Some aspects of metal ion transport and in silico gene expression analysis of potassium/sodium ion transporters, channels and exchangers in root nodules

Authors

  • Natalia Trifonova K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, ul. Botanicheskaya, 35, Moscow, 127276, Russian Federation https://orcid.org/0000-0002-3493-9994
  • Maria Koroleva K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, ul. Botanicheskaya, 35, Moscow, 127276, Russian Federation https://orcid.org/0000-0001-9920-7383
  • Elena Fedorova K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, ul. Botanicheskaya, 35, Moscow, 127276, Russian Federation https://orcid.org/0000-0003-3953-1282

DOI:

https://doi.org/10.21638/spbu03.2021.107

Abstract

Rhizobia establish a symbiotic relationship with legumes, which results in the formation of root nodules, the ecological niche for intracellular rhizobia. The infected cell of a root nodule is a special integral unit of plant and nitrogen fixing rhizobia. Nodules tend to be very sensitive to ionic stresses, such as salt stress. High vulnerability toward ionic stresses might be due to defects in ion balance and transport in the infected tissue. The purpose of this minireview is to summarize the current data regarding metal ion transport in the root nodule, with particular emphasis on potassium/sodium ion transport. A bioinformatic approach and in silico gene expression analysis have been used to obtain some insight for K+/Na+ transportеr channels and exchangers in root nodule developmental zones.

Keywords:

symbiosis, root nodule, infected cell, symbiosome, ion transporters

Downloads

Download data is not yet available.
 

References

Abreu, I., Saéz, Á., Castro Rodríguez, R., Escudero, V., Rodríguez Haas, B., Senovilla, M., and González Guerrero, M. 2017. Medicago truncatula Zinc Iron Permease6 provides zinc to rhizobia infected nodule cells. Plant, Cell & Environment 40:2706–2719. https://doi.org/10.1111/pce.13035

Adams, E. and Shin, R. 2014. Transport, signaling, and homeostasis of potassium and sodium in plants. Journal of Integrative Plant Biology 56:231–249. https://doi.org/10.1111/jipb.12159

Baig, M. A., Ahmad, J., Bagheri, R., Ali, A. A., Al-Huqail, A. A., Ibrahim, M. M., and Qureshi, M. I. 2018. Proteomic and ecophysiological responses of soybean (Glycine max L.) root nodules to Pb and hg stress. BMC Plant Biology 18:1–21. https://doi.org/10.1186/s12870-018-1499-7

Bassil, E. and Blumwald, E. 2014. The ins and outs of intracellular ion homeostasis: NHX-type cation/H+ transporters. Current Opinion in Plant Biology 22:1–6. https://doi.org/10.1016/j.pbi.2014.08.002

Bassil, E., Zhang, S., Gong, H., Tajima, H., and Blumwald, E. 2019. Cation specificity of vacuolar NHX-type cation/H+ antiporters. Plant Physiology 179:616–629. https://doi.org/10.1104/pp.18.01103

Benedito, V. A., Li, H., Dai, X., Wandrey, M., He, J., Kaundal, R., and Zhao, P. X. 2010. Genomic inventory and transcriptional analysis of Medicago truncatula transporters. Plant Physiology 152(3):1716–1730. https://doi.org/10.1104/pp.109.148684

Belimov, A. A., Malkov, N. V., Puhalsky, J. V., Safronova, V. I., and Tikhonovich, I. A. 2016. High specificity in response of pea mutant SGECdt to toxic metals: Growth and element composition. Environmental and Experimental Botany 128:91–98. https://doi.org/10.1016/j.envexpbot.2016.04.009

Bertrand, A., Bipfubusa, M., Dhont, C., Chalifour, F.P., Drouin, P., and Beauchamp, C.J. 2016. Rhizobial strains exert a major effect on the amino acid composition of alfalfa nodules under NaCl stress. Plant Physiology and Biochemistry 108:344–352. https://doi.org/10.1016/j.plaphy.2016.08.002

Brear, E. M., Day, D. A., and Smith, P. M. C. 2013. Iron: an essential micronutrient for the legume-rhizobium symbiosis. Frontiers in Plant Science 4:359. https://doi.org/10.3389/fpls.2013.00359

Brear, E. M., Gavrin, A., Kryvoruchko, I. S., Torres-Jerez, I., Udvardi, M., Day, D. A., and Smith, P. M. 2020. GmVTL1 is an iron transporter on the symbiosome membrane of soybean with an important role in nitrogen fixation. bioRxiv 2020.03.03.975805. https://doi.org/10.1101/2020.03.03.975805

