Transcriptomic analysis of sym28 and sym29 supernodulating mutants of pea (Pisum sativum L.) under complex inoculation with beneficial microorganisms

Authors

  • Vladimir Zhukov Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0002-2411-9191
  • Evgeny Zorin Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0001-5666-3020
  • Aleksandr Zhernakov Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0001-8961-9317
  • Alexey Afonin Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0002-8530-0226
  • Gulnar Akhtemova Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0001-7957-3693
  • Andrej Bovin Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0003-4061-435X
  • Aleksandra Dolgikh Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0003-1845-9701
  • Artemii Gorshkov Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0002-7296-0188
  • Emma Gribchenko Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0002-1538-5527
  • Kira Ivanova Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0002-9119-065X
  • Anna Kirienko Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0002-2519-306X
  • Anna Kitaeva Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0001-7873-6737
  • Marina Kliukova Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0003-1119-5512
  • Olga Kulaeva Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0003-2687-9693
  • Pyotr Kusakin Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0003-2795-515X
  • Irina Leppyanen Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0002-2158-0855
  • Olga Pavlova Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0003-0528-5618
  • Daria Romanyuk Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0001-9576-1256
  • Elizaveta Rudaya Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0002-3081-9880
  • Tatiana Serova Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0002-7236-1003
  • Oksana Shtark Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0002-3656-4559
  • Anton Sulima Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0002-2300-857X
  • Anna Tsyganova Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0003-3505-4298
  • Ekaterina Vasileva Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0001-5599-0361
  • Elena Dolgikh Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0002-5375-0943
  • Viktor Tsyganov Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation https://orcid.org/0000-0003-3105-8689
  • Igor Tikhonovich Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation; Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0001-8968-854X

DOI:

https://doi.org/10.21638/spbu03.2021.301

Abstract

The garden pea (Pisum sativum L.), like most members of Fabaceae family, is capable of forming symbioses with beneficial soil microorganisms such as nodule bacteria (rhizobia), arbuscular mycorrhizal (AM) fungi and plant growth promoting bacteria (PGPB). The autoregulation of nodulation (AON) system is known to play an important role in controlling both the number of nodules and the level of root colonization by AM via root-to-shoot signaling mediated by CLAVATA/ESR-related (CLE) peptides and their receptors. In the pea, mutations in genes Sym28 (CLV2-like) and Sym29 (CLV1-like), which encode receptors for CLE peptides, lead to the supernodulation phenotype, i.e., excessive nodule formation. The aim of the present study was to analyze the response of pea cv. ‘Frisson’ (wild type) and mutants P64 (sym28) and P88 (sym29) to complex inoculation with rhizobia, AM fungi and PGPB, with regard to biomass accumulation, yield and transcriptomic alterations. The plants were grown in quartz sand for 2 and 4 weeks after inoculation with either rhizobia (Rh) or complex inoculation with Rh + AM, Rh + PGPB, and Rh+AM+PGPB, and the biomass and yield were assessed. Transcriptome sequencing of whole shoots and roots was performed using a modified RNAseq protocol named MACE (Massive Analysis of cDNA Ends). In the experimental conditions, P88 (sym29) plants demonstrated the best biomass accumulation and yield, as compared to the wild type and P64 (sym28) plants, whereas P64 (sym28) had the lowest rate of biomass and seed yield. The transcriptome analysis showed that both supernodulating mutants more actively responded to biotic and abiotic factors than the wild-type plants and demonstrated increased expression of genes characteristic to late stages of nodule development. The roots of P64 (sym28) plants responded to AM+Rh treatment with upregulation of genes encoding plastid proteins, which can be connected with the activation of carotenoid biosynthesis (namely, the non-mevalonate pathway that takes place in root plastids). The more active response to symbionts in P88 (sym29) plants, as compared to cv. ‘Frisson’, was associated with counterregulation of transcripts involved in chloroplast functioning and development in leaves, which accompanies successful plant development in symbiotic conditions. Finally, the effect of retardation of plant aging upon mycorrhization on a transcriptomic level was recorded for cv. ‘Frisson’ but not for P64 (sym28) and P88 (sym29) mutants, which points towards its possible connection with the AON system. The results of this work link the plant’s autoregulation with the responsiveness to inoculation with beneficial soil microorganisms.

Keywords:

RNAseq, transcriptomics, arbuscular mycorrhiza, nodule bacteria, complex inoculation, autoregulation of nodulation, garden pea

Downloads

Download data is not yet available.
 

