From past to future: suppressor mutations in yeast genes encoding translation termination factors

Authors

  • Nina Trubitsina Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-8892-8043
  • Olga Zemlyanko Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation; St. Petersburg Scientific Center, Russian Academy of Sciences, Universitetskaya nab., 5, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0003-3463-6675
  • Svetlana Moskalenko Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation; Vavilov Institute of General Genetics Russian Academy of Sciences, Saint Petersburg Branch, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0003-0419-0000
  • Galina Zhouravleva Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation; Laboratory of Amyloid Biology, Saint Petersburg State University, Botanicheskaya Str., 17a, Peterhof, 198504, Russian Federation https://orcid.org/0000-0002-3013-4662

DOI:

https://doi.org/10.21638/spbu03.2019.202

Abstract

The study of the SUP45 and SUP35 genes of yeast Saccharomyces cerevisiae in the laboratory of Physiological Genetics of St. Petersburg State University began in 1964 when the first omnipotent nonsense suppressor mutations were obtained. During the following 55 years, a lot of information about these genes has been gained through the research efforts of various laboratories. Now we know that SUP45 and SUP35 encode translation termination factors eRF1 and eRF3, respectively. Both genes are essential, and sup45 and sup35 mutations lead not only to impaired translation but also to multiple pleiotropic effects. The aim of this review is to summarize known data about suppressor mutations in SUP45 or SUP35 genes.

Keywords:

translation termination, suppression, SUP45, SUP35, eRF1, eRF3, nonsense mutations, missense mutations, [PSI ] prion, S. cerevisiae

Downloads

Download data is not yet available.
 

References

Akhmaloka, P. E. S. and Subandi, F. M. 2008. Mutation at tyrosine in AMLRY (GILRY like) motif of yeast eRF1 on nonsense codons suppression and binding affinity to eRF3. International journal of biological sciences 4(2):87. https://doi.org/10.7150/ijbs.4.87

Aksenova, A. Y., Volkov, K. V., Rovinsky, N. S., Svitin, A. V., and Mironova, L. N. 2006. Phenotypic expression of epigenetic determinant [ISP+] in Saccharomyces cerevisiae depends on the combination of sup35 and sup45 mutations. Molecular Biology 40(5):758–763. https://doi.org/10.1134/S0026893306050104

Alkalaeva, E. Z., Pisarev, A. V., Frolova, L. Y., Kisselev, L. L., and Pestova, T. V. 2006. In vitro reconstitution of eukaryotic translation reveals cooperativity between release factors eRF1 and eRF3. Cell 125:1125–1136. https://doi.org/10.1016/j.cell.2006.04.035

All-Robyn, J. A., Kelley-Geraghty, D., Griffin, E., Brown, N., and Liebman, S. W. 1990. Isolation of omnipotent suppressors in an [eta+] yeast strain. Genetics 124:505–514.

Atkinson, G. C., Baldauf, S. L., and Hauryliuk, V. 2008. Evolution of nonstop, no-go and nonsense-mediated mRNA decay and their termination factor-derived components. BMC Evolutionary Biology 8(1):290. https://doi.org/10.1186/1471-2148-8-290

Beaudet, A. L. and Caskey, C. T. 1971. Mammalian peptide chain termination, II. Codon specificity and GTPase activity of release factor. Proceedings of the National Academy of Sciences USA 68:619–624. https://doi.org/10.1073/pnas.68.3.619

Beier, H. and Grimm, M. 2001. Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs. Nucleic Acids Research 29:4767–4782. https://doi.org/10.1093/nar/29.23.4767

Bertram, G., Bell, H. A., Ritchie, D. W., Fullerton, G., and Stansfield, I. 2000. Terminating eukaryote translation: domain 1 of release factor eRF1 functions in stop codon recognition. RNA 6:1236–1247. https://doi.org/10.1017/S1355838200000777

Bertram, G., Innes, S., Minella, O., Richardson, J. P., and Stansfield, I. 2001. Endless possibilities: Translation termination and stop codon recognition. Microbiology 147:255–269. https://doi.org/10.1099/00221287-147-2-255

Betney, R., de Silva, E., Mertens, C., Knox, Y., Krishnan, J., and Stansfield, I. 2012. Regulation of release factor expression using a translational negative feedback loop: a systems analysis. RNA 18:2320–2334. https://doi.org/10.1261/rna.035113.112

Bidou, L., Stahl, G., Hatin, I., Namy, O., Rousset, J.-P., and Farabaugh, P. J. 2000. Nonsense-mediated decay mutants do not affect programmed −1 frameshifting. RNA 6:952–961. https://doi.org/10.1017/S1355838200000443

Bonetti, B., Fu, L., Moon, J., and Bedwell, D. M. 1995. The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae. Journal of Molecular Biololgy 251:334–345. https://doi.org/10.1006/jmbi.1995.0438

Bradley, M. E., Bagriantsev, S., Vishveshwara, N., and Liebman, S. W. 2003. Guanidine reduces stop codon read-through caused by missense mutations in SUP35 or SUP45. Yeast 20:625–632. https://doi.org/10.1002/yea.985

Breining, P., Surguchov, A.P., and Piepersberg, W. 1984. Cloning and identification of a DNA fragment coding for the sup1 gene of Saccharomyces cerevisiae. Current Genetics 8:467–470. https://doi.org/10.1007/BF00433913

Breining, P. and Piepersberg, W. 1986. Yeast omnipotent supressor SUP1 (SUP45): nucleotide sequence of the wild type and a mutant gene. Nucleic Acids Res 14:5187–5197. https://doi.org/10.1093/nar/14.13.5187

