Natural polyploidy in amphibians

  • Spartak Litvinchuk Institute of Cytology, Russian Academy of Sciences, 4, Tikhoretskiy pr., Saint Petersburg, 194064, Russian Federation
  • Lev Borkin Zoological Institute, Russian Academy of Sciences, 1, Universitetskaya nab., Saint Petersburg, 199164, Russian Federation
  • Dmitriy Skorinov Institute of Cytology, Russian Academy of Sciences, 4, Tikhoretskiy pr., Saint Petersburg, 194064, Russian Federation
  • Rosa Pasynkova Institute of Cytology, Russian Academy of Sciences, 4, Tikhoretskiy pr., Saint Petersburg, 194064, Russian Federation
  • Yuriy Rosanov Institute of Cytology, Russian Academy of Sciences, 4, Tikhoretskiy pr., Saint Petersburg, 194064, Russian Federation


This article examines polyploidy in amphibians. 53 polyploid species from 15 genera and 10 families (only anurans) are currently recognized. They can be arranged in 4 groups with different ploidy levels: I (triploids), 4 species of the toad genus Bufotes, II (tetraploids), 33 species from 14 genera and 10 families, III (octoploids), 12 species from 3 genera and 3 families, and IV (dodeсaploids), 4 species of the genus Xenopus. Only one taxon above the species level totally consisting of polyploid (4n to 12n) species is known (the subgenus Xenopus). At least 10 diploid-polyploid species complexes were revealed among amphibians. In nature, triploid individuals can originate in the hybridization zone between di- and tetraploid species. Occasionally, some triploids occur within populations of diploid species. Also polyploids (3n to 5n) are common among diploid-polyploid hybridogenetic forms, which breed clonally (Ambystoma and Pelophylax). The concept of reticulate (hybridogenous) speciation involved the hybridization between species, clonal inheritance and polyploidy is supported by current data. Polyploid amphibian species are mainly distributed in southern regions (Africa, South America, and Australia). In fact, the Oriental realm lacks polyploid amphibians. Refs 39. Figs 1. Tables 2.


amphibians, hybridization, polyploidy, reticulate speciation


Download data is not yet available.


McGrath C. L., Lynch M. Evolutionary significance of whole-genome duplication. Polyploidy and Genome Evolution. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 1–20.

Evans B. J., Pyron R. A., Wiens J. J. Polyploidization and sex chromosome evolution in amphibians. Polyploidy and Genome Evolution. Berlin, Heidelberg, Springer-Verlag, 2012, pp. 385–410.

Morescalchi A., Odierna G., Rosati C. On the polyploidy in the family Sirenidae (Amphibia: Caudata). Studies in Herpetology. Prague, Charles Univ., 1986, pp. 165–170.

Sessions S. K. Evolutionary cytogenetics in salamanders. Chromosome Res., 2008, vol. 16, pp. 183–201.

Stöck M., Ustinova J., Lamatsch D. K., Schartl M., Perrin N., Moritz C. A vertebrate reproductive system involving three ploidy levels: hybrid origin of triploids in a contact zone of diploid and tetraploid Palearctic green toads (Bufo viridis subgroup). Evolution, 2009, vol. 64, pp. 944–959.

Bogart J. P., Bi K. Genetic and genomic interactions of animals with different ploidy levels. Cytogen. Genome Res., 2013, vol. 140, pp. 117–136.

Gruber S. L., Silva A. P. Z., Haddad C. F. B., Kasahara S. Cytogenetic analysis of Phyllomedusa distincta Lutz, 1950 (2n = 2x = 26), P. tetraploidea Pombal and Haddad, 1992 (2n = 4x = 52), and their natural triploid hybrids (2n = 3x = 39) (Anura, Hylidae, Phyllomedusinae). BMC Genetics, 2013, vol. 14, pp. 75.

Bogart J. P., Bi K., Fu J., Noble D. W. A., Niedzwiecki J. Unisexual salamanders (genus Ambystoma) present a new reproductive mode for eukaryotes. Genome, 2007, vol. 50, pp. 119–136.

