Personalized medicine: the role of sequencing technologies in diagnostics, prediction and selection of treatment of monogenous and multifactorial diseases

Authors

  • Oleg Glotov Department of Experimental Medical Virology, Molecular Genetics and Biobanking, Pediatric Research and Clinical Center for Infectious Diseases, ul. Professora Popova, 9, Saint Petersburg, 197022, Russian Federation; Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleyevskaya liniya, 3, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-0091-2224
  • Alexandr Chernov Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, ul. Akademika Pavlova, 12, Saint Petersburg, 197376, Russian Federation; Bioenergetics Department of Life Sciences, Ben-Gurion University, Beer Sheva, 84105, Israel https://orcid.org/0000-0003-2464-7370
  • Michael Fedyakov Genetics Laboratory, City Hospital No. 40, ul. Borisova, 9, Saint Petersburg, 197706, Russian Federation https://orcid.org/0000-0002-3291-3811
  • Valentina Larionova Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, ul. Akademika Pavlova, 12, Saint Petersburg, 197376, Russian Federation; North Western State Medical University named after I.I. Mechnikov, ul. Kirochnaya, 41, Saint Petersburg, 191015, Russian Federation https://orcid.org/0000-0002-3128-8102
  • Andrey Zaretsky Department of Molecular Technologies, Research Institute of Translational Medicine, Pirogov Russian National Research Medical University, ul. Ostrovityanova, 1, Moscow, 117997, Russian Federation https://orcid.org/0000-0002-7778-6617
  • Maxim Donnikov Medical Institute, Surgut State University, ul. Energetikov, 22, Surgut, 628412, Russian Federation https://orcid.org/0000-0003-0120-4163
  • Andrey Glotov Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleyevskaya liniya, 3, Saint Petersburg, 199034, Russian Federation; Laboratory of Biobanking and Genomic Medicine, Institute of Translation Biomedicine, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-7465-4504

DOI:

https://doi.org/10.21638/spbu03.2022.403

Abstract

The review highlights various methods for deciphering the nucleotide sequence (sequencing) of nucleic acids and their importance for the implementation of the three main principles of personalized medicine: prevention, predictability and personalization. The review, along with its own practical examples, considers three generations of sequencing technologies: 1) sequencing of cloned or amplified DNA fragments according to Sanger and its analogues; 2) massive parallel sequencing of DNA libraries with short reads (NGS); and 3) sequencing of single molecules of DNA and RNA with long reads. The methods of whole genome, whole exome, targeted, RNA sequencing and sequencing based on chromatin immunoprecipitation are also discussed. The advantages and limitations of the above methods for diagnosing monogenic and oncological diseases, as well as for identifying risk factors and predicting the course of socially significant multifactorial diseases are discussed. Using examples from clinical practice, algorithms for the application and selection of sequencing technologies are demonstrated. As a result of the use of sequencing technologies, it has now become possible to determine the molecular mechanism of the development of monogenic, orphan and multifactorial diseases, the knowledge of which is necessary for personalized patient therapy. In science, these technologies paved the way for international genome projects — the Human Genome Project, the HapMap, 1000 Genomes Project, the Personalized Genome Project, etc.

Keywords:

sequencing technologies, whole genome sequencing, whole exome sequencing, advantages, limitations, personalized medicine, human genomic projects, diagnostics, disease prediction, personalized therapy

Downloads

Download data is not yet available.
 

References

1000 Genomes Project Consortium, Abecasis, G. R., Auton, A., Brooks, L. D., DePristo, M. A., Durbin, R. M., Handsaker, R. E., Kang, H. M., Marth, G. T., and McVean, G. A. 2012. An integrated map of genetic variation from 1,092 human genomes. Nature 491(7422):56–65. https://doi.org/10.1038/nature11632

Adli, M. and Bernstein, B. E. 2011. Whole-genome chromatin profiling from limited numbers of cells using nanoChIP-seq. Nature Protocols 6(10):1656–1668. https://doi.org/10.1038/nprot.2011.402

AllSeq. WGS vs. WES. http://allseq.com/kb/wgsvswes

Ardui, S., Ameur, A., Vermeesch, J. R., and Hestand, M. S. 2018. Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic Acids Research 46(5):2159–2168. https://doi.org/10.1093/nar/gky066

Atkinson, A. J., Colburn, W. A., and Degruttola, V. G. 2001. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clinical Pharmacology & Therapeutics 69(3):89–95. https://doi.org/10.1067/mcp.2001.113989

Bick, D. and Dimmock, D. 2011. Whole exome and whole genome sequencing. Current Opinion in Pediatrics 23(6):594– 600. https://doi.org/10.1097/MOP.0b013e32834b20ec

Bohacek, J. and Mansuy, I. M. 2013. Epigenetic inheritance of disease and disease risk. Neuropsychopharmacology 38(1):220–236. https://doi.org/10.1038/npp.2012.110

Branton, D., Deamer, D., and Marziali, A. 2008. The potential and challenges of nanopore sequencing. Nature Biotechnology 26(10):1146–1153. https://doi.org/10.1038/nbt.1495