Carr-Schmid, A., Durko, N., Cavallius, J., Merrick, W. C., and Kinzy, T. G. 1999. Mutations in a GTP-binding motif of eukaryotic elongation factor 1A reduce both translational fidelity and the requirement for nucleotide exchange. Journal of Molecular Biololgy 274:30297–30302. https://doi.org/10.1074/jbc.274.42.30297

Cassan, M. and Rousset, J.-P. 2001. UAG readthrough in mammalian cells: effect of upstream and downstream stop codon contexts reveal different signals. BMC Molecular Biology 2:3. https://doi.org/10.1186/1471-2199-2-3

Chabelskaya, S., Kiktev, D., Inge-Vechtomov, S., Philippe, M., and Zhouravleva, G. 2004. Nonsense mutations in the essential gene SUP35 of Saccharomyces cerevisiae are non-lethal. Molecular Genetics and Genomics 272:297–307. https://doi.org/10.1007/s00438-004-1053-1

Chapman, B. and Brown, C. 2004. Translation termination in Arabidopsis thaliana: characterisation of three versions of release factor 1. Gene 341:219–225. https://doi.org/10.1016/j.gene.2004.06.053

Chavatte, L., Frolova, L., Kisselev, L., and Favre, A. 2001. The polypeptide chain release factor eRF1 specifically contacts the s4UGA stop codon located in the A site of eukaryotic ribosomes. European Journal of Biochemistry 268:2896–2904. https://doi.org/10.1046/j.1432-1327.2001.02177.x

Chavatte, L., Kervestin, S., Favre, A., and Jean-Jean, O. 2003. Stop codon selection in eukaryotic translation termination: comparison of the discriminating potential between human and ciliate eRF1s. The EMBO Journal 22:1644–1653. https://doi.org/10.1093/emboj/cdg146

Cheng, Z., Saito, K., Pisarev, A. V., Wada, M., Pisareva, V. P., Pestova, T. V., Gajda, M., Round, A., Kong, C., Lim, M., Nakamura, Y., Svergun, D. I., Ito, K., and Song, H. 2009. Structural insights into eRF3 and stop codon recognition by eRF1. Genes & Development 23:1106–1118. https://doi.org/10.1101/gad.1770109

Chernoff, Y. O., Derkatch, I. L., Dagkesamanskaya, A. R., Tikhomirova, V. L., and Ter-Avanesyan, M. D. 1988. Nonsense-suppression by amplification of translational protein factor gene. Doklady Akademii Nauk SSSR (Proceedings of USSR Academy of Sciences, in Russian) 301:1227–1229.

Chernoff, Y. O., Derkatch, I. L., and Inge-Vechtomov, S. G. 1993. Multicopy SUP35 gene induces de-novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae. Current Genetics 24:268–270. https://doi.org/10.1007/BF00351802

Chernoff, Y. O., Lindquist, S. L., Ono, B., Inge-Vechtomov, S. G., and Liebman, S. W. 1995. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [PSI+]. Science 268:880–884. https://doi.org/10.1126/science.7754373

Cosson, B., Couturier, A., Chabelskaya, S., Kiktev, D., Inge-Vechtomov, S., Philippe, M., and Zhouravleva, G. 2002. Poly (A)-binding protein acts in translation termination via eukaryotic release factor 3 interaction and does not influence [PSI+] propagation. Molecular and Cellular Biology 22:3301–3315. https://doi.org/10.1128/MCB.22.10.3301-3315.2002

Cox, B. 1965. [PSI+], a cytoplasmic suppressor of super-suppressor in yeast. Heredity 20:505–521. https://doi.org/10.1038/hdy.1965.65

Cox, B., Tuite, M. F., and McLaughlin, C. S. 1988. The ψ factor of yeast: A problem in inheritance. Yeast 4:159–178. https://doi.org/10.1002/yea.320040302

Cox, B. S. 1971. A recessive lethal super-suppressor mutation in yeast and other ψ phenomena. Heredity 26:211. https://doi.org/10.1038/hdy.1971.28

Craigen, W. J., Cook, R. G., Tate, W. P., and Caskey, C. T. 1985. Bacterial peptide chain release factors: conserved primary structure and possible frameshift regulation of release factor 2. Proceedings of the National Academy of Sciences USA 82:3616–3620. https://doi.org/10.1073/pnas.82.11.3616

Craigen, W. J. and Caskey, C. T. 1987. The function, structure and regulation of E. coli peptide chain release factors. Biochimie 69:1031–1041. https://doi.org/10.1016/0300-9084(87)90003-4

Crouzet, M. and Tuite, M. F. 1987. Genetic control of translational fidelity in yeast: molecular cloning and analysis of the allosuppressor gene SAL3. Molecular Genetics and Genomics 210:581–583. https://doi.org/10.1007/BF00327216

Crouzet, M., Izgu, F., Grant, C. M., and Tuite, M. F. 1988. The allosuppressor gene SAL4 encodes a protein important for maintaining translational fidelity in Saccharomyces cerevisiae. Current Genetics 14:537–543. https://doi.org/10.1007/BF00434078

Derkatch, I. L., Chernoff, Y. O., Kushnirov, V. V., Inge-Vechtomov, S. G., and Liebman, S. W. 1996. Genesis and variability of [PSI+] prion factors in Saccharomyces cerevisiae. Genetics 144:1375–1386.

Didichenko, S. A., Ter-Avanesyan, M. D., and Smirnov, V. N. 1991. Ribosome-bound EF-1α-like protein of yeast Saccharomyces cerevisiae. European Journal of Biochemistry 198:705–711. https://doi.org/10.1111/j.1432-1033.1991.tb16070.x

Doel, S. M., McCready, S. J., Nierras, C. R., and Cox, B. 1994. The dominant PNM2-mutation which eliminates the ψ factor of Saccharomyces cerevisiae is the result of a missense mutation in the SUP35 gene. Genetics 137:659–670.