Brewin, N. J. 2004. Plant cell wall remodelling in the Rhizobium–legume symbiosis. Critical Reviews in Plant Sciences 23:293–316. https://doi.org/10.1080/07352680490480734

Coba de la Peña, T. and Pueyo, J. J. 2012. Legumes in the reclamation of marginal soils, from cultivar and inoculant selection to transgenic approaches. Agronomy for Sustainable Development 32:65–91. https://doi.org/10.1007/s13593-011-0024-2

Coba de la Peña, T., Fedorova, E., Pueyo, J. J., and Lucas, M. M. 2018. The symbiosome: legume and rhizobia co-evolution toward a nitrogen-fixing organelle? Frontiers in Plant Science 8:2229. https://doi.org/10.3389/fpls.2017.02229

Coba de la Peña, T., Redondo, F. J., Manrique, E., Lucas, M. M., and Pueyo, J. J. 2010. Nitrogen fixation persists under conditions of salt stress in transgenic Medicago truncatula plants expressing a cyanobacterial flavodoxin. Plant Biotechnology Journal 8:954–965. https://doi.org/10.1111/j.1467-7652.2010.00519.x

Curatti, L., Hernandez, J. A., Igarashi, R. Y., Soboh, B., Zhao, D., and Rubio, L. M. 2007. In vitro synthesis of the iron–molybdenum cofactor of nitrogenase from iron, sulfur, molybdenum, and homocitrate using purified proteins. Proceedings of the National Academy of Sciences USA 104:17626–17631. https://doi.org/10.1073/pnas.0703050104

Demidchik, V. 2018. ROS-activated ion channels in plants: biophysical characteristics, physiological functions and molecular nature. International Journal of Molecular Sciences 19:1263. https://doi.org/10.3390/ijms19041263

Domínguez-Ferreras, A., Muñoz, S., Olivares, J., Soto, M. J., and Sanjuán J. 2009. Role of potassium uptake systems in Sinorhizobium meliloti osmoadaptation and symbiotic performance. Journal of Bacteriology 191:2133–2143. https://doi.org/10.1128/JB.01567-08

Drain, A., Thouin, J., Wang, L., Boeglin, M., Pauly, N., Nieves-Cordones, M., and Sentenac, H. 2020. Functional characterization and physiological roles of the single Shaker outward K+ channel in Medicago truncatula. The Plant Journal 102:1249–1265. https://doi.org/10.1111/tpj.14697

Escudero, V., Abreu, I., Tejada Jiménez, M., Rosa Núñez, E., Quintana, J., Prieto, R. I., and Argüello, J. M. 2020. Medicago truncatula Ferroportin2 mediates iron import into nodule symbiosomes. New Phytologist 228:194–209. https://doi.org/10.1111/nph.16642

Fedorova, E. E., Coba de la Peña, T., Lara-Dampier, V., Trifonova, N. A., Kulikova, O., Pueyo, J. J., and Lucas, M. M. 2021. Potassium content diminishes in infected cells of Medicago truncatula nodules due to the mislocation of channels MtAKT and MtSKOR/GORK. Journal of Experimental Botany eraa508. https://doi.org/10.1093/jxb/eraa508

Gavrin, A., Chiasson, D., Ovchinnikova, E., Kaiser, B. N., Bisseling, T., and Fedorova, E. E. 2016. VAMP 721a and VAMP 721d are important for pectin dynamics and release of bacteria in soybean nodules. New Phytologist 210:1011–1021. https://doi.org/10.1111/nph.13837

Gavrin, A., Kulikova, O., Bisseling, T., and Fedorova, E. E. 2017. Interface symbiotic membrane formation in root nodules of Medicago truncatula: the role of synaptotagmins MtSyt1, MtSyt2 and MtSyt3. Frontiers in Plant Science 8:201. https://doi.org/10.3389/fpls.2017.00201

Ghosh, P. K. and Maiti, T. K. 2016. Structure of extracellular polysaccharides (EPS) produced by rhizobia and their functions in legume–bacteria symbiosis: A review. Achievements in the Life Sciences 10:136–143. https://doi.org/10.1016/j.als.2016.11.003

Gil Díez, P., Tejada Jiménez, M., León Mediavilla, J., Wen, J., Mysore, K. S., Imperial, J., and González Guerrero, M. 2019. MtMOT1.2 is responsible for molybdate supply to Medicago truncatula nodules. Plant, Cell & Environment 42:310–320. https://doi.org/10.1111/pce.13388