Brenner, S., Johnson, M., Bridgham, J., Golda, G., Lloyd, D. H., Johnson, D., Luo, S., McCurdy, S., Foy, M., Ewan, M., Roth, R., George, D., Eletr, S., Albrecht, G., Vermaas, E., Williams, S. R., Moon, K., Burcham, T., Pallas, M., DuBridge, R. B., Kirchner, J., Fearon, K., Mao, J., and Corcoran, K. 2000. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nature Biotechnology 18(6):630–634. https://doi.org/10.1038/76469

Buermans, H. P. and den Dunnen, J. T. 2014. Next generation sequencing technology: advances and applications. Biochimica et Biophysica Acta (BBA) — Molecular Basis of Disease 1842(10):1932–1941. https://doi.org/10.1016/j. bbadis.2014.06.015

Burgess, D. J. 2021. Complex targeted sequencing in real time. Nature Reviews Genetics 22(2):67. https://doi.org/10.1038/s41576-020-00324-6

Capurso, D., Tang, Z., and Ruan, Y. 2020. Methods for comparative ChIA-PET and Hi-C data analysis. Methods 170:69– 74. https://doi.org/10.1016/j.ymeth.2019.09.019

Chong, J. X., Buckingham, K. J., Jhangiani, S. N., Boehm, C., Sobreira, N., Smith, J. D., Harrell, T. M,, McMillin, M. J., Wiszniewski, W., Gambin, T., Coban Akdemir, Z. H., Doheny, K., Scott, A. F., Avramopoulos, D., Chakravarti, A., Hoover-Fong, J., Mathews, D., Witmer, P. D., Ling, H., Hetrick, K., Watkins, L., Patterson, K. E., Reinier, F., Blue, E., Muzny, D., Kircher, M., Bilguvar, K., López-Giráldez, F., Sutton, V. R., Tabor, H. K., Leal, S. M., Gunel, M., Mane, S., Gibbs, R. A., Boerwinkle, E., Hamosh, A., Shendure, J., Lupski, J. R., Lifton, R. P., Valle, D., Nickerson, D. A., and Bamshad, M. J. 2015. The genetic basis of mendelian phenotypes: discoveries, challenges, and opportunities. The American Journal of Human Genetics 97(2):199–215. https://doi.org/10.1016/j.ajhg.2015.06.009

Corbett, R. D., Eveleigh, R., Whitney, J., Barai, N., Bourgey, M., Chuah, E. J., Johnson, J., Moore, R. A., Moradin, N., Mungall, K. L., Pereira, S., Reuter, M. S., Thiruvahindrapuram, B., Wintle, R. F., Ragoussis, J., Strug, L. J., Herbrick, J. A., Aziz, N., Jones, S. J. M., Lathrop, M., Scherer, S. W., Staffa, A., and Mungall, A. J. 2020. A distributed whole genome sequencing benchmark study. Frontiers in Genetics 11:612515. https://doi.org/10.3389/fgene.2020.612515

Deelen, J., Evans, D. S., Arking, D. E., Tesi, N., Nygaard, M., Liu, X., Wojczynski, M. K., Biggs, M. L., van der Spek, A., Atzmon, G., Ware, E. B., Sarnowski, C., Smith, A. V., Seppälä, I., Cordell, H. J., Dose, J., Amin, N., Arnold, A. M., Ayers, K. L., Barzilai, N., Becker, E. J., Beekman, M., Blanché, H., Christensen, K., Christiansen, L., Collerton, J. C., Cubaynes, S., Cummings, S. R., Davies, K., Debrabant, B., Deleuze, J. F., Duncan, R., Faul, J. D., Franceschi, C., Galan, P., Gudnason, V., Harris, T. B., Huisman, M., Hurme, M. A., Jagger, C., Jansen, I., Jylhä, M., Kähönen, M.,Karasik, D., Kardia, S. L. R., Kingston, A., Kirkwood, T. B. L., Launer, L. J., Lehtimäki, T., Lieb, W., Lyytikäinen, L. P., Martin-Ruiz, C., Min, J., Nebel, A., Newman, A. B., Nie, C., Nohr, E. A., Orwoll, E. S., Perls, T. T., Province, M. A., Psaty, B. M., Raitakari, O. T., Reinders, M. J. T., Robine, J. M., Rotter, J. I., Sebastiani, P., Smith, J., Sørensen, T. I. A., Taylor, K. D., Uitterlinden, A. G., van der Flier, W., van der Lee, S. J., van Duijn, C. M., van Heemst, D., Vaupel, J. W., Weir, D., Ye, K., Zeng, Y., Zheng, W., Holstege, H., Kiel, D. P., Lunetta, K. L., Slagboom, P. E., and Murabito, J. M. 2019. A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nature Communications 10(1):3669. https://doi.org/10.1038/s41467-019-11558-2

Di Muccio, G., Rossini, A. E., Di Marino, D., Zollo, G., and Chinappi, M. 2019. Insights into protein sequencing with an α-Hemolysin nanopore by atomistic simulations. Scientific Reports 9(1):6440. https://doi.org/10.1038/s41598019-42867-7

Diakiw, S. M., Hall, J. M. M., VerMilyea, M. D., Amin, J., Aizpurua, J., Giardini, L., Briones, Y. G., Lim, A. Y. X., Dakka, M. A., Nguyen, T. V., Perugini, D., and Perugini, M. 2022. Development of an artificial intelligence model for predicting the likelihood of human embryo euploidy based on blastocyst images from multiple imaging systems during IVF. Human Reproduction 37(8):1746–1759. https://doi.org/10.1093/humrep/deac131