Drozdova, P. B., Tarasov, O. V., Matveenko, A. G., Radchenko, E. A., Sopova, J. V., Polev, D. E., Inge-Vechtomov S. G., and Dobrynin, P. V. 2016. Genome sequencing and comparative analysis of Saccharomyces cerevisiae strains of the Peterhof genetic collection. PLoS One 11(5):e0154722. https://doi.org/10.1371/journal.pone.0154722

Ebihara, K. and Nakamura, Y. 1999. C-terminal interaction of translational release factors eRF1 and eRF3 of fission yeast: G-domain uncoupled binding and the role of conserved amino acids. RNA 5(5):739–750. https://doi.org/10.1017/S135583829998216X

Ehrenberg, M. and Tenson, T. 2002. A new beginning of the end of translation. Nature Structural & Molecular Biology 9:85. https://doi.org/10.1038/nsb0202-85

Eurwilaichitr, L., Graves, F. M., Stansfield, I., and Tuite, M. F. 1999. The C-terminus of eRF1 defines a functionally important domain for translation termination in Saccharomyces cerevisiae. Molecular Microbiology 32:485–496. https://doi.org/10.1046/j.1365-2958.1999.01346.x

Eustice, D. C., Wakem, L. P., Wilhelm, J. M., and Sherman, F. 1986. Altered 40S ribosomal subunits in omnipotent suppressors of yeast. Journal of Molevular Biology 188:207–214. https://doi.org/10.1016/0022-2836(86)90305-0

Fabret, C., Cosnier, B., Lekomtsev, S., Gillet, S., Hatin, I., Maréchal, P. Le, and Rousset, J. P. 2008. A novel mutant of the Sup35 protein of Saccharomyces cerevisiae defective in translation termination and in GTPase activity still supports cell viability. BMC Molecular Biology 9(1):22. https://doi.org/10.1186/1471-2199-9-22

Fan-Minogue, H., Du, M., Pisarev, A. V., Kallmeyer, A. K., Salas-Marco, J., Keeling, K. M., Thompson, S. R., Pestova, T. V., David M., and Bedwell, D. M. 2008. Distinct eRF3 requirements suggest alternate eER1 conformations mediate peptide release during eukaryotic translation termination. Molecular Cell 30:599–609. https://doi.org/10.1016/j.molcel.2008.03.020

Firoozan, M., Grant, C.M., Duarte, J. A. B., and Tuite, M. F. 1991. Quantitation of readthrough of termination codons in yeast using a novel gene fusion assay. Yeast 7:173–183. https://doi.org/10.1002/yea.320070211

Franzmann, T. M., Jahnel, M., Pozniakovsky, A., Mahamid, J., Holehouse, A.S., Nüske, E., Richter, D., Baumeister, W., Grill, S. W., Pappu, R. V., Hyman A. A., and Alberti S. 2018. Phase separation of a yeast prion protein promotes cellular fitness. Science 359(6371):eaao5654. https://doi.org/10.1126/science.aao5654

Frolova, L. Y., Dalphin, M. E., Justesen, J., Powell, R. J., Drugeon, G., McCaughan, K. K., Kisselev, L. L., Tate, W. P., and Haenni, A. L. 1993. Mammalian polypeptide chain release factor and tryptophanyl-tRNA synthetase are distinct proteins. The EMBO Journal 12:4013–4019. https://doi.org/10.1002/j.1460-2075.1993.tb06079.x

Frolova, L. Y., Goff, X. Le, Rasmussen, H. H., Cheperegin, S., Drugeon, G., Kress, M., Arman, I., Haenni, A.-L., Celis J. E., Phllippe M., Justesen J., and Kisselev L. 1994. A highly conserved eukaryotic protein family possessing properties of polypeptide chain release factor. Nature 372:701–703. https://doi.org/10.1038/372701a0

Frolova, L. Y., Goff, X. Le, Zhouravleva, G., Davydova, E., Philippe, M., and Kisselev, L. L. 1996. Eukaryotic polypeptide chain release factor eRF3 is an eRF1- and ribosome-dependent guanosine triphosphatase. RNA 2:334–341.

Frolova, L. Y., Simonsen, J. L., Merkulova, T. I., Litvinov, D. Y., Martensen, P. M., and Rechinsky, V. O. 1998. Functional expression of eukaryotic polypeptide chain release factors 1 and 3 by means of baculovirus/insect cells and complex formation between the factors. European Journal of Biochemistry 256:36–43. https://doi.org/10.1046/j.1432-1327.1998.2560036.x

Frolova, L. Y., Tsivkovskii, R. Y., Sivolobova, G. F., Oparina, N. Y., Serpinsky, O. I., Blinov, V. M., Tatkov, S. I., and Kisselev, L. L. 1999. Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis. RNA 5:1014–1020. https://doi.org/10.1017/S135583829999043X

Frolova, L., Seit-Nebi, A., and Kisselev, L. 2002. Highly conserved NIKS tetrapeptide is functionally essential in eukaryotic translation termination factor eRF1. RNA 8:129–136. https://doi.org/10.1017/S1355838202013262

Gerlach, W. L. 1976. Mutational properties of supP amber-ochre suppressors in Saccharomyces cerevisiae. Molecular Genetics and Genomics 144:213–215. https://doi.org/10.1007/BF02428111

Grentzmann, G., Brechemier-Baey, D., Heurgue, V., Mora, L., and Buckingham, R. H. 1994. Localization and characterization of the gene encoding release factor RF3 in Escherichia coli. Proceedings of the National Academy of Sciences USA 91:5848–5852. https://doi.org/10.1073/pnas.91.13.5848

