Rate of spontaneous polyploidization in haploid yeast Saccharomyces cerevisiae

  • Yulia Andreychuk Vavilov Institute of General Genetics, Russian Academy of Sciences, ul. Gubkina, 3, Moscow, 117971, Russian Federation https://orcid.org/0000-0003-0957-9840
  • Anna Zhuk ITMO University, Kronverkskiy pr., 49, Saint Petersburg, 197101, Russian Federation https://orcid.org/0000-0001-8683-9533
  • Elena Tarakhovskaya Vavilov Institute of General Genetics, Russian Academy of Sciences, ul. Gubkina, 3, Moscow, 117971, Russian Federation; Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-5341-2813
  • Sergei Inge-Vechtomov Vavilov Institute of General Genetics, Russian Academy of Sciences, ul. Gubkina, 3, Moscow, 117971, Russian Federation; Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-2832-6825
  • Elena Stepchenkova Vavilov Institute of General Genetics, Russian Academy of Sciences, ul. Gubkina, 3, Moscow, 117971, Russian Federation; Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-5854-8701


Polyploidization is involved in a variety of biological processes. It is one of the principal mechanisms of new species formation since it provides material for gene diversification and subsequent selection. Multiple cases of polyploidization were registered in different branches of the evolutionary tree of eukaryotes. Besides its role in evolution, polyploidization affects gene expression in living cells: pathological genome duplications often happen in cancer cells. The mechanisms and consequences of polyploidization are being studied extensively. However, quantitative determination of the polyploidization rate is challenging due to its low frequency and the absence of selective genetic markers that would phenotypically distinguish between haploids and polyploids. Our work describes a robust and straightforward method for discriminating haploid and polyploid states in the yeast Saccharomyces cerevisiae, a model organism for studying different aspects of polyploidization. The measurement of polyploidization rate showed that in yeast cells this process is mainly caused by autodiploidization rather than mating-type switching followed by hybridization.


Saccharomyces cerevisiae, polyploidization, haploid, diploid, whole-genome duplication


Download data is not yet available.


Baum, P., Yip, C., Goetsch, L., and Byers, B. 1988. A yeast gene essential for regulation of spindle pole duplication. Molecular Cell Biology 8(12):5386–5397. https://doi.org/10.1128/mcb.8.12.5386-5397.1988

Cahill, J. A., Stirling, I., Kistler, L., Salamzade, R., Ersmark, E., Fulton, T. L., Stiller, M., Green, R. E., and Shapiro, B. 2015. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears. Molecular Ecology 24(6):1205–1217. https://doi.org/10.1111/mec.13038

Chan, C. S. and Botstein, D. 1993. Isolation and characterization of chromosome-gain and increase-in-ploidy mutants in yeast. Genetics 135(3):677–691. https://doi.org/10.1093/genetics/135.3.677

Charron, G., Marsit, S., Hénault, M., Martin, H., and Landry, C. R. 2019. Spontaneous whole-genome duplication restores fertility in interspecific hybrids. Nature Communication 10(1):4126. https://doi.org/10.1038/s41467-019-12041-8

Chen, J., Xiong, Z., Miller, D. E., Yu, Z., McCroskey, S., Bradford, W. D., Cavanaugh, A. M., and Jaspersen, S. L. 2020. The role of gene dosage in budding yeast centrosome scaling and spontaneous diploidization. PLoS Genetics 16(12):e1008911. https://doi.org/10.1371/journal.pgen.1008911

Crow, C. D. and Wagner, G. P. 2006. What is the role of genome duplication in the evolution of complexity and diversity? Molecular Biology and Evolution 23(5):887–892. https://doi.org/10.1093/molbev/msj083

Davoli, T. and de Lange, T. 2011. The causes and consequences of polyploidy in normal development and cancer. Annual Review of Cell Developmental Biology 27:585–610. https://doi.org/10.1146/annurev-cellbio-092910-154234

De Vries, H. 1915. The coefficient of mutation in Oenothera biennis L. Botanical Gazette 59(3):169–196. https://www.jstor.org/stable/2468137

Dixon, W. J. and Massey, F. J. Jr.1959. Introduction to statistical analysis. SIAM Review 1(1):75–77.

Drake, J. W. 1991. Mutation: major evolutionary trends. Nucleic Acids Symposium Series (25):159–160.