DNAnexus. CHARGE project use case. https://dnanexus.com/usecases-charge

Drmanac, R., Sparks, A. B., Callow, M. J., Halpern, A. L., Burns, N. L., Kermani, B. G., Carnevali, P., Nazarenko, I., Nilsen, G. B., Yeung, G., Dahl, F., Fernandez, A., Staker, B., Pant, K. P., Baccash, J., Borcherding, A. P., Brownley, A., Cedeno, R., Chen, L., Chernikoff, D., Cheung, A., Chirita, R., Curson, B., Ebert, J. C., Hacker, C. R., Hartlage, R., Hauser, B., Huang, S., Jiang, Y., Karpinchyk, V., Koenig, M., Kong, C., Landers, T., Le, C., Liu, J., McBride, C. E., Morenzoni, M., Morey, R. E., Mutch, K., Perazich, H., Perry, K., J., Pethiyagoda, C. L., Pothura, K., Richter, C., Rosenbaum, A. M., Roy, S., Shafto, J., Sharanhovich, U., Shannon, K. W., Sheppy, C. G., Sun, M., Thakuria, J. V., Tran, A., Vu, D., Zaranek, A. W., Wu, X., Drmanac, S., Oliphant, A. R., Banyai, W. C., Martin, B., Ballinger, D. G., Church, G. M., and Reid, C. A. 2010. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science 327(5961):78– 81. https://doi.org/10.1126/science.1181498

Dworkis, D. A., Klings, E. S., Solovieff, N., Li, G., Milton, J. N., Hartley, S. W., Melista, E., Parente, J., Sebastiani, P., Steinberg, M. H., and Baldwin, C. T. 2011. Severe sickle cell anemia is associated with increased plasma levels of TNF-R1 and VCAM-1. American Journal of Hematology 86(2):220–223. https://doi.org/10.1002/ajh.21928

Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan, P., Bettman, B., Bibillo, A., Bjornson, K., Chaudhuri, B., Christians, F., Cicero, R., Clark, S., Dalal, R., Dewinter, A., Dixon, J., Foquet, M., Gaertner, A., Hardenbol, P., Heiner, C., Hester, K., Holden, D., Kearns, G., Kong, X., Kuse, R., Lacroix, Y., Lin, S., Lundquist, P., Ma, C., Marks, P., Maxham, M., Murphy, D., Park, I., Pham, T., Phillips, M., Roy, J., Sebra, R., Shen, G., Sorenson, J., Tomaney, A., Travers, K., Trulson, M., Vieceli, J., Wegener, J., Wu, D., Yang, A., Zaccarin, D., Zhao, P., Zhong, F., Korlach, J., and Turner, S. 2009. Real-time DNA sequencing from single polymerase molecules. Science 323(5910):133–138. https://doi.org/10.1126/science.1162986

English, A. C., Richards, S., Han, Y., Wang, M., Vee, V., Qu, J., Qin, X., Muzny, D. M., Reid, J. G., Worley, K. C., and Gibbs, R. A. 2012. Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS One 7(11):e47768. https://doi.org/10.1371/journal.pone.0047768

Fanale, D., Amodeo, V., Corsini, L. R., Rizzo, S., Bazan, V., and Russo, A. 2012. Breast cancer genome-wide association studies: there is strength in numbers. Oncogene 31(17):2121–2128. https://doi.org/10.1038/onc.2011.408

Feuk, L., Carson, A. R., and Scherer, S. W. 2006. Structural variation in the human genome. Nature Reviews Genetics 7(2):85–97. https://doi.org/10.1038/nrg1767

Fikes, B. 2017. New machines can sequence human genome in one hour, Illumina announces. The San Diego Union-Tribune. https://www.sandiegouniontribune.com/business/biotech/sd-me-illumina-novaseq-20170109-story.html

Freund, M. K., Burch, K. S., Shi, H., Mancuso, N., Kichaev, G., Garske, K. M., Pan, D. Z., Miao, Z., Mohlke, K. L., Laakso, M., Pajukanta, P., Pasaniuc, B., and Arboleda, V. A. 2018. Phenotype-specific enrichment of mendelian disorder genes near GWAS regions across 62 complex traits. The American Journal of Human Genetics 103(4):535–552. https://doi.org/10.1016/j.ajhg.2018.08.017

Genome Reference Consortium. Human Genome Overview. https://www.ncbi.nlm.nih.gov/grc/human

Glotov, O. S., Serebryakova, E. A., Turkunova, M. E., Efimova, O. A., Glotov, A. S., Barbitoff, Y. A., Nasykhova, Y. A., Predeus, A. V., Polev, D. E., Fedyakov, M. A., Polyakova, I. V., Ivashchenko, T. E., Shved, N. Y., Shabanova, E. S., Tiselko, A. V., Romanova, O. V., Sarana, A. M., Pendina, A. A., Scherbak, S. G., Musina, E. V., Petrovskaia-Kaminskaia, A. V., Lonishin, L. R., Ditkovskaya, L. V., Zhelenina, L. А., Tyrtova, L. V., Berseneva O. S., Skitchenko. R. K., Suspitsin, E. N., Bashnina, E. B., and Baranov, V. S. 2019. Whole-exome sequencing in Russian children with non-type 1 diabetes mellitus reveals a wide spectrum of genetic variants in MODY-related and unrelated genes. Molecular Medicine Reports 20(6):4905–4914. https://doi.org/10.3892/mmr.2019.10751