References

Afonin, A., Sulima, A., Zhernakov, A., and Zhukov, V. 2017. Draft genome of the strain RCAM1026 Rhizobium leguminosarum bv. viciae. Genomics Data 11:85–86. https://doi.org/10.1016/j.gdata.2016.12.003

Afonin, A. M., Gribchenko, E. S., Akhtemova, G. A., Laktionov, Y. V, Kozhemyakov, A. P., and Zhukov, V. A. 2021. Complete genome sequence of the bacterial component of mysorin biopreparation. Microbiology Resource Announcements 10(11): e01287-20. https://doi.org/10.1128/MRA.01287-20

Alexa, A. and Rahnenführer, J. 2009. Gene set enrichment analysis with topGO. Bioconductor Improv 27.

Andrews, S. F., Krueger, F., Seconds-Pichon, A., Biggins, F., and Wingett, S. F. 2014. A quality control tool for high throughput sequence data. Babraham Bioinformatics.

Borisov, A. Y., Danilova, T. N., Koroleva, T. A., Kuznetsova, E. V., Madsen, L., Mofett, M., Naumkina, T. S., Nemankin, T. A., Ovchinnikova, E. S., Pavlova, Z. B., Petrova, N. E., Pinaev, A. G., Radutoiu, S., Rozov, S. M., Rychagova, T. S., Shtark, O. Y., Solovov, I. I., Stougaard, J., Tikhonovich, I. A., Topunov, A. F., Tsyganov, V. E., Vasil’chikov, A. G., Voroshilova, V. A., Weeden, N. F., Zhernakov, A. I., and Zhukov, V. A. 2007. Regulatory genes of garden pea (Pisum sativum L.) controlling the development of nitrogen-fixing nodules and arbuscular mycorrhiza: A review of basic and applied aspects. Applied Biochemistry and Microbiology 43(3):237–243. https://doi.org/10.1134/S0003683807030027

Bourion, V., Laguerre, G., Depret, G., Voisin, A.-S., Salon, C., and Duc, G. 2007. Genetic variability in nodulation and root growth affects nitrogen fixation and accumulation in pea. Annals of Botany 100(3):589–598. https://doi.org/10.1093/aob/mcm147

Bryant, D. M., Johnson, K., DiTommaso, T., Tickle, T., Couger, M. B., Payzin-Dogru, D., Lee, T. J., Leigh, N. D., Kuo, T.-H., and Davis, F. G. 2017. A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Reports 18(3):762–776. https://doi.org/10.1016/j.celrep.2016.12.063

Bushnell, B. 2018. BBTools: a suite of fast, multithreaded bioinformatics tools designed for analysis of DNA and RNA sequence data. Jt Genome Inst.

Courty, P. E., Smith, P., Koegel, S., Redecker, D., and Wipf, D. 2015. Inorganic nitrogen uptake and transport in beneficial plant root-microbe interactions. Critical Reviews in Plant Sciences 34(1–3):4–16. https://doi.org/10.1080/07352689.2014.897897

Cranenbrouck, S., Voets, L., Bivort, C., Renard, L., Strullu, D.-G., and Declerck, S. 2005. Methodologies for in vitro cultivation of arbuscular mycorrhizal fungi with root organs. In Declerck, S., Fortin, J. A., and Strullu, DG. (eds) In Vitro Culture of Mycorrhizas. Soil Biology, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27331-X_18

Desalegn, G., Turetschek, R., Kaul, H.-P., and Wienkoop, S. 2016. Microbial symbionts affect Pisum sativum proteome and metabolome under Didymella pinodes infection. Journal of Proteomics 143:173–187. https://doi.org/10.1016/j.jprot.2016.03.018

Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T. R. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635

Felten, J., Kohler, A., Morin, E., Bhalerao, R. P., Palme, K., Martin, F., Ditengou, F. A., and Legué, V. 2009. The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling. Plant Physiology 151(4):1991–2005. https://doi.org/10.1104/pp.109.147231

Kozhemyakov, A. P., Laktionov, Y. V, Popova, T. A., Orlova, A. G., Kokorina, A. L., Vaishlya, O. B., Agafonov, E. V, Guzhvin, S. A., Churakov, A. A., and Yakovleva, M. T. 2015. The scientific basis for the creation of new forms of microbial biochemicals. Sel'skokhozyaistvennaya biologiya 50(3):369–376. https://doi.org/10.15389/agrobiology.2015.3.369eng

Krusell, L., Madsen, L. H., Sato, S., Aubert, G., Genua, A., Szczyglowski, K., Duc, G., Kaneko, T., Tabata, S., and de Bruijn, F. 2002. Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature 420(6914):422–426. https://doi.org/10.1038/nature01207

Krusell, L., Sato, N., Fukuhara, I., Koch, B. E. V., Grossmann, C., Okamoto, S., Oka‐Kira, E., Otsubo, Y., Aubert, G., and Nakagawa, T. 2011. The Clavata2 genes of pea and Lotus japonicus affect autoregulation of nodulation. The Plant Journal 65(6):861–871. https://doi.org/10.1111/j.1365-313X.2010.04474.x