Bogart J. P., Bartoszek J., Noble D. W. A., Bi K. Sex in unisexual salamanders: discovery of a new sperm donor with ancient affinities. Heredity, 2009, vol. 103, pp. 483–493.

Bi K., Bogart J. P. Time and time again: unisexual salamanders (genus Ambystoma) are the oldest unisexual vertebrates. BMC Evol. Biol., 2010, vol. 10, pp. 238.

Dedukh D., Litvinchuk S., Rosanov J., Mazepa G., Saifitdinova A., Shabanov D., Krasikova A. Optional endoreplication and selective elimination of parental genomes during oogenesis in diploid and triploid hybrid European water frogs. PLoS ONE, 2015, vol. 10, no. 4, p. e0123304.

Borkin L. J., Garanin W. I., Tichenko N. D., Zaune I. A. Some results in the green frogs survey in the USSR. Mitt. Zool. Mus. Berlin, 1979, Bd. 55, H. 1, S. 153–170.

Jakob C. Structure and Dynamics of Pure Hybridogenetic Water Frog Populations of Rana esculenta in Southern Sweden. PhD thesis. Zürich. Universität Zürich, 2007. 197 p.

Hermaniuk A., Pruvost N. B. M., Kierzkowski P., Ogielska M. Genetic and cytogenetic characteristics of pentaploidy in water frogs. Herpetologica, 2013, vol. 69, pp. 36–45.

Schmeller D., Crivelli A., Veith M. Is triploidy indisputably determinable in hybridogenetic hybrids by planimetric analyses of erythrocytes? Mitt. Mus. Naturk. Berlin. Zool. Reihe, 2001, Bd. 77, H. 1, S. 71–77.

Feder J. H. Natural hybridization and genetic divergence between the toads Bufo boreas and Bufo punctatus. Evolution, 1979, vol. 33, pp. 1089–1097.

Green D. M., Delisle D. M. Allotriploidy in natural hybrid frogs, Rana chiricahuensis × R. pipiens, from Arizona: chromosomes and electrophoretic evidence. J. Herpetol., 1985, vol. 19, pp. 385–390.

Sofianidou T. S. Electrophoretic studies of hybrids of water frogs (Rana epeirotica, R. balcanica) in the Ionian zone of Greece. Isr. J. Zool., 1996, vol. 42, pp. 149–157.

Borkin L. J., Darevskii I. S. Setchatoe (gibridogennoe) vidoobrazovanie u pozvonochnykh [Reticulate (hybridogenous) speciation in vertebrates]. Zhurnal obshchei biologii [J. Gener. Biol.], 1980, vol. 16, no. 4, pp. 485–507. (In Russian)

Lantz L. A., Callan H. G. Phenotypes and spermatogenesis of interspecific hybrids between Triturus cristatus and T. marmoratus. J. Genet., 1954, vol. 52, pp. 165–185.

Blair W. F. Appendix G. Combinations of species of Bufo which produce diploid progeny and those species which have been found to produce only polyploid off spring. Evolution in the Genus Bufo. Austin and London, University of Texas Press, 1972, pp. 382–387.

Malone J. H., Fontenot B. E. Patterns of reproductive isolation in toads. PLoS ONE, 2008, vol. 3, no. 12, pp. e3900.

Bogart J. P., Licht L. E. Reproduction and the origin of polyploids in hybrid salamanders of the genus Ambystoma. Can. J. Genet. Cytol., 1986, vol. 28, pp. 605–617.

Berger L. Some peculiar phenomena in European water frogs. Zool. Polon., 1994, vol. 39, no. 3–4, pp. 267–280.

Stöck M., Lamatsch D. K., Steinlein C., Epplen J. T., Grosse W.-R., Hock R., Klapperstück T., Lampert K. P., Scheer U., Schmid M., Schartl M. A bisexually reproducing all-triploid vertebrate. Nat. Genet., 2002, vol. 30, pp. 325–328.