Granqvist, E., Sun, J., Op den Camp, R., Pujic, P., Hill, L., Normand, P., Morris R. J., Downie J. A., GeurtsR., and Oldroyd, G. E. 2015. Bacterial induced calcium oscillations are common to nitrogen fixing associations of nodulating legumes and non legumes. New Phytologist 207:551–558. https://doi.org/10.1111/nph.13464

Hakoyama, T., Niimi, K., Yamamoto, T., Isobe, S., Sato, S., Nakamura, Y., and Petersen, T. R. 2012. The integral membrane protein SEN1 is required for symbiotic nitrogen fixation in Lotus japonicus nodules. Plant and Cell Physiology 53:225–236. https://doi.org/10.1093/pcp/pcr167

Ivanov, S., Fedorova, E. E., Limpens, E., De Mita, S., Genre, A., Bonfante, P., and Bisseling, T. 2012. Rhizobium–legume symbiosis shares an exocytotic pathway required for arbuscule formation. Proceedings of the National Academy of Sciences USA 109:8316–8321. https://doi.org/10.1073/pnas.1200407109

Kondorosi, E., Mergaert, P., and Kereszt, A. 2013. A paradigm for endosymbiotic life: cell differentiation of Rhizobium bacteria provoked by host plant factors. Annual Review of Microbiology 67:611–628. https://doi.org/10.1146/annurev-micro-092412-155630

Kronzucker, H. J., Coskun, D., Schulze, L. M., Wong, J. R., and Britto, D. T. 2013. Sodium as nutrient and toxicant. Plant and Soil 369:1–23. https://doi.org/10.1007/s11104-013-1801-2

Lebaudy, A., Véry, A. A., Sentenac, H. 2007. K+ channel activity in plants: genes, regulations and functions. FEBS Letters 581:2357–2366. https://doi.org/10.1016/j.febslet.2007.03.058

Limpens, E., Ivanov, S., van Esse, W., Voets, G., Fedorova, E., and Bisseling, T. 2009. Medicago N2-fixing symbiosomes acquire the endocytic identity marker Rab7 but delay the acquisition of vacuolar identity. The Plant Cell 21:2811–2828. https://doi.org/10.1105/tpc.108.064410

Lu, M., Jiao, S., Gao, E., Song, X., Li, Z., Hao, X., Rensing, C., Wei, G. 2017. Transcriptome response to heavy metals in Sinorhizobium meliloti CCNWSX0020 reveals new metal resistance determinants that also promote bioremediation by Medicago lupulina in metal-contaminated soil. Applied and Environmental Microbiology 83:e01244-17. https://doi.org/10.1128/AEM.01244-17

Mendoza-Suárez, M. A., Geddes, B. A., Sánchez-Cañizares, C., Ramírez-González, R. H., Kirchhelle, C., Jorrin, B., and Poole, P. S. 2020. Optimizing Rhizobium-legume symbioses by simultaneous measurement of rhizobial competitiveness and N2 fixation in nodules. Proceedings of the National Academy of Sciences USA 117:9822–9831. https://doi.org/10.1073/pnas.1921225117

Mergaert, P., Kereszt, A., and Kondorosi, E. 2020. Gene expression in nitrogen-fixing symbiotic nodule cells in Medicago truncatula and other nodulating plants. The Plant Cell 32:42–68. https://doi.org/10.1105/tpc.19.00494

Nonnoi, F., Chinnaswamy, A., de la Torre, V. S. G., de la Peña, T. C., Lucas, M. M., and Pueyo, J. J. 2012. Metal tolerance of rhizobial strains isolated from nodules of herbaceous legumes (Medicago spp. and Trifolium spp.) growing in mercury-contaminated soils. Applied Soil Ecology 61:49–59. https://doi.org/10.1016/j.apsoil.2012.06.004

Oldroyd, G. E. D. 2013. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nature Reviews Microbiology 11:252–263. https://doi.org/10.1038/nrmicro2990

Parniske, M. 2018. Uptake of bacteria into living plant cells, the unifying and distinct feature of the nitrogen-fixing root nodule symbiosis. Current Opinion in Plant Biology 44:164–174. https://doi.org/10.1016/j.pbi.2018.05.016

Qiu, Q. S., Guo, Y., Quintero, F. J., Pardo, J. M., Schumaker, K. S., and Zhu, J. K. 2004. Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway. Journal of Biological Chemistry 279:207–215. https://doi.org/10.1074/jbc.M307982200