Helsen, C. W. and Glover, J. R. 2012. Insight into molecular basis of curing of [PSI+] prion by overexpression of 104-kDa heat shock protein (Hsp104). Journal of Biological Chemistry 287(1):542–556. https://doi.org/10.1074/jbc.M111.302869

Hatin, I., Fabret, C., Namy, O., Decatur, W. A., and Rousset, J. P. 2007. Fine-tuning of translation termination efficiency in Saccharomyces cerevisiae involves two factors in close proximity to the exit tunnel of the ribosome. Genetics 177:1527–1537. https://doi.org/10.1534/genetics.107.070771

Hatin, I., Fabret, C., Rousset, J. P., and Namy, O. 2009. Molecular dissection of translation termination mechanism identifies two new critical regions in eRF1. Nucleic Acids Research 37:1789–1798. https://doi.org/10.1093/nar/gkp012

Hawthorne, D. C. and Leupold, U. 1974. Suppressors in yeast. Current Topics in Microbiology and Immunology 64:1–47. https://doi.org/10.1007/978-3-642-65848-8_1

Himmelfarb, H. J., Maicas, E., and Friesen, J. D. 1985. Isolation of the SUP45 omnipotent suppressor gene of Saccharomyces cerevisiae and characterization of its gene product. Molecular and Cellular Biology 5:816–822. https://doi.org/10.1128/MCB.5.4.816

Hoshino, S. I., Imai, M., Mizutani, M., Kikuchi, Y., Hanaoka, F., Ui, M., and Katada, T. 1998. Molecular cloning of a novel member of the eukaryotic polypeptide chain-releasing factors (eRF) its identification as eRF3 interacting with eRF1. Journal of Biological Chemistry 273:22254–22259. https://doi.org/10.1074/jbc.273.35.22254

Inagaki, Y., Blouin, C., Doolittle, W. F., and Roger, A. J. 2002. Convergence and constraint in eukaryotic release factor 1 (eRF1) domain 1: the evolution of stop codon specificity. Nucleic Acids Research 30:532–544. https://doi.org/10.1093/nar/30.2.532

Inagaki, Y. and Doolittle, W. F. 2001. Class I release factors in ciliates with variant genetic codes. Nucleic Acids Research 29:921–927. https://doi.org/10.1093/nar/29.4.921

Inge-Vechtomov, S. G. 1964. Reversions to prototrophy in adenineless yeast. Vestnik Leningradskogo Universiteta 2:112–117.

Inge-Vechtomov, S. G. and Andrianova, V. M. 1970. Recessive supersuppressors in yeast. Genetika 6:103–116.

Inge-Vechtomov, S. G. and Andrianova, V. M. 1972. New type of supersuppressors in yeast. Molecular Mechanisms of Genetic Processes, Nauka, Moskow. pp. 189–195.

Inge-Vechtomov, S. G., Tikhodeev, O. N., and Karpova, T. S. 1988. Selective systems for obtaining recessive ribosomal suppressors in Saccharomycete yeasts. Genetika 24:1159–1165.

Inge-Vechtomov, S., Zhouravleva, G., and Philippe, M. 2003. Eukaryotic release factors (eRFs) history. Biology of the Cell 95:195–209. https://doi.org/10.1016/S0248-4900(03)00035-2

Ito-Harashima, S., Hartzog, P.E., Sinha, H., and McCusker, J. H. 2002. The tRNA-Tyr gene family of Saccharomyces cerevisiae: agenzs of phenotypic variation and position effects on mutation frequency. Genetics 161:1395–1410.

Ito, K., Ebihara, K., Uno, M., and Nakamura, Y. 1996. Conserved motifs in prokaryotic and eukaryotic polypeptide release factors: tRNA-protein mimicry hypothesis. Proceedings of the National Academy of Sciences USA 93:5443–5448. https://doi.org/10.1073/pnas.93.11.5443

Ito, K., Uno, M., and Nakamura, Y. 1998. Single amino acid substitution in prokaryote polypeptide release factor 2 permits it to terminate translation at all three stop codons. Proceedings of the National Academy of Sciences USA 95:8165–8169. https://doi.org/10.1073/pnas.95.14.8165

Ito, K., Frolova, L. Y., Seit-Nebi, A., Karamyshev, A., Kisselev, L., and Nakamura, Y. 2002. Omnipotent decoding potential resides in eukaryotic translation termination factor eRF1 of variant-code organisms and is modulated by the interactions of amino acid sequences within domain 1. Proceedings of the National Academy of Sciences USA 99:8494–8499. https://doi.org/10.1073/pnas.142690099

Kabani, M., Cosnier, B., Bousset, L., Rousset, J. P., Melki, R., and Fabret, C. 2011. A mutation within the C-terminal domain of Sup35p that affects [PSI+] prion propagation. Molecular Microbiology 81:640–658. https://doi.org/10.1111/j.1365-2958.2011.07719.x

Kobayashi, T., Funakoshi, Y., Hoshino, S. I., and Katada, T. 2004. The GTP-binding release factor eRF3 as a key mediator coupling translation termination to mRNA decay. Journal of Biological Chemistry 279:45693–45700. https://doi.org/10.1074/jbc.M405163200

Kallmeyer A. K., Keeling K. M., and Bedwell D. M. 2006. Eukaryotic release factor 1 phosphorylation by CK2 protein kinase is dynamic but has little effect on the efficiency of translation termination in Saccharomyces cerevisiae. Eukaryotic Cell 5:1378–1387. https://doi.org/10.1128/EC.00073-06

Karamyshev, A. L., Ito, K., and Nakamura, Y. 1999. Polypeptide release factor eRF1 from Tetrahymena thermophila: cDNA cloning, purification and complex formation with yeast eRF3. FEBS Letters 457:483–488. https://doi.org/10.1016/S0014-5793(99)01089-3