Edgar, B. A. and Orr-Weaver, T. L. 2001. Endoreplication cell cycles: more for less. Cell 105(3):297–306. https://doi.org/10.1016/s0092-8674(01)00334-8

Feng, C., Wang, J., Harris, A. J., Folta, K. M., Zhao, M., and Kang, M. 2021. Tracing the diploid ancestry of the cultivated octoploid strawberry. Molecular Biology and Evolution 38(2):478–485. https://doi.org/10.1093/molbev/msaa238

Ferrão, L. F. V., Benevenuto, J., Oliveira, I. B., Cellon, C., Olmstead, J., Kirst, M., and Munoz, P. 2018. Insights Into the genetic basis of blueberry fruit-related traits using diploid and polyploid models in a GWAS context. Frontiers in Ecology and Evolution 6:107. https://doi.org/10.3389/fevo.2018.00107

Figueiro, H. V., Rodrigues, M. R., Linderoth, T., Bi, K., Silveira, L., Azevedo, F. C. C., Kantek, D., Ramalho, E., Brassaloti, R. A., Villela, P. M. S., Nunes, A. L. V., Teixeira, R. H. F., Morato, R. G., Loska, D., Saragüeta, P., Gabaldón, T., Teeling, E. C., O’Brien, S. J., Nielsen, R., Coutinho, L. L., Oliveira, G., Murphy, W. J., and Eizirik, E. 2017. Genomewide signature of comlex introgression and adaptive evolution in the big cats. Science Advances 3(7):e1700299. https://doi.org/10.1126/sciadv.1700299

Gentric, G. and Desdouets, C. 2014. Polyploidization in liver tissue. The American Journal of Pathology 184(2):322–331. https://doi.org/10.1016/j.ajpath.2013.06.035

Gordenin, D. A. and Inge-Vechtomov, S. G. 1981. Mechanism of mutant induction in the ade2 gene of diploid Saccharomyces cerevisiae yeasts by ultraviolet rays. Genetika 17(5):822–831. (In Russian)

Haber, J. E. 1992. Matyng-type gene switching in Saccharomyces cerevisiae. Trends in Genetics 8(12):446–452. https://doi/oorg/10.1016/0168-9525(92)90329-3

Halas, A., Fijak-Moskal, J., Kuberska, R., Pienkowski, V. M., Kaniak-Golik, A., Pollak, A., Poznanski, J., Rydzanicz, M., Bik-Miltanowski, M., Sledziewska-Gojska, E., and Ptoski, R. 2021. Developmental delay with hypotrophy associated with homozygous functionally relevant REV3L variant. Journal of Molecular Medicine 99(3):415–423. https://doi.org/10.1007/s00109-020-02033-3

Hamada, K., Nakatomi, Y., and Shimada, S. 1992. Direct induction of tetraploids or homozygous diploids in the industrial yeast Saccharomyces cerevisiae by hydrostatic pressure. Current Genetics 22(5):371–376. https://doi.org/10.1007/BF00352438

Harari, Y., Ram, Y., Rappoport, N., Hadany, L., and Kupiec, M. 2018. Spontaneous changes in ploidy are common in yeast. Current Biology 28(6):825–835. https://doi.org/10.1016/j.cub.2018.01.062

Inge-Vechtomov, S. G. and Repnevskaya, M. V. 1989. Phenotypic expression of primary lesions of genetic material in Saccharomyces yeasts. Genome 31(2):497–502. https://doi.org/10.1139/g89-097

Inge-Vechtomov, S. G., Repnevskaia, M. V., and Karpova, T. S 1986. Hybridization of cells of the same mating type in Saccharomyces yeasts. Genetika 22(11):2625–2636. (In Russian)

Jaspersen, S. L., Giddings, T. H. Jr., and Winey, M. 2002. Mps3p is a novel component of the yeast spindle pole body that interacts with the yeast centrin homologue Cdc31p. Journal of Cell Biology 159(6):945–956. https://doi.org/10.1083/jcb.200208169

Jaspersen, S. L., Martin, A. E., Glazko, G., Giddings, T. H. Jr., Morgan, G., Mushegian, A., and Winey, M. 2006. The Sad1-UNC-84 homology domain in Mps3 interacts with Mps2 to connect the spindle pole body with the nuclear envelope. Journal of Cell Biology 174(5):665–675. https://doi.org/10.1083/jcb.200601062

Karpechenko, G. D. 1928. Polyploid hybrids of Raphanus sativus L. X Brassica oleracea L. (On the problem of experimental species formation). Zeitschrift Für Induktive Abstammungs — Und Vererbungslehre 48(1):1–85. https://doi.org/10.1007/bf01740955