Gonzalez-Garay, M. L. 2014. The road from next-generation sequencing to personalized medicine. Personalized Medicine 11(5):523–544. https://doi.org/10.2217/pme.14.34

Goodwin, S., McPherson, J. D., and McCombie, W. R. 2016. Coming of age: ten years of next-generation sequencing technologies. Nature Reviews Genetics 17(6):333–351. https://doi.org/10.1038/nrg.2016.49

Gorski, M. M., Blighe, K., Lotta, L. A., Pappalardo, E., Garagiola, I., Mancini, I., Mancuso, M. E., Fasulo, M. R., Santagostino, E., and Peyvandi, F. 2016. Whole-exome sequencing to identify genetic risk variants underlying inhibitor development in severe hemophilia A patients. Blood 127(23):2924–2933. https://doi.org/10.1182/blood-2015-12-685735

Goto, Y., Akahori, R., Yanagi, I., and Takeda, K. I. 2020. Solidstate nanopores towards single-molecule DNA sequencing. Journal of Human Genetics 65(1):69–77. https://doi.org/10.1038/s10038-019-0655-8

Guo, Y., Dai, Y., Yu, H., Zhao, S., Samuels, D. C., and Shyr, Y. 2017. Improvements and impacts of GRCh38 human reference on high throughput sequencing data analysis. Genomics 109(2):83–90. https://doi.org/10.1016/j. ygeno.2017.01.005

Guy, C., Haji-Sheikhi, F., Rowland, C. M., Anderson, B., Owen, R., Lacbawan, F. L., and Alagia, D. P. 2019. Prenatal cell-free DNA screening for fetal aneuploidy in pregnant women at average or high risk: Results from a large US clinical laboratory. Molecular Genetics & Genomic Medicine 7(3):e545. https://doi.org/10.1002/mgg3.545

Haraksingh, R. R. and Snyder, M. P. 2013. Impacts of variation in the human genome on gene regulation. Journal of Molecular Biology 425(21):3970–3977. https://doi.org/10.1016/j.jmb.2013.07.015

Hartonen, T., Sahu, B., Dave, K., Kivioja, T., and Taipale, J. 2016. PeakXus: comprehensive transcription factor binding site discovery from ChIP-Nexus and ChIP-Exo experiments. Bioinformatics 32(17):i629–i638. https://doi.org/10.1093/bioinformatics/btw448

Hayatsu, H., Wataya, Y., Kai, K., and Iida, S. 1970. Reaction of sodium bisulfite with uracil, cytosine, and their derivatives. Biochemistry 9(14):2858–2865. https://doi.org/10.1021/bi00816a016

Heather, J. M. and Chain, В. 2016. The sequence of sequencers: The history of sequencing DNA Genomics 107(1):1–8. https://doi.org/10.1016/j.ygeno.2015.11.003

Herper, M. 2017. Illumina promises to sequence human genome for $100 — but not quite yet. Forbes. https://www.forbes.com/sites/matthewherper/2017/01/09/illuminapromises-tosequence-human-genome-for-100-but-notquite-yet/#58262050386d

Hodkinson, B. P. and Grice, E. A. 2015. Next-Generation Sequencing: A review of technologies and tools for wound microbiome research. Advances in Wound Care 4(1):50– 58. https://doi.org/10.1089/wound.2014.0542

Hofmann, A. L., Behr, J., Singer, J., Kuipers, J., Beisel, C., Schraml, P., Moch, H., and Beerenwinkel, N. 2017. Detailed simulation of cancer exome sequencing data reveals differences and common limitations of variant callers. BMC Bioinformatics 18(1):8. https://doi.org/10.1186/s12859-016-1417-7

Huang, J., Liang, X., Xuan, Y., Geng, C., Li, Y., Lu, H., Qu, S., Mei, X., Chen, H., Yu, T., Sun, N., Rao, J., Wang, J., Zhang, W., Chen, Y., Liao, S., Jiang, H., Liu, X., Yang, Z., Mu, F., and Gao, S. 2017. A reference human genome dataset of the BGISEQ-500 sequencer. Gigascience 6(5):1–9. https://doi.org/10.1093/gigascience/gix024

International Human Genome Sequencing Consortium. 2004. Finishing the euchromatic sequence of the human genome. Nature 431(7011):931–945. https://doi.org/10.1038/nature03001

International HapMap Consortium, Frazer, K. A., Ballinger D. G., Cox D. R. et al. 2007. A second generation human haplotype map of over 3.1 million SNPs. Nature. 449(7164):851– 861. https://doi.org/10.1038/nature06258

Ivashchenko, T. E., Vashukova, E. S., Kozyulina, P. Y., et al. 2019. The first experience of using NGS for NIPT. Genetics 55(10):1151–1157. (In Russian)