Kiktev, D., Moskalenko, S., Murina, O., Baudin-Baillieu, A., Rousset, J. P., and Zhouravleva, G. 2009. The paradox of viable sup45 STOP mutations: A necessary equilibrium between translational readthrough, activity and stability of the protein. Molecular genetics and genomics 282(1):83–96. https://doi.org/10.1007/s00438-009-0447-5

Kikuchi, Y., Shimatake, H., and Kikuchi, A. 1988. A yeast gene required for the G1-to-S transition encodes a protein containing an A-kinase target site and GTPase domain. The EMBO Journal 7:1175–1182. https://doi.org/10.1002/j.1460-2075.1988.tb02928.x

Kim, O. T. P., Yura, K., Go, N., and Harumoto, T. 2005. Newly sequenced eRF1s from ciliates: the diversity of stop codon usage and the molecular surfaces that are important for stop codon interactions. Gene 346:277–286. https://doi.org/10.1016/j.gene.2004.11.046

Kim, O. T. P., Sakurai, A., Saito, K., Ito, K., Ikehara, K., and Harumoto, T. 2008. Ciliates use both variant and universal genetic codes: evidence of omnipotent eRF1s in the class Litostomatea. Gene 417:51–58. https://doi.org/10.1016/j.gene.2008.03.018

Kisselev, L. L. and Buckingham, R. H. 2000. Translational termination comes of age. Trends in Biochemical Sciences 25:561–566. https://doi.org/10.1016/S0968-0004(00)01669-8

Kisselev, L., Ehrenberg, M., and Frolova, L. 2003. Termination of translation: interplay of mRNA, rRNA and release factors? The EMBO Journal 22:175–182. https://doi.org/10.1093/emboj/cdg017

Kobayashi, T., Funakoshi, Y., Hoshino, S., and Katada, T. 2004. The GTP-binding Release Factor eRF3 as a Key Mediator Coupling Translation Termination to mRNA Decay. The Journal of Biological Chemistry 279:45693–45700. https://doi.org/10.1074/jbc.M405163200

Konecki, D. R., Aune, K. C., Tate, W. P., and Caskey, T. C. 1977. Characterization of reticulocyte release factor. The Journal of Biological Chemistry 252:4514–4520.

Kong, C., Ito, K., Walsh, M. A., Wada, M., Liu, Y., Kumar, S., Barford, D, Nakamura, Y., and Song, H. 2004. Crystal structure and functional analysis of the eukaryotic class II release factor eRF3 from S. pombe. Molecular Cell 14:233–245. https://doi.org/10.1016/S1097-2765(04)00206-0

Kopczynski, J. B., Raff, A. C., and Bonner, J. J. 1992. Translational readthrough at nonsense mutations in the HSF1 gene of Saccharomyces cerevisme. Molecular Genetics and Genomics 234:369–378. https://doi.org/10.1007/BF00538696

Kushnirov, V. V., Ter-Avanesyan, M. D., Surguchov, A. P., Smirnov, V. N., and Inge-Vechtomov, S. G. 1987. Localization of possible functional domains in sup2 gene product of the yeast Saccharomyces cerevisiae. FEBS letters 215(2):257–260. https://doi.org/10.1016/0014-5793(87)80157-6

Kushnirov, V. V., Ter-Avanesyan, M. D., Telckov, M. V., Surguchov, A. P., Smirnov, V. N., and Inge-Vechtomov, S. G. 1988. Nucleotide sequence of the SUP2 (SUP35) gene of Saccharomyces cerevisiae. Gene 66:45–54. https://doi.org/10.1016/0378-1119(88)90223-5

Lee, C. C., Craigen, W. J., Muzny, D. M., Harlow, E., and Caskey, C. T. 1990. Cloning and expression of a mammalian peptide chain release factor with sequence similarity to tryptophanyl-tRNA synthetases. Proceedings of the National Academy of Sciences USA 87:3508–3512. https://doi.org/10.1073/pnas.87.9.3508

Liang, A., Brünen-Nieweler, C., Muramatsu, T., Kuchino, Y., Beier, H., and Heckmann, K. 2001. The ciliate Euplotes octocarinatus expresses two polypeptide release factors of the type eRF1. Gene 262:161–168. https://doi.org/10.1016/S0378-1119(00)00538-2

Liebman, J. W. and Sherman, F. 1979. Extrachromosomal [PSI+] determinant suppresses nonsense mutations in yeast. Journal of Bacteriology 139(3):1068–1071.

Liebman, S. W. and All-Robyn, J. A. 1984. A non-Mendelian factor, [eta+], causes lethality of yeast omnipotent-suppressor strains. Current Genetics 22:567–573. https://doi.org/10.1007/BF00395701

Liu, Q. 2005. Comparative analysis of base biases around the stop codons in six eukaryotes. Biosystems 81:281–289. https://doi.org/10.1016/j.biosystems.2005.05.005

Lozupone, C. A., Knight, R. D., and Landweber, L. F. 2001. The molecular basis of nuclear genetic code change in ciliates. Current Biology 11:65–74. https://doi.org/10.1016/S0960-9822(01)00028-8

Matveenko, A. G., Drozdova, P. B., Moskalenko, S. E., Tarasov, O. V., and Zhouravleva, G. A. 2019. Whole genome sequencing data and analyses of the underlying SUP35 transcriptional regulation for a Saccharomyces cerevisiae nonsense suppressor mutant. Data in Brief 2:103694. https://doi.org/10.1016/j.dib.2019.01.042