Karpova, T. S., Gordenin, D. A., Kozina, T. N., Andrianova, V. M., Larionov, V. L., and Inge-Vechtomov, S. G. 1984. Rapid genetic test for discrimination between haploid and polyploid transformants in Saccharomyces. Current Genetics 8(5):341–344. https://doi.org/10.1007/BF00419822

Kerr, G. W., Sarkar, S., and Arumugam, P. 2012. How to halve ploidy: lessons from budding yeast meiosis. Cellular and Molecular Life Sciences 69(18):3037–3051. https://doi.org/10.1007/s00018-012-0974-9

Klar, A. J. 2010. The yeast mating-type switching mechanism: a memoir. Genetics 186(2):443–449. https://doi.org/10.1534/genetics.110.122531

Kochenova, O. V., Soshkina, J. V., Stepchenkova, E. I., IngeVechtomov, S. G., and Shcherbakova, P. V. 2011. Participation of translesion synthesis DNA polymerases in the maintenance of chromosome integrity in yeast Saccharomyces cerevisiae. Biochemistry 76(1):49–60. https://doi.org/10.1134/s000629791101007x

Lada, A. G., Stepchenkova, E. I., Waisertreiger, I. S., Noskov, V. N., Dhar, A., Eudy, J. D., Boissy, R. J., Hirano, M., Rogozin, I. B., and Pavlov, Y. I. 2013. Genome-wide mutation avalanches induced in diploid yeast cells by a base analog or an APOBEC deaminase. PLoS Genetics 9(9):e1003736. https://doi.org/10.1371/journal.pgen.1003736

Lee, C. S. and Haber, J. E. 2015. Mating-type gene switching in Saccharomyces cerevisiae. Microbiology Spectrum 3(2):MDNA3-0013-2014. https://doi.org/10.1128/microbiolspec.MDNA3-0013-2014

Leggatt, R. A. and Iwama, G. K. 2003. Occurrence of polyploidy in fishes. Reviews in Fish Biology and Fisheries 13:237–246. https://doi.org/10.1023/B:RFBF.0000033049.00668.fe

Li, F., Flanary, P. L., Altieri, D. C., and Dohlman, H. G. 2000. Cell division regulation by BIR1, a member of the inhibitor of apoptosis family in yeast. Journal of Biological Chemistry 275(10):6707–6711. https://doi.org/10.1074/jbc.275.10.6707

Lin, Y. H., Zhang, S., Zhu, M., Lu, T., Chen, K., Wen, Z., Wang, S., Xiao, G., Luo, D., Jia, Y., Li, L., MacConmara, M., Hoshida, Y., Singal, A. G., Yopp, A., Wang, T., and Zhu, H. 2020. Mice with increased numbers of polyploid hepatocytes maintain regenerative capacity but develop fewer hepatocellular carcinomas following chronic liver injury. Gastroenterology 158(6):1698–1712. https://doi.org/10.1053/j.gastro.2020.01.026

Lobachevskiĭ, P. N., Cherevatenko, A. P., and Mishonova, V. B. 1988. Relation of the radiosensitivity of yeast cells to the LET of the radiation. Experiments with diploid cells. Radiobiologiia (5):644–652. (In Russian)

Luca, F. C. and Winey, M. 1998. MOB1, an essential yeast gene required for completion of mitosis and maintenance of ploidy. Molecular Biology of Cell 9(1):29–46. https://doi.org/10.1091/mbc.9.1.29

Marcet-Houben, M. and Gabaldón, T. 2015. Beyond the whole-genome duplication: phylogenetic evidence for an ancient interspecies hybridization in the baker’s yeast lineage. PLoS Biology 13(8):e1002220. https://doi.org/10.1371/journal.pbio.1002220

Matsumoto, T., Wakefield, L., Peters, A., Peto, M., Spellman, P., and Grompe, M. 2021. Proliferative polyploid cells give rise to tumors via ploidy reduction. Nature Communication 12(1):646. https://doi.org/10.1038/s41467-021-20916-y

Meiron, H., Nahon, E., and Raveh, D. 1995. Identification of the heterothallic mutation in HO-endonuclease of S. cerevisiae using HO/ho chimeric genes. Current Genetics 28(4):367–373. https://doi.org/10.1007/BF00326435

Meyer, A. and Schartl, M. 1999. Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Current Opinion in Cell Biology 11(6):699–704. https://doi.org/10.1016/s0955-0674(99)00039-3