Larrainzar, E., Riely, B. K., Kim, S. C., Carrasquilla-Garcia, N., Yu, H.-J., Hwang, H.-J., Oh, M., Kim, G. B., Surendrarao, A. K., and Chasman, D. 2015. Deep sequencing of the Medicago truncatula root transcriptome reveals a massive and early interaction between nodulation factor and ethylene signals. Plant Physiology 169(1):233–265. https://doi.org/10.1104/pp.15.00350

Leppyanen, I. V, Shakhnazarova, V. Y., Shtark, O. Y., Vishnevskaya, N. A., Tikhonovich, I. A., and Dolgikh, E. A. 2018. Receptor-like kinase LYK9 in Pisum sativum L. is the CERK1-like receptor that controls both plant immunity and AM symbiosis development. International Journal of Molecular Sciences 19(1):8. https://doi.org/10.3390/ijms19010008

Love, M. I., Huber, W., and Anders, S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15(12):550. https://doi.org/10.1186/s13059-014-0550-8

Lugtenberg, B., Rozen, D. E., and Kamilova, F. 2017. Wars between microbes on roots and fruits. F1000Research 6:343. https://doi.org/10.12688/f1000research.10696.1

Magori, S., Oka-Kira, E., Shibata, S., Umehara, Y., Kouchi, H., Hase, Y., Tanaka, A., Sato, S., Tabata, S., and Kawaguchi, M. 2009. TOO MUCH LOVE, a root regulator associated with the long-distance control of nodulation in Lotus japonicus. Molecular Plant-Microbe Interactions 22(3):259–268. https://doi.org/10.1094/MPMI-22-3-0259

Morandi, D., Sagan, M., Prado-Vivant, E., and Duc, G. 2000. Influence of genes determining supernodulation on root colonization by the mycorrhizal fungus Glomus mosseae in Pisum sativum and Medicago truncatula mutants. Mycorrhiza 10(1):37–42. https://doi.org/10.1007/s005720050285

Mortier, V., Den Herder, G., Whitford, R., Van de Velde, W., Rombauts, S., D’haeseleer, K., Holsters, M., and Goormachtig, S. 2010. CLE peptides control Medicago truncatula nodulation locally and systemically. Plant Physiology 153(1):222–237. https://doi.org/10.1104/pp.110.153718

Müller, L.M., Flokova, K., Schnabel, E., Sun, X., Fei, Z., Frugoli, J., Bouwmeester, H. J., and Harrison, M. J. 2019. A CLE–SUNN module regulates strigolactone content and fungal colonization in arbuscular mycorrhiza. Nature Plants 5(9):933–939. https://doi.org/10.1038/s41477-019-0501-1

Nadal, M. and Paszkowski, U. 2013. Polyphony in the rhizosphere: presymbiotic communication in arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology 16(4):473–479. https://doi.org/10.1016/j.pbi.2013.06.005

Oldroyd, G. E. D. 2013. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nature Reviews Microbiology 11(4):252–263. https://doi.org/10.1038/nrmicro2990

Parniske, M. 2008. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews Microbiology 6(10):763–775. https://doi.org/10.1038/nrmicro1987

Reid, D. E., Ferguson, B. J., Hayashi, S., Lin, Y.-H., and Gresshoff, P. M. 2011. Molecular mechanisms controlling legume autoregulation of nodulation. Annals of Botany 108(5):789–795. https://doi.org/10.1093/aob/mcr205

Roy, S., Liu, W., Nandety, R. S., Crook, A., Mysore, K. S., Pislariu, C. I., Frugoli, J., Dickstein, R., and Udvardi, M. K. 2020. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. The Plant Cell 32(1):15–41. https://doi.org/10.1105/tpc.19.00279

Sagan, M. and Duc, G. 1996. Sym28 and Sym29, two new genes involved in regulation of nodulation in pea (Pisum sativum L.). Symbiosis 20:229–245.

Sagan, M., Ney, B., and Duc, G. 1993. Plant symbiotic mutants as a tool to analyse nitrogen nutrition and yield relationship in field-growth peas (Pisum sativum L.). Plant and Soil 153(1):33–45. https://doi.org/10.1007/BF00010542

Salon, C., Munier-Jolain, N., Duc, G., Voisin, A.-S., Grandgirard, D., Larmure, A., Emery, R., and Ney, B. 2001. Grain legume seed filling in relation to nitrogen acquisition: a review and prospects with particular reference to pea. Agronomie 21(6–7):539–552. https://doi.org/10.1051/agro:2001143