Merritt, G. H., Naemi, W. R., Mugnier, P., Webb, H. M., Tuite, M. F., and von der Haar, T. 2010. Decoding accuracy in eRF1 mutants and its correlation with pleiotropic quantitative traits in yeast. Nucleic Acids Research 38(16):5479–5492. https://doi.org/10.1093/nar/gkq338

Merkulova, T. I., Frolova, L. Y., Lazar, M., Camonis, J., and Kisselev, L. L. 1999. C-terminal domains of human translation termination factors eRF1 and eRF3 mediate their in vivo interaction. FEBS Letters 443:41–47. https://doi.org/10.1016/S0014-5793(98)01669-X

Mikuni, O., Ito, K., Moffat, J., Matsumura, K., McCaughan, K., Nobukuni, T., Tate, W., and Nakamura, Y. 1994. Identification of the prfC gene, which encodes peptide-chain-release factor 3 of Escherichia coli. Proceedings of the National Academy of Sciences USA 91:5798–5802. https://doi.org/10.1073/pnas.91.13.5798

Mironova, L. N., Samsonova, M. G., Zhouravleva, G. A., Kulikov, V. N., and Soom, M. J. 1995. Reversions to respiratory competence of omnipotent sup45 suppressor mutants may be caused by secondary sup45 mutations. Current genetics 27(3):195–200. https://doi.org/10.1007/BF00326148

Moskalenko, S. E., Chabelskaya, S. V., Inge-Vechtomov, S. G., Philippe, M., and Zhouravleva, G. A. 2003. Viable nonsense mutants for the essential gene SUP45 of Saccharomyces cerevisiae. BMC Molecular Biology 4:2. https://doi.org/10.1186/1471-2199-4-2

Moskalenko, S. E., Zhouravleva, G. A., Soom, M. J., Chabelskaya, S. V., Volkov, K. V., Zemlyamko, O. M., Philippe, M., Mironova, L. N., and Inge-Vechtomov, S. G. 2004. Characterization of missense mutations in the SUP45 gene of Saccharomyces cerevisiae encoding translation termination factor eRF1. Russian Journal of Genetics 40(5):478–484. https://doi.org/10.1023/B:RUGE.0000029148.58151.91

Mottagui-Tabar, S., Tuite, M. F., and Isaksson, L. A. 1998. The influence of 5′-codon context on translation termination in Saccharomyces cerevisiae. European Journal of Biochemistry 257:249–254. https://doi.org/10.1046/j.1432-1327.1998.2570249.x

Muramatsu, T., Heckmann, K., Kitanaka, C., and Kuchino, Y. 2001. Molecular mechanism of stop codon recognition by eRF1: a wobble hypothesis for peptide anticodons. FEBS Letters 488:105–109. https://doi.org/10.1016/S0014-5793(00)02391-7

Nakamura, Y. and Ito, K. 2003. Making sense of mimic in translation termination. Trends in Biochemical Sciences 28:99–105. https://doi.org/10.1016/S0968-0004(03)00006-9

Nakayashiki, T., Kurtzman, C. P., Edskes, H. K., and Wickner, R. B. 2005. Yeast prions [URE3] and [PSI+] are diseases. Proceedings of the National Academy of Sciences USA 102:10575–10580. https://doi.org/10.1073/pnas.0504882102

Namy, O., Hatin, I., and Rousset, J. 2001. Impact of the six nucleotides downstream of the stop codon on translation termination. EMBO Reports 2:787–793. https://doi.org/10.1093/embo-reports/kve176

Namy, O., Hatin, I., Stahl, G., Liu, H., Barnay, S., Bidou, L., and Rousset, J.-P. 2002. Gene overexpression as a tool for identifying new trans-acting factors involved in translation termination in Saccharomyces cerevisiae. Genetics 161:585–594.

Ono, B.-I., Moriga, N., Ishihara, K., Ishiguro, J., Ishino, Y., and Shinoda, S. 1984. Omnipotent suppressors effective in ψ+ strains of Saccharomyces cerevisiae: recessiveness and dominance. Genetics 107:219–230.

Ono, B.-I., Ishino-Arao, Y., Tanaka, M., Awano, I., and Shinoda, S. 1986. Recessive nonsense suppressors in Saccharomyces cerevisiae: action spectra, complementation groups and map positions. Genetics 114:363–374.

Paushkin, S. V., Kushnirov, V. V., Smirnov, V. N., and Ter-Avanesyan, M. D. 1996. Propagation of the yeast prion-like [PSI+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. The EMBO Journal 15:3127–3134. https://doi.org/10.1002/j.1460-2075.1996.tb00675.x

Paushkin, S. V., Kushnirov, V. V., Smirnov, V. N., and Ter-Avanesyan, M. D. 1997. Interaction between yeast Sup45p (eRF1) and Sup35p (eRF3) polypeptide chain release factors: implications for prion-dependent regulation. Molecular and cellular biology 17(5):2798–2805. https://doi.org/10.1128/MCB.17.5.2798

Percudani, R., Pavesi, A., and Ottonello, S. 1997. Transfer RNA gene redundancy and translational selection in Saccharomyces cerevisiae. Journal of Molecular Biology 268:322–330. https://doi.org/10.1006/jmbi.1997.0942

Poole, E. S., Brown, C. M., and Tate, W. P. 1995. The identity of the base following the stop codon determines the efficiency of in vivo translational termination in Escherichia coli. The EMBO Journal 14:151–158. https://doi.org/10.1002/j.1460-2075.1995.tb06985.x

Preis, A., Heuer, A., Barrio-Garcia, C., Hauser, A., Eyler, D. E., Berninghausen, O., Green, R., Becker, T., and Beckmann, R. 2014. Cryoelectron microscopic structures of eukaryotic translation termination complexes containing eRF1-eRF3 or eRF1-ABCE1. Cell reports 8:59–65. https://doi.org/10.1016/j.celrep.2014.04.058