Jin, L., Song, Q., Zhang, W., Geng, B., and Cai, J. 2019. Roles of long noncoding RNAs in aging and aging complications. Biochimica et Biophysica Acta (BBA) — Molecular Basis of Disease 1865(7):1763–1771. https://doi.org/10.1016/j. bbadis.2018.09.021

Juric, I., Yu, M., Abnousi, A., Raviram, R., Fang, R., Zhao, Y., Zhang, Y., Qiu, Y., Yang, Y., Li, Y., Ren, B., and Hu, M. 2019. MAPS: Model-based analysis of long-range chromatin interactions from PLAC-seq and HiChIP experiments. PLOS Computational Biology 15(4):e1006982. https://doi.org/10.1371/journal.pcbi.1006982

Kaboord, B. and Perr, M. 2008. Isolation of proteins and protein complexes by immunoprecipitation. 2D PAGE: Sample Preparation and Fractionation. Methods in Molecular Biology 424:349–364. https://doi.org/10.1007/978-160327-064-9_27

Kchouk, M., Gibrat, J. F., and Elloumi, M. 2017. Generations of sequencing technologies: from first to next generation. Biology and Medicine 9:395.

Kinser, H. E. and Pincus, Z. 2020. MicroRNAs as modulators of longevity and the aging process. Human Genetics 139(3):291–308. https://doi.org/10.1007/s00439-019-02046-0

Lalani, S. R. 2017. Current genetic testing tools in neonatal medicine. Pediatrics and Neonatology 58(2):111–121. https://doi.org/10.1016/j.pedneo.2016.07.002

Lee, S. M., Kang, Y., Lee, E. M., Jung, Y. M., Hong, S., Park, S. J., Norwitz, E. R., Lee, D. Y., and Park, J. S. 2020. Metabolomic biomarkers in midtrimester maternal plasma can accurately predict the development of preeclampsia. Scientific Reports 10(1):16142. https://doi.org/10.1038/s41598-020-72852-4

Lickwar, C. R., Mueller, F., and Lieb, J. D. 2013. Genome-wide measurement of protein-DNA binding dynamics using competition ChIP. Nature Protocols 8(7):1337–1353. https://doi.org/10.1038/nprot.2013.077

Lightbody, G., Haberland, V., Browne, F., Taggart, L., Zheng, H., Parkes, E., and Blayney, J. K. 2019. Review of applications of high-throughput sequencing in personalized medicine: barriers and facilitators of future progress in research and clinical application. Briefings in Bioinformatics 20(5):1795–1811. https://doi.org/10.1093/bib/bby051

Lionel, A. C., Costain, G., Monfared, N., Walker, S., Reuter, M. S., Hosseini, S. M., Thiruvahindrapuram, B., Merico, D., Jobling, R., Nalpathamkalam, T., Pellecchia, G., Sung, W. W. L., Wang, Z., Bikangaga, P., Boelman, C., Carter, M. T., Cordeiro, D., Cytrynbaum, C., Dell, S. D., Dhir, P., Dowling, J. J., Heon, E., Hewson, S., Hiraki, L., Inbar-Feigenberg, M., Klatt, R., Kronick, J., Laxer, R. M., Licht, C., MacDonald, H., Mercimek-Andrews, S., Mendoza-Londono, R., Piscione, T., Schneider, R., Schulze, A., Silverman, E., Siriwardena, K., Carter Snead, O., Sondheimer, N., Sutherland, J., Vincent, A., Wasserman, J. D., Weksberg, R., Shuman, C., Carew, C., Szego, M. J., Hayeems, R. Z., Basran, R., Stavropoulos, D. J., Ray, P. N., Bowdin, S., Meyn, M. S., Cohn, R. D., Scherer, S. W., and Marshall, C. R. 2018. Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test. Genetics in Medicine 20(4):435–443. https://doi.org/10.1038/gim.2017.119

Liu, L., Li, Y., Li, S., Hu, N., He, Y., Pong, R., Lin, D., Lu, L., and Law, M. 2012. Comparison of Next-Generation Sequencing systems. BioMed Research International 2012:251364. https://doi.org/10.1155/2012/251364

Lo, Y. M., Corbetta, N., Chamberlain, P. F., Rai, V., Sargent, I. L., Redman, C. W., and Wainscoat, J. S. 1997. Presence of fetal DNA in maternal plasma and serum. Lancet 350(9076):485–487. https://doi.org/10.1016/S0140-6736(97)02174-0

Majewski, J., Schwartzentruber, J., Lalonde, E., Montpetit, A., and Jabado, N. 2011. What can exome sequencing do for you? Journal of Medical Genetics 48(9):580–589. https://doi.org/10.1136/jmedgenet-2011-100223

Malsagova, K. A., Butkova, T. V., Kopylov, A. T., Izotov, A. A., Potoldykova, N. V., Enikeev, D. V., Grigoryan, V., Tarasov, A., Stepanov, A. A., and Kaysheva, A. L. 2020. Pharmacogenetic testing: A tool for personalized drug therapy optimization. Pharmaceutics 12(12):1240. https://doi.org/10.3390/pharmaceutics12121240

Mannino, G. C., Andreozzi, F., and Sesti, G. 2019. Pharmacogenetics of type 2 diabetes mellitus, the route toward tailored medicine. Diabetes/Metabolism Research and Reviews 35(3):e3109. https://doi.org/10.1002/dmrr.3109