Meyers, L. A. and Levin, D. A. 2006. On the abundance of polyploids in flowering plants. Evolution 60(6):1198–1206. https://doi.org/10.1111/j.0014-3820.2006.tb01198.x

Morales, L. and Dujon, B. 2012. Evolutionary role of interspecies hybridization and genetic exchanges in yeasts. Microbiology and Molecular Biology Reviews 76(4):721–739. https://doi.org/10.1128/MMBR.00022-12

Mortimer, R. K. 1958. Radiobiological and genetic studies on a polyploid series (haploid to hexaploid) of Saccharomyces cerevisiae. Radiation Research 9(3):312–326.

Ohnishi, G., Endo, K., Doi, A., Fujita, A., Daigaku, Y., Nunoshiba, T., and Yamamoto, K. 2004. Spontaneous mutagenesis in haploid and diploid Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications 325(3):928–933. https://doi.org/10.1016/j.bbrc.2004.10.120

Ohno, S. 1970. Polyploidy: Duplication of the entire genome; pp. 98–106 in Evolution by gene duplication. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642- 86659-3_17

Orr-Weaver, T. L. 2015. When bigger is better: the role of polyploidy in organogenesis. Trends in Genetics 31(6):307– 315. https://doi.org/10.1016/j.tig.2015.03.011

Pavlov, Iu. I., Noskov, V. N., Chernov, Iu. O., and Gordenin, D. A. 1988. Mutability of LYS2 gene in diploid Saccharomyces yeasts. II. Frequency of mutants induced by 6-N-hydroxylaminopurine and propiolactone. Genetika 24(10):1752–1760. (In Russian)

Ptak, C., Anderson, A. M., Scott, R. J., Van de Vosse, D., Rogers, R. S., Sydorskyy, Y., Aitchison, J. D., and Wozniak, R. W. 2009. A role for the karyopherin Kap123p in microtubule stability. Traffic 10(11):1619–1634. https://doi.org/10.1111/j.1600-0854.2009.00978.x

Repnevskaya, M. V., Karpova, T. S., and Inge-Vechtomov, S. G. 1987. Hybridization and cytoduction among yeast cells of the same mating type. Current Genetics 12:511–517. https://doi.org/10.1007/BF00419560

Rios, A. C., Fu, N. Y., Jamieson, P. R., Pal, B., Whitehead, L., Nicholas, K. R., Lindeman, G. J., and Visvader, J. E. 2016. Essential role for a novel population of binucleated mammary epithelial cells in lactation. Nature Communications 7:11400. https://doi.org/10.1038/ncomms11400

Rose, M. D. and Fink, G. R. 1987. KAR1, a gene required for function of both intranuclear and extranuclear microtubules in yeast. Cell 48(6):1047–1060. https://doi.org/10.1016/0092-8674(87)90712-4

Schild, D., Ananthaswamy, H. N., and Mortimer, R. K. 1981. An endomitotic effect of a cell cycle mutation of Saccharomyces cerevisiae. Genetics 97(3–4):551–562. https://doi.org/10.1093/genetics/97.3-4.551

Schladebeck, S. and Mösch, H. U. 2013. The RNA-binding protein Whi3 is a key regulator of developmental signaling and ploidy in Saccharomyces cerevisiae. Genetics 195(1):73–86. https://doi.org/10.1534/genetics.113.153775

Schmid, M., Evans, B. J., and Bogart, J. P. 2015. Polyploidy in Amphibia. Cytogenetic and Genome Research 145(3– 4):315–330. https://doi.org/10.1159/000431388

Sharp, N. P., Sandell, L., and Otto, S. P. 2018. The genome-wide rate and spectrum of spontaneous mutations differs between haploid and diploid yeast. Proceedings of the National Academy of Sciences of the USA 115(22):E5046– E5055. https://doi.org/10.1073/pnas.1801040115

Soltis, P. S., Marchant, D. B., Van de Peer, Y., and Soltis, D. E. 2015. Polyploidy and genome evolution in plants. Current Opinion in Genetic Development 35:119– 125. https://doi.org/10.1016/j.gde.2015.11.003

Sroga, J. M., Ma, X., and Das, S. K. 2012. Developmental regulation of decidual cell polyploidy at the site of implantation. Frontiers in Bioscience 4:1475–1486. https://doi.org/10.2741/s347