Roberts, D. M., Besl, L., Oh, S.-H., Masterson, R. V., Schell, J., and Stacey, G. 1992. Expression of a calmodulin methylation mutant affects the growth and development of transgenic tobacco plants. Proceedings of the National Academy of Sciences USA 89:8394–8398. https://doi.org/10.1073/pnas.89.17.8394

Salas-Marco, J. and Bedwell, D. M. 2004. GTP hydrolysis by erf3 facilitates stop codon decoding during eukaryotic translation termination GTP hydrolysis by eRF3 facilitates stop codon decoding during eukaryotic translation termination. Molecular and Cellular Biology 24:7769–7778. https://doi.org/10.1128/MCB.24.17.7769-7778.2004

Salas-Marco, J., Fan-Minogue, H., Kallmeyer, A. K., Klobutcher, L. A., Farabaugh, P. J., and Bedwell, D. M. 2006. Distinct paths to stop codon reassignment by the variant-code organisms tetrahymena and euplotes. Molecular and Cellular Biology 26:438–447. https://doi.org/10.1128/MCB.26.2.438-447.2006

Seit-Nebi, A., Frolova, L., Justesen, J., and Kisselev, L. 2001. Class-1 translation termination factors: invariant GGQ minidomain is essential for release activity and ribosome binding but not for stop codon recognition. Nucleic Acids Research 29(19):3982–3987. https://doi.org/10.1093/nar/29.19.3982

Seit-Nebi, A., Frolova, L. Y., and Kisselev, L. 2002. Conversion of omnipotent translation termination factor eRF1 into ciliate-like UGA-only unipotent eRF1. EMBO Reports 3:881–886. https://doi.org/10.1093/embo-reports/kvf178

Shapiro, R. and Vallee, B. L. 1989. Site-directed mutagenesis of histidine-13 and histidine-114 of human angiogenin. Alanine derivatives inhibit angiogenin-induced angiogenesis. Biochemistry 28:7401–7408. https://doi.org/10.1021/bi00444a038

Sherman, F. and Stewart, J. W. 1982. The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

Shorter, J. and Lindquist, S. 2005. Prions as adaptive conduits of memory and inheritance. Nature Reviews Genetics 6:435. https://doi.org/10.1038/nrg1616

Schuller A. P. and Green R. 2018. Roadblocks and resolutions in eukaryotic translation. Nature Reviews Molecular Cell Biology 19:526–541. https://doi.org/10.1038/s41580-018-0011-4

Smirnov, V. N., Kreier, V. G., Lizlova, L. V, Andrianova, V. M., and Inge-Vechtomov, S. G. 1974. Recessive super-suppression in yeast. Molecular Genetics and Genomics 129:105–121. https://doi.org/10.1007/BF00268625

Smirnov, V. N., Surguchov, A. P., Fominykch, E. S., Lizlova, L. V, Saprygina, T. V., and Inge-Vechtomov, S. G. 1976. Recessive nonsense-suppression in yeast: further characterization of a defect in translation. FEBS Letters 66:12–15. https://doi.org/10.1016/0014-5793(76)80573-X

Song, H., Mugnier, P., Das, A. K., Webb, H. M., Evans, D. R., Tuite, M. F., Hemmings, B. A., and Barford, D. 2000. The crystal structure of human eukaryotic release factor eRF1-mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell 100:311–321. https://doi.org/10.1016/S0092-8674(00)80667-4

Song, J. M. and Liebman, S. W. 1985. Interaction of UAG suppressors and omnipotent suppressors in Saccharomyces cerevisiae. Journal of Bacteriology 161:778–780.

Stansfield, I., Grant, C. M., and Tuite, M. F. 1992. Ribosomal association of the yeast SAL4 (SUP45) gene product: implications for its role in translation fidelity and termination. Molecular Microbiology 6:3469–3478. https://doi.org/10.1111/j.1365-2958.1992.tb01782.x

Stansfield, I. and Tuite, M. F. 1994. Polypeptide chain termination in Saccharomyces cerevisiae. Current Genetics 25:385–395. https://doi.org/10.1007/BF00351776

Stansfield, I., Jones, K. M., Kushnirov, V. V., Dagkesamanskaya, A. R., Poznyakovski, A. I., Paushkin, S. V., Nierras, C. R., Cox, B. S., Ter-Avanesyan, M. D., and Tuite, M. F. 1995. The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. The EMBO Journal 14:4365–4373. https://doi.org/10.1002/j.1460-2075.1995.tb00111.x

Stansfield, I., Eurwilaichitr, L., Akhmaloka, and Tuite, M. F. 1996. Depletion in the levels of the release factor eRF1 causes a reduction in the efficiency of translation termination in yeast. Molecular Microbiology 20:1135–1143. https://doi.org/10.1111/j.1365-2958.1996.tb02634.x

Studte, P., Zink, S., Jablonowski, D., Bär, C., von der Haar, T., Tuite, M. F., and Schaffrath, R. 2008. tRNA and protein methylase complexes mediate zymocin toxicity in yeast. Molecular Microbiology 69:1266–1277. https://doi.org/10.1111/j.1365-2958.2008.06358.x

Surguchov, A. P., Berestetskaya, Y. V., Fominykch, E. S., Pospelova, E. M., Smirnov, V. N., Ter-Avanesyan, M. D., and Inge-Vechtomov, S. G. 1980. Recessive suppression in yeast Saccharomyces cerevisiae is mediated by a ribosomal mutation. FEBS Letters 111:175–178. https://doi.org/10.1016/0014-5793(80)80786-1

Surguchev, A. P., Piepersberg, W., Smirnov, V. N., Ter-Avanesian, M. D., and Inge-Vechtomov, S. G. 1983. Cloning of the gene sup 1 of Saccharomyces cerevisiae yeasts. Doklad Akademii Nauk SSSR 272:987.