Shtark, O. Y., Puzanskiy, R. K., Avdeeva, G. S., Yurkov, A. P., Smolikova, G. N., Yemelyanov, V. V., Kliukova, M. S., Shavarda, A. L., Kirpichnikova, A. A., Zhernakov, A. I., Afonin, A. M., Tikhonovich, I. A., Zhukov, V. A., and Shishova, M. F. 2019. Metabolic alterations in pea leaves during arbuscular mycorrhiza development. PeerJ 7:e7495. https://doi.org/10.7717/peerj.7495

Shtark, O. Y., Sulima, A. S., Zhernakov, A. I., Kliukova, M. S., Fedorina, J. V., Pinaev, A .G., Kryukov, A. A., Akhtemova, G. A., Tikhonovich, I. A., and Zhukov, V. A. 2016. Arbuscular mycorrhiza development in pea (Pisum sativum L.) mutants impaired in five early nodulation genes including putative orthologs of NSP1 and NSP2. Symbiosis 68(1–3):129–144. https://doi.org/10.1007/s13199-016-0382-2

Smith, S. E., Jakobsen, I., Grønlund, M., and Smith, F. A. 2011. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology 156(3):1050–1057. https://doi.org/10.1104/pp.111.174581

Splivallo, R., Fischer, U., Göbel, C., Feussner, I., and Karlovsky, P. 2009. Truffles regulate plant root morphogenesis via the production of auxin and ethylene. Plant Physiology 150(4):2018–2029. https://doi.org/10.1104/pp.109.141325

Strack, D. and Fester, T. 2006. Isoprenoid metabolism and plastid reorganization in arbuscular mycorrhizal roots. New Phytologist 172(1):22–34. https://doi.org/10.1111/j.1469-8137.2006.01837.x

Tikhonovich, I. A., Andronov, E. E., Borisov, A. Y., Dolgikh, E. A., Zhernakov, A. I., Zhukov, V. A., Provorov, N. A., Roumiantseva, M. L., and Simarov, B. V. 2015. The principle of genome complementarity in the enhancement of plant adaptive capacities. Russian Journal of Genetics 51(9):831–846. https://doi.org/10.1134/S1022795415090124

Tsyganov, V. E. and Tsyganova, A. V. 2020. Symbiotic regulatory genes controlling nodule development in Pisum sativum L. Plants 9(12):1741. https://doi.org/10.3390/plants9121741

Tsyganova, A. V, Kitaeva, A. B., and Tsyganov, V. E. 2018. Cell differentiation in nitrogen-fixing nodules hosting symbiosomes. Functional Plant Biology 45(2):47–57. https://doi.org/10.1071/FP16377

Walter, M. H., Fester, T., and Strack, D. 2000. Arbuscular mycorrhizal fungi induce the non-mevalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the ‘yellow pigment’and other apocarotenoids. The Plant Journal 21(6):571–578. https://doi.org/10.1046/j.1365-313x.2000.00708.x

Wang, C., Reid, J. B., and Foo, E. 2018. The art of self-control–autoregulation of plant–microbe symbioses. Frontiers in Plant Science 9:988. https://doi.org/10.3389/fpls.2018.00988

Wickham, H. 2016. Ggplot2: elegant graphics for data analysis. Springer. https://doi.org/10.1007/978-3-319-24277-4

Zhernakov, A. I., Shtark, O. Y., Kulaeva, O. A., Fedorina, J. V., Afonin, A. M., Kitaeva, A. B., Tsyganov, V. E., Afonso-Grunz, F., Hoffmeier, K., Rotter, B., Winter, P., Tikhonovich, I. A., and Zhukov, V. A. 2019. Mapping-by-sequencing using NGS-based 3’-MACE-Seq reveals a new mutant allele of the essential nodulation gene Sym33 (IPD3) in pea (Pisum sativum L.). PeerJ 7:e6662. https://doi.org/10.7717/peerj.6662

Zhukov, V. A., Shtark, O. Y., Nemankin, T. A., Kryukov, A. A., Borisov, A. Y., and Tikhonovich, I. A. 2016. Genetic mapping of pea (Pisum sativum L.) genes involved in symbiosis. Sel'skokhozyaistvennaya biologiya 51(5):593. https://doi.org/10.15389/agrobiology.2016.5.593eng

Zipfel, C. and Oldroyd, G. E. D. 2017. Plant signalling in symbiosis and immunity. Nature 543(7645):328–336. https://doi.org/10.1038/nature22009

Downloads

Additional Files

Published

2021-11-12

How to Cite

Zhukov, V., Zorin, E., Zhernakov, A., Afonin, A., Akhtemova, G., Bovin, A., … Tikhonovich, I. (2021). Transcriptomic analysis of <em>sym28</em> and <em>sym29</em> supernodulating mutants of pea (<em>Pisum sativum</em> L.) under complex inoculation with beneficial microorganisms. Biological Communications, 66(3), 181–197. https://doi.org/10.21638/spbu03.2021.301

Issue

Section

Full communications

Categories