Y., Liu, M., Wang, Y., Wang, H., Li, Y. X., Zhu, X., Yao, Y., Wang, H., Qiao, J., Ji, L., and Wang, Y. L. 2014. Variations of microRNAs in human placentas and plasma from preeclamptic pregnancy. Hypertension 63:1276–1284. https://doi.org/10.1161/HYPERTENSIONAHA.113.02647

Yang, Q., Lu, J., Wang, S., Li, H., Ge, Q., and Lu, Z. 2011. Application of next-generation sequencing technology to profile the circulating microRNAs in the serum of preeclampsia versus normal pregnant women. Clinica Chimica Acta 412:2167–2173. https://doi.org/10.1016/j.cca.2011.07.029

Yang, S., Li, H., Ge, Q., Guo, L., and Chen, F. 2015. Deregulated microRNA species in the plasma and placenta of patients with preeclampsia. Molecular Medicine Reports 12:527–534. https://doi.org/10.3892/mmr.2015.3414

Yang, X., Zhang, J., and Ding, Y. 2017. Association of microRNA-155, interleukin 17A, and proteinuria in preeclampsia. Medicine (United States) 96:1–8. https://doi.org/10.1097/MD.0000000000006509

Yoffe, L., Gilam, A., Yaron, O., Polsky, A., Farberov, L., Syngelaki, A., Nicolaides, K., Hod, M., and Shomron, N. 2018. Early Detection of Preeclampsia Using Circulating Small non-coding RNA. Scientific Reports 8:1–11. https://doi.org/10.1038/s41598-018-21604-6

Yu, G., Wang, L. G., Han, Y., and He, Q. Y. 2012. ClusterProfiler: An R package for comparing biological themes among gene clusters. OMICS A Journal of Integrative Biology 16:284–287. https://doi.org/10.1089/omi.2011.0118

Yu, G., Wang, L., Yan, G., and He, Q. 2014. DOSE: an R/Bioconductor package for Disease Ontology Semantic and Enrichment analysis. Bioinformatics 31(4):608–609. https://doi.org/10.1093/bioinformatics/btu684

Zeng, F., Zhu, S., Wong, M. C. S., Yang, Z., Tang, J., Li, K., and Su, X. 2016. Associations between nitric oxide synthase 3 gene polymorphisms and preeclampsia risk: A meta-analysis. Scientific Reports 6:23407. https://doi.org/10.1038/srep23407

Zhang, C., Li, Q., Ren, N., Li, C., Wang, X., Xie, M., Gao, Z., Pan, Z., Zhao, C., Ren, C., and Yang, W. 2015. Placental miR-106a-363 cluster is dysregulated in preeclamptic placenta. Placenta 36:250–252. https://doi.org/10.1016/j.placenta.2014.11.020

Zhang, Y., Diao, Z., Su, L., Sun, H., Li, R., Cui, H., and Hu, Y. 2010. MicroRNA-155 contributes to preeclampsia by down-regulating CYR61. American Journal of Obstetrics and Gynecology 202:466.e1-466.e7. https://doi.org/10.1016/j.ajog.2010.01.057

Zhou, C., Zou, Q. Y., Li, H., Wang, R. F., Liu, A. X., Magness, R. R., and Zheng, J. 2017. Preeclampsia downregulates MicroRNAs in fetal endothelial cells: Roles of miR-29a/c-3p in endothelial function. Journal of Clinical Endocrinology and Metabolism 102:3470–3479. https://doi.org/10.1210/jc.2017-00849

Zhou, X., Li, Q., Xu, J., Zhang, X., Zhang, H., Xiang, Y., Fang, C., Wang, T., Xia, S., Zhang, Q., Xing, Q., He, L., Wang, L., Xu, M., and Zhao, X. 2016. The aberrantly expressed miR-193b-3p contributes to preeclampsia through regulating transforming growth factor-β signaling. Scientific Reports 6:1–13. https://doi.org/10.1038/srep19910

Zhu, X., Han, T., Sargent, I. L., Yin, G., and Yao, Y. 2009. Differential expression profile of microRNAs in human placentas from preeclamptic pregnancies vs normal pregnancies. American Journal of Obstetrics and Gynecology 200:661.e1-661.e7. https://doi.org/10.1016/j.ajog.2008.12.045

Zhu, X., Han, T., Wang, X., Li, Y., Yang, H., Luo, Y., Yin, G., and Yao, Y. 2010. Overexpression of miR-152 leads to reduced expression of human leukocyte antigen-G and increased natural killer cell mediated cytolysis in JEG-3 cells. American Journal of Obstetrics and Gynecology 202:592.e1-592.e7. https://doi.org/10.1016/j.ajog.2010.03.002

Zhu, X., Yang, Y., Han, T., Yin, G., Gao, P., Ni, Y., Su, X., Liu, Y., and Yao, Y. 2015. Suppression of microRNA-18a expression inhibits invasion and promotes apoptosis of human trophoblast cells by targeting the estrogen receptor α gene. Molecular Medicine Reports 12:2701–2706. https://doi.org/10.3892/mmr.2015.3724

Downloads

Published

2020-06-05

How to Cite

Tkachenko, A., Illarionov, R., Vashukova, E., & Glotov, A. (2020). Publication-based analysis of miR-210 dependent biomarkers of pre-eclampsia. Biological Communications, 65(2), 163–177. https://doi.org/10.21638/spbu03.2020.203

Issue

Section

Full communications

Categories

Most read articles by the same author(s)