Tate, W. P. and Mannering, S. A. 1996. Three, four or more: the translational stop signal at length. Molecular Microbiology 21:213–219. https://doi.org/10.1046/j.1365-2958.1996.6391352.x

Telkov, M. V, Surguchev, A. P., Dagkesamanskaya, A. R., and Avanesyan, M. D. 1986. Isolation of a chromosomal DNA fragment containing sup2 gene of the yeast S. cerevisiae. Genetika 22:17–25.

Ter-Avanesyan, M. D., Kushnirov, V. V., Dagkesamanskaya, A. R., Didichenko, S. A., Chernoff, Y. O., Inge-Vechtomov, S. G., and Smirnov, V. N. 1993. Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Molecular Microbiology 7:683–692. https://doi.org/10.1111/j.1365-2958.1993.tb01159.x

Ter-Avanesyan, M. D., Dagkesamanskaya, A. R., Kushnirov, V. V., and Smirnov, V. N. 1994. The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [PSI+] in the yeast Saccharomyces cerevisiae. Genetics 137:671–676.

Tieg B. and Krebber H. 2013. Dbp5 – from nuclear export to translation. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms 1829:791–798. https://doi.org/10.1016/j.bbagrm.2012.10.010

Tork, S., Hatin, I., Rousset, J., and Fabret, C. 2004. The major 5′-determinant in stop codon read-through involves two adjacent adenines. Nucleic Acids Research 32:415–421. https://doi.org/10.1093/nar/gkh201

True, H. L. and Lindquist, S. L. 2000. A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407:477. https://doi.org/10.1038/35035005

True, H. L., Berlin, I., and Lindquist, S. L. 2004. Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits. Nature 431:184. https://doi.org/10.1038/nature02885

Uptain, S. M., Sawicki, G. J., Caughey, B., and Lindquist, S. 2001. Strains of [PSI+] are distinguished by their efficiencies of prion-mediated conformational conversion. The EMBO Journal 20:6236–6245. https://doi.org/10.1093/emboj/20.22.6236

Valouev, I. A., Urakov, V. N., Kochneva-Pervukhova, N. V., Smirnov, V. N., and Ter-Avanesyan, M. D. 2004. Translation termination factors function outside of translation: yeast eRF1 interacts with myosin light chain, Mlc1p, to effect cytokinesis. Molecular Microbiology 53(2):687–696. https://doi.org/10.1111/j.1365-2958.2004.04157.x

Volkov, K. V., Kurishko, K., Inge-Vechtomov, S. G., and Mironova, L. N. 2000. Polymorphism of the SUP35 gene and its product in the Saccharomyces cerevisiae yeasts. Genetika 36:155–158.

Volkov, K. V., Aksenova, A. Y., Soom, M. J., Osipov, K. V., Svitin, A. V., Kurischko, C., and Mironova, L. N. 2002. Novel non-Mendelian determinant involved in the control of translation accuracy in Saccharomyces cerevisiae. Genetics 160:25–36.

Volkov, K. V., Osipov, K. V., Valouev, I. А., Inge-Vechtomov, S. G., and Mironova, L. N. 2007. N-terminal extension of Saccharomyces cerevisiae translation termination factor eRF3 inuences the suppression efficiency of sup35 mutations. FEMS Yeast Research 7:1–10. https://doi.org/10.1111/j.1567-1364.2006.00176.x

Wickner, R. B. 1994. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264:566–569. https://doi.org/10.1126/science.7909170

Wickner, R. B., Masison, D. C., and Edskes, H. K. 1995. [PSI+] and [URE3] as yeast prions. Yeast 11:1671–1685. https://doi.org/10.1002/yea.320111609

Wilson, P. G. and Culbertson, M. R. 1988. SUF12 suppressor protein of yeast. A fusion protein related to the EF-1 family of elongation factors. Journal of Molecular Biology 199:559–573. https://doi.org/10.1016/0022-2836(88)90301-4

Zavialov, A. V., Buckingham, R. H., and Ehrenberg, M. 2001. A posttermination ribosomal complex is the guanine nucleotide exchange factor for peptide release factor RF3. Cell 107:115–124. https://doi.org/10.1016/S0092-8674(01)00508-6

Zhou, P. 1999. The yeast non-Mendelian factor [ETA+] is a variant of [PSI+], a prion-like form of release factor eRF3. The EMBO Journal 18:1182–1191. https://doi.org/10.1093/emboj/18.5.1182

Zhouravleva, G., Frolova, L.Y., Goff, X. Le, Guellec, R. Le, Inge-Vechtomov, S., Kisselev, L., and Philippe, M. 1995. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. The EMBO Journal 14:4065–4072. https://doi.org/10.1002/j.1460-2075.1995.tb00078.x

Zhouravleva, G. A., Moskalenko, S. E., Murina, O. A., and Inge-Vechtomov, S. G. 2007. Viable nonsense mutants for the SUP45 gene in the yeast Saccharomyces cerevisiae are lethal at increased temperature. Russian Journal of Genetics 43:1139–1146. https://doi.org/10.1134/S1022795407100079

Downloads

Published

2019-08-27

How to Cite

Trubitsina, N., Zemlyanko, O., Moskalenko, S., & Zhouravleva, G. (2019). From past to future: suppressor mutations in yeast genes encoding translation termination factors. Biological Communications, 64(2), 89–109. https://doi.org/10.21638/spbu03.2019.202

Issue

Section

Review communications

Most read articles by the same author(s)