Marco-Puche, G., Lois, S., Benítez, J., and Trivino, J. C. 2019. RNA-Seq perspectives to improve clinical diagnosis. Frontiers in Genetics 10:1152. https://doi.org/10.3389/fgene.2019.01152

Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., Berka, J., Braverman, M. S., Chen, Y.-J., Chen, Z., Dewell, S. B., Du, L., Fierro, J. M., Gomes, X. V., Godwin, B. C., He, W., Helgesen, S., Ho, C. H., Irzyk, G. P., Jando, S. C., Alenquer, M. L. I., Jarvie, T. P., Jirage, K. B., Kim, J.-B., Knight, J. R., Lanza, J. R., Leamon, J. H., Lefkowitz, S. M., Lei, M., Li, J., Lohman, K. L., Lu, H., Makhijani, V. B., McDade, K. E., McKenna, M. P., Myers, E. W., Nickerson, E., Nobile, J. R., Plant, R., Puc, B. P., Ronan, M. T., Roth, G. T., Sarkis, G. J., Simons, J. F., Simpson, J. W., Srinivasan, M., Tartaro, K. R., Tomasz, A., Vogt, K. A., Volkmer, G. A., Wang, S. H., Wang, Y., Weiner, M. P., Yu, P., Begley, R. F., and Rothberg, J. M. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437(7057):376–380. https://doi.org/10.1038/nature03959

Marino, P., Touzani, R., Perrier, L., Rouleau, E., Kossi, D. S., Zhaomin, Z., Charrier, N., Goardon, N., Preudhomme, C., Durand-Zaleski, I., Borget, I., and Baffert, S. 2018. Cost of cancer diagnosis using next-generation sequencing targeted gene panels in routine practice: a nationwide French study. European Journal of Human Genetics 26(3):314–323. https://doi.org/10.1038/s41431-017-0081-3

Maxam, A. M. and Gilbert, W. 1977. A new method for sequencing DNA. Proceedings of the National Academy of Sciences USA 74(2):560–564. https://doi.org/10.1073/pnas.74.2.560

Morganti, S., Tarantino, P., Ferraro, E., D’Amico, P., Viale, G., Trapani, D., Duso, B. A., and Curigliano, G. 2020. Role of Next-Generation Sequencing technologies in personalized medicine, NGS implementation in clinical practice. P5 eHealth: An Agenda for the Health Technologies of the Future. Challenges and Limitations 125–154. https://doi.org/10.1007/978-3-030-27994-3_8

Moynahan, M. E., Chiu, J. W., Koller, B. H., and Jasin, M. 1999. Brca1 controls homology-directed DNA repair. Molecular Cell 4(4):511–518. https://doi.org/10.1016/s10972765(00)80202-6

Nakato, R. and Sakata, T. 2021. Methods for ChIP-seq analysis: A practical workflow and advanced applications. Methods 187:44–53. https://doi.org/10.1016/j.ymeth.2020.03.005

Newswire, P. 2016. Precision medicine market size to exceed $87 billion by 2023: Global market insights Inc. https://www.prnewswire.com/news-releases/precision-medicine-market-size-to-exceed-87-billionby-2023-globalmarket-insights-inc-599454691.html

NextCode Health. https://www.nextcode.com

Ng, S. B., Buckingham, K. J., Lee, C., Bigham, A. W., Tabor, H. K., Dent, K. M., Huff, C. D., Shannon, P. T., Jabs, E. W., Nickerson, D. A., Shendure, J., and Bamshad, M. J. 2010. Exome sequencing identifies the cause of a mendelian disorder. Nature Genetics 42(1):30–35. https://doi.org/10.1038/ng.499

Ng, S. B., Turner, E. H., Robertson, P. D., Flygare, S. D., Bigham, A. W., Lee, C., Shaffer, T., Wong, M., Bhattacharjee, A., Eichler, E. E., Bamshad, M., Nickerson, D. A., and Shendure, J. 2009. Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461(7261):272–276. https://doi.org/10.1038/nature08250

NHLBI. Exome Sequencing Project (ESP) Exome Variant Server. https://evs.gs.washington.edu/EVS

O’Brien, J., Hayder, H., Zayed, Y., and Peng, C. 2018. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Frontiers in Endocrinology 9:402. https://doi.org/10.3389/fendo.2018.00402

Olova, N., Krueger, F., Andrews, S., Oxley, D., Berrens, R. V., Branco, M. R., and Reik, W. 2018. Comparison of wholegenome bisulfite sequencing library preparation strategies identifies sources of biases affecting DNA methylation data. Genome Biology 19(1):33. https://doi.org/10.1186/s13059-018-1408-2

Open Source Next Generation Sequencing Technology. The Polonator G007. https://www.polonator.org

Orian, A., Abed, M., Kenyagin-Karsenti, D., and Boico, O. 2009. DamID: a methylation-based chromatin profiling approach. Chromatin Immunoprecipitation Assays. Methods in Molecular Biology 567:155–169. https://doi.org/10.1007/978-1-60327-414-2_11

Osoegawa, K., Mammoser, A. G., Wu, C., Frengen, E., Zeng, C., Catanese, J. J., and de Jong, P. J. 2001. A bacterial artificial chromosome library for sequencing the complete human genome. Genome Research 11(3):483–496. https://doi.org/10.1101/gr.169601