Stepchenkova, E. I., Kochenova, O. V., Zhuk, A. S., Andreychuk, Yu. V., and Inge-Vechtomov, S. G. 2011. Phenotypic manifestation and trans-conversion of primary genetic material damages considered in the alpha-test on the yeast Saccharomyces cerevisiae. Gigiena i Sanitarija (6):64–69. (In Russian)

Stepchenkova, E. I., Shiryaeva, A. S., and Pavlov, Y. I. 2018. Deletion of the DEF1 gene does not confer UV-immutability but frequently leads to self-diploidization in yeast Saccharomyces cerevisiae. DNA Repair 70:49–54. https://doi.org/10.1016/j.dnarep.2018.08.026

Taylor, J. S., Van de Peer, Y., and Meyer, A. 2001. Genome duplication, divergent resolution and speciation. Trends in Genetics 17(6):299–301. https://doi.org/10.1016/s0168-9525(01)02318-6

Turanlı-Yıldız, B., Benbadis, L., Alkım, C., Sezgin, T., Akşit, A., Gökçe, A., Öztürk, Y., Baykal, A. T., Çakar, Z. P., and François, J. M. 2017. In vivo evolutionary engineering for ethanol-tolerance of Saccharomyces cerevisiae haploid cells triggers diploidization. Journal of Bioscience and Bioengineering 124(3):309–318. https://doi.org/10.1016/j.jbiosc.2017.04.012

Villanea, F. A. and Schraiber, J. G. 2019. Multiple episodes of interbreeding between Neanderthal and modern humans. Nature Ecology and Evolution 3(1):39–44. https://doi.org/10.1038/s41559-018-0735-8

Winey, M., Goetsch, L., Baum, P., and Byers, B. 1991. MPS1 and MPS2: novel yeast genes defining distinct steps of spindle pole body duplication. Journal of Cell Biology 114(4):745–754. https://doi.org/10.1083/jcb.114.4.745

Whitney, K. D., Ahern, J. R., Campbell, L. G., Albert, L. P., and King, M. S. 2010. Patterns of hybridization in plants. Perspectives in Plant Ecology 12:175–182. https://doi.org/10.1016/j.ppees.2010.02.002

Wood, T. E., Takebayashi, N., Barker, M. S., Mayrose, I., Greenspoon, P. B., and Rieseberg, L. H. 2009. The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences of the USA 106(33):13875–13879. https://doi.org/10.1073/pnas.0811575106

Xue, Z., Shan, X., Sinelnikov, A., and Mélèse, T. 1996. Yeast mutants that produce a novel type of ascus containing asci instead of spores. Genetics 144(3):979–989. https://doi.org/10.1093/genetics/144.3.979

Zakharov, I. A., Kozhin, S. A., Kozhina, T. N., and Fedorova, I. V. 1984. Collected methods in genetics of the yeast Saccharomyces. Nauka, Leningrad. (In Russian)

Zhang, W., Dasmahapatra, K. K., Mallet, J., Moreira, G. R., and Kronforst, M. R. 2016. Genome-wide introgression among distantly related Heliconius butterfly species. Genome Biology 17:25. https://doi.org/10.1186/s13059-016-0889-0

Zhimulev, I. F., Belyaeva, E. S., Semeshin, V. F., Koryakov, D. E., Demakov, S. A., Demakova, O. V., Pokholkova, G. V., and Andreyeva, E. N. 2004. Polytene chromosomes: 70 years of genetic research. International Review of Cytology 241:203–275. https://doi.org/10.1016/S0074-7696(04)41004-3

Zhu, Y. O., Sherlock, G., and Petrov, D. A. 2016. Whole genome analysis of 132 clinical Saccharomyces cerevisiae strains reveals extensive ploidy variation. G3 6(8):2421–2434. https://doi.org/10.1534/g3.116.029397

Zhuk, A. S., Stepchenkova, E. I., and Inge-Vechtomov, S. G. 2020. Detection of the DNA primary structure modifications induced by the base analog 6-n-hydroxylaminopurine in the alpha-test in yeast saccharomyces cerevisiae. Ecological Genetics 18(3):357–366. https://doi.org/10.17816/ecogen34581

How to Cite
Andreychuk, Y., Zhuk, A., Tarakhovskaya, E., Inge-Vechtomov, S., & Stepchenkova, E. (2022). Rate of spontaneous polyploidization in haploid yeast <em>Saccharomyces cerevisiae</em&gt;. Biological Communications, 67(2), 88–96. https://doi.org/10.21638/spbu03.2022.202
Full communications