Guignard M., Büchi L., Gétaz M., Betto-Colliard C., Stöck M. Genome size rather than content might affect call properties in toads of three ploidy levels (Anura: Bufonidae: Bufo viridis subgroup). Biol. J. Linn. Soc., 2012, vol. 105, pp. 584–590.

Litvinchuk S. N., Mazepa G. O., Pasynkova R. A., Saidov A., Satorov T., Chikin Y. A., Shabanov D. A., Crottini A., Borkin L. J., Rosanov J. M., Stöck M. Influence of environmental conditions on the distribution of Central Asian green toads with three ploidy levels. J. Zool. Syst. Evol. Res., 2011, vol. 49, pp. 233–239.

Stöck M., Ustinova J., Betto-Colliard C., Schartl M., Moritz C., Perrin N. Simultaneous Mendelian and clonal genome transmission in a sexually reproducing, all-triploid vertebrate. Proc. Roy. Soc. London B, 2012, vol. 279, pp. 1293–1299.

Litvinchuk S. N., Borkin L. J., Skorinov D. V., Mazepa G. A., Pasynkova R. A., Dedukh D. V., Krasikova A. V., Rozanov J. M. Neobychnoe triploidnoe vidoobrazovanie u zelenykh zhab kompleksa Bufo viridis Vysokogornoi Azii [Unusual triploid speciation in green toads Bufo viridis group in high-altitude Asia]. Voprosy gerpetologii [Problems of Herpetology]. Minsk, 2012, pp. 160–165. (In Russian)

Tandy M., Bogart J. P., Largen M. J., Feener D. J. Variation and evolution in Bufo kerinyagae Keith, B. regularis Reuss and B. asmarae Tandy et al. (Anura, Bufonidae). Monit. Zoo. Ital., 1985, Suppl., vol. 20, no. 1, pp. 211–267.

Vieira K. D. S., Silva A. P. Z., Arzabe C. Cranial morphology and karyotypic analysis of Ceratophrys joazeirensis (Anura: Ceratophryidae, Ceratophrynae): taxonomic considerations. Zootaxa, 2006, vol. 1320, pp. 57–68.

Bogart J. P., Tandy M. Polyploid amphibians: three more diploid-tetraploid cryptic species of frogs. Science, 1976, vol. 193, pp. 334–335.

Bogart J. P., Wasserman F. O. Diploid-polyploid cryptic species pairs: a possible clue to evolution by polyploidization in anuran amphibians. Cytogenetics, 1972, vol. 11, pp. 7–24.

Valetti J. A., Salas N. E., Martino A. L. A new polyploid species of Pleurodema (Anura: Leiuperidae) from Sierra de Comechingones, Córdoba, Argentina and redescription of Pleurodema kriegi (Müller, 1926). Zootaxa, 2009, vol. 2073, pp. 1–21.

Martino A. L., Sinsch U. Speciation by polyploidy in Odontophrynus americanus. J. Zool., 2002, vol. 257, pp. 67–81.

Evans B. J., Kelley D. B., Tinsley R. C., Melnick D. J., Cannatella D. C. A mitochondrial DNA phylogeny of African clawed frogs: phylogeography and implications for polyploid evolution. Mol. Phyl. Evol., 2004, vol. 33, pp. 197–213.

Channing A., Bogart J. P. Description of a tetraploid Tomopterna (Anura: Ranidae) from South Africa. S. Afr. J. Zool., 1996, vol. 31, pp. 80–85.

Litvinchuk S. N., Rosanov J. M. The first case of natural spontaneous triploidy in the family Bombinatoridae. Amphibia-Reptilia, 2016, vol. 37, pp. 243–245.

Litvinchuk S. N., Skorinov D. V., Rosanov J. M. Natural spontaneous autotriploidy in the genus Pelophylax (Anura: Ranidae). Russ. J. Herpetol., 2015, vol. 22, pp. 318–320.

How to Cite
Litvinchuk, S., Borkin, L., Skorinov, D., Pasynkova, R., & Rosanov, Y. (2016). Natural polyploidy in amphibians. Biological Communications, (3), 77–86.
Full communications