Personal Genome Project. https://www.personalgenomes.org

Pierson, T. M., Adams, D., Bonn, F., Paola Martinelli, P., Cherukuri, P. F., Teer, J. K., Hansen, N. F., Cruz, P., Mullikin, J. C., Blakesley, R. W., Golas, G., Kwan, J., Sandler, A., Fajardo, K. F., Markello, T., Tifft, C., Blackstone, C., Rugarli, E. I., Langer, T., Gahl, W. A., and Toro, C. 2011. Whole-exome sequencing identifies homozygous AFG3L2 mutations in a spastic ataxia-neuropathy syndrome linked to mitochondrial m-AAA proteases. PLOS Genetics 7(10):e1002325. https://doi.org/10.1371/journal.pgen.1002325

Quail, M. A., Smith, M., Coupland, P., Otto, T. D., Harris, S. R., Connor, T. R., Bertoni, A., Swerdlow, H. P., and Gu, Y. 2012. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13:341. https://doi.org/10.1186/1471-2164-13-341

Rabbani, B., Mahdieh, N., Hosomichi, K., Nakaoka, H., and Inoue, I. 2012. Next-generation sequencing: impact of exome sequencing in characterizing Mendelian disorders. Journal of Human Genetics 57(10):621–632. https://doi.org/10.1038/jhg.2012.91

Rabbani, B., Nakaoka, H., Akhondzadeh, S., Tekin, M., and Mahdieh, N. 2016. Next generation sequencing: implications in personalized medicine and pharmacogenomics. Molecular BioSystems 12(6):1818–1830. https://doi.org/10.1039/c6mb00115g

Rabbani, B., Tekin, M., and Mahdieh, N. 2014. The promise of whole-exome sequencing in medical genetics. Journal of Human Genetics 59(1):5–15. https://doi.org/10.1038/jhg.2013.114

Rackham, O. J., Langley, S. R., Oates, T., Vradi, E., Harmston, N., Srivastava, P. K., Behmoaras, J., Dellaportas, P., Bottolo, L., and Petretto, E. 2017. A Bayesian approach for analysis of whole-genome bisulfite sequencing data identifies disease-associated changes in DNA methylation. Genetics 205(4):1443–1458. https://doi.org/10.1534/genetics.116.195008

Ronaghi, M., Uhlen, M., and Nyren, P. 1998. A sequencing method based on real-time pyrophosphate. Science 281(5375):363–365. https://doi.org/10.1126/science.281.5375.363

Rothberg, J. M., Hinz, W., Rearick, T. M., Schultz, J., Mileski, W., Davey, M., Leamon, J. H., Johnson, K., Milgrew, M. J., Edwards, M., Hoon, J., Simons, J. F., Marran, D., Myers, J. W., Davidson, J. F., Branting, A., Nobile, J. R., Puc, B. P., Light, D., Clark, T. A., Huber, M., Branciforte, J. T., Stoner, I. B., Cawley, S. E., Lyons, M., Fu, Y., Homer, N., Sedova, M., Miao, X., Reed, B., Sabina, J., Feierstein, E., Schorn, M., Alanjary, M., Dimalanta, E., Dressman, D., Kasinskas, R., Sokolsky, T., Fidanza, J. A., Namsaraev, E., McKernan, K. J., Williams, A., Roth, G. T., and Bustillo, J. 2011. An integrated semiconductor device enabling nonoptical genome sequencing. Nature 475(7356):348–352. https://doi.org/10.1038/nature10242

Said, A. M., Verweij, N., and Van Der Harst, P. 2018. Associations of combined genetic and lifestyle risks with incident cardiovascular disease and diabetes in the UK biobank study. JAMA Cardiology 3(8):693–702. https://doi.org/10.1001/jamacardio.2018.1717

Sanger, F. and Coulson, A. R. 1975. A rapid method for determining sequences in DNA by primed syntesis with DNA polymerase. Journal of Molecular Biology 94(3):441–448. https://doi.org/10.1016/0022-2836(75)90213-2

Sanger, F., Nicklen, S., and Coulson, A. R. 1977. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences USA 74(12):5463–5467. https://doi.org/10.1073/pnas.74.12.5463

Sanz, L. A. and Chédin, F. 2019. High-resolution, strand-specific R-loop mapping via S9.6-based DNA-RNA immunoprecipitation and high-throughput sequencing. Nature Protocols 14(6):1734–1755. https://doi.org/10.1038/s41596-019-0159-1

Schmidt, B. and Hildebrandt, A. 2017. Next-generation sequencing: big data meets high performance computing. Drug Discovery Today 22(4):712–717. https://doi.org/10.1016/j.drudis.2017.01.014

Schwarze, K., Buchanan, J., Taylor, J. C., and Wordsworth, S. 2018. Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. Genetics in Medicine 20(10):1122–1130. https://doi.org/10.1038/gim.2017.247

Sharma, R. and Ramanathan, A. 2020. The aging metabolome — biomarkers to hub metabolites. Proteomics 20(5– 6):e1800407. https://doi.org/10.1002/pmic.201800407

Shendure, J., Porreca, G. J., Reppas, N. B., Lin, X., McCutcheon, J. P., Rosenbaum, A. M., Wang, M. D., Zhang, K., Mitra, R. D., and Church, G. M. 2005. Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309(5741):1728–1732. https://doi.org/10.1126/science.1117389

Siqueira, J. F. Jr, Fouad, A. F., and Rôças, I. N. 2012. Pyrosequencing as a tool for better understanding of human microbiomes. Journal of Oral Microbiology 4:1. https://doi.org/10.3402/jom.v4i0.10743

Sladek, R., Rocheleau, G., Rung, J., Dina, C., Shen, L., Serre, D., Boutin, P., Vincent, D., Belisle, A., Hadjadj, S., Balkau, B., Heude, B., Charpentier, G., Hudson, T. J., Montpetit, A., Pshezhetsky, A. V., Prentki, M., Posner, B. I., Balding, D. J., Meyre, D., Polychronakos, C., and Froguel, P. 2007. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445(7130):881–885. https://doi.org/10.1038/nature05616

Staden, R. 1979. A strategy of DNA sequencing employing computer program. Nucleic Acids Research 6(7):2601– 2610. https://doi.org/10.1093/nar/6.7.2601

Stankov, K., Benc, D., and Draskovic, D. 2013. Genetic and epigenetic factors in etiology of diabetes mellitus type 1. Pediatrics 132(6):1112–1122. https://doi.org/10.1542/peds.2013-1652

Suwinski, P., Ong, C. K., Ling, M. H. T., Poh, Y. M., Khan, A. M., and Ong, H. S. 2019. Advancing personalized medicine through the application of whole exome sequencing and big data analytics. Frontiers in Genetics 10:49. https://doi.org/10.3389/fgene.2019.00049

Tan, O., Shrestha, R., Cunich, M., and Schofield, D. J. 2018. Application of next-generation sequencing to improve cancer management: A review of the clinical effectiveness and cost effectiveness. Clinical Genetics 93(3):533–544. https://doi.org/10.1111/cge.13199

The Database of Genomic Variants. http://dgv.tcag.ca/dgv/app

The International Hapmap Consortium. 2007. A second generation human haplotype map of over 3.1 million SNPs. Nature 449(7164):851–861. https://doi.org/10.1038/nature06258

Thibodeau, S. N., Bren, G., and Schaid, D. 1993. Microsatellite instability in cancer of the proximal colon. Science 260(5109):816–819. https://doi.org/10.1126/science.8484122

Thompson, J. F. and Steinmann, K. E. 2010. Single molecule sequencing with a HeliScope genetic analysis system. Current Protocols in Molecular Biology 92:7.10.1–7.10.14. https://doi.org/10.1002/0471142727.mb0710s92

US Food and Drug Administration. Use of standards in FDA regulatory oversight of Next Generation Sequencing (NGS) — based In Vitro Diagnostics (IVDs) used for diagnosing germline diseases. US Food and Drug Administration, 2016. https://www.fda.gov/media/99208/download

Valouev, A., Ichikawa, J., Tonthat, T., Stuart, J., Ranade, S., Peckham, H., Zeng, K., Malek J. A., Costa, G., McKernan, K., Sidow, A., Fire, A., and Johnson, S. M. 2008. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Research 18(7):1051–1063. https://doi.org/10.1101/gr.076463.108

Wang, Q., Shashikant, C. S., Jensen, M., Altman, N. S., and Girirajan, S. 2017. Novel metrics to measure coverage in whole exome sequencing datasets reveal local and global non-uniformity. Scientific Reports 7(1):885. https://doi.org/10.1038/s41598-017-01005-x

Wang, Z., Gerstein, M., and Snyder, M. 2009. RNA-seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics 10(1):57–63. https://doi.org/10.1038/nrg2484

Weber, J. L. and Myers, E. W. 1997. Human whole-genome shotgun sequencing. Genome Research 7(5):401–409. https://doi.org/10.1101/gr.7.5.401

Welcome Trust Case Control Consortium. 2010. Genomewide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature 464(7289):713–720. https://doi.org/10.1038/nature08979

White, M. B., Amos, J., Hsu, J. M., Gerrard, B., Finn, P., and Dean, M. 1990. A frame-shift mutation in the cystic fibrosis gene. Nature 344(6267):665–667. https://doi.org/10.1038/344665a0

Zarrei, M., MacDonald, J. R., Merico, D., and Scherer, S. W. 2015. A copy number variation map of the human genome. Nature Reviews Genetics 16(3):172–183. https://doi.org/10.1038/nrg3871

Zierer, J., Menni, C., Kastenmüller, G., and Spector, T. D. 2015. Integration of ‘omics’ data in aging research: from biomarkers to systems biology. Aging Cell 14(6):933–944. https://doi.org/10.1111/acel.12386

Downloads

Published

2022-12-31

How to Cite

Glotov, O., Chernov, A., Fedyakov, M., Larionova, V., Zaretsky, A., Donnikov, M., & Glotov, A. (2022). Personalized medicine: the role of sequencing technologies in diagnostics, prediction and selection of treatment of monogenous and multifactorial diseases. Biological Communications, 67(4), 266–285. https://doi.org/10.21638/spbu03.2022.403

Issue

Section

Review communications

Categories

Most read articles by the same author(s)