Quiñones, M. A., Ruiz-Díez, B., Fajardo, S., López-Berdonces, M. A., Higueras, P. L., and Fernández-Pascual, M. 2013. Lupinus albus plants acquire mercury tolerance when inoculated with an Hg-resistant Bradyrhizobium strain. Plant Physiology and Biochemistry 73:168–175. https://doi.org/10.1016/j.plaphy.2013.09.015

Ragel, P., Raddatz, N., Leidi, E. O., Quintero, F. J., and Pardo, J. M. 2019. Regulation of K+ nutrition in plants. Frontiers in Plant Science 10:281. https://doi.org/10.3389/fpls.2019.00281

Rodríguez-Haas, B., Finney, L., Vogt, S., González-Melendi, P., Imperial, J., and González-Guerrero, M. 2013. Iron distribution through the developmental stages of Medicago truncatula nodules. Metallomics 5:1247–1253. https://doi.org/10.1039/c3mt00060e

Roux, B., Rodde, N., Jardinaud, M. F., Timmers, T., Sauviac, L., Cottret, L., and Debellé, F. 2014. An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. The Plant Journal 77(6):817–837. https://doi.org/10.1111/tpj.12442

Roy, S., Liu, W., Nandety, R. S., Crook, A., Mysore, K. S., Pislariu, C. I., Frugoli J., Dickstein R., and Udvardi, M. K. 2020. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. The Plant Cell 32:15–41. https://doi.org/10.1105/tpc.19.00279

Rubio, L. M. and Ludden, P. W. 2008. Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Annual Review of Microbiology 62:93–111. https://doi.org/10.1146/annurev.micro.62.081307.162737

Santa-María, G. E., Oliferuk, S., and Moriconi, J. I. 2018. KT-HAK-KUP transporters in major terrestrial photosynthetic organisms: A twenty years tale. Journal of Plant Physiology 226:77–90. https://doi.org/10.1016/j.jplph.2018.04.008

Senovilla, M., Castro-Rodríguez, R., Abreu, I., Escudero, V., Kryvoruchko, I., Udvardi, M. K., and González-Guerrero, M. 2018. Medicago truncatula copper transporter 1 (MtCOPT 1) delivers copper for symbiotic nitrogen fixation. New Phytologist 218:696–709. https://doi.org/10.1111/nph.14992

Sharma, T., Dreyer, I., and Riedelsberger, J. 2013. The role of K+ channels in uptake and redistribution of potassium in the model plant Arabidopsis thaliana. Frontiers in Plant Science 4:224. https://doi.org/10.3389/fpls.2013.00224

Shvaleva, A., de la Peña, T. C., Rincón, A., Morcillo, C. N., de la Torre, V. S. G., Lucas, M. M., and Pueyo, J. J. 2010. Flavodoxin overexpression reduces cadmium-induced damage in alfalfa root nodules. Plant and Soil 326:109–121. https://doi.org/10.1007/s11104-009-9985-1

Sze, H. and Chanroj, S. 2018. Plant endomembrane dynamics: studies of K+/H+ antiporters provide insights on the effects of pH and ion homeostasis. Plant Physiology 177:875–895. https://doi.org/10.1104/pp.18.00142

Tejada-Jiménez, M., Castro-Rodríguez, R., Kryvoruchko, I., Lucas, M. M., Udvardi, M., Imperial, J., and González-Guerrero, M. 2015. Medicago truncatula natural resistance-associated macrophage Protein1 is required for iron uptake by rhizobia-infected nodule cells. Plant Physiology 168:258–272. https://doi.org/10.1104/pp.114.254672

Tsyganov, V. E., Belimov, A. A., Borisov, A. Y., Safronova, V. I., Georgi, M., Dietz, K. J., and Tikhonovich, I. A. 2007. A chemically induced new pea (Pisum sativum) mutant SGECdt with increased tolerance to, and accumulation of, cadmium. Annals of Botany 99:227–237. https://doi.org/10.1093/aob/mcl261

Tsyganov, V. E., Tsyganova, A. V., Gorshkov, A. P., Seliverstova, E. V., Kim, V. E., Chizhevskaya, E. P., Belimov, A. A., Serova, T. A., Ivanova, K. A., Kulaeva, O. A., Kusakin, P. G., Kitaeva, A. B., and Tikhonovich, I. A. 2020. Efficacy of a plant-microbe system: Pisum sativum (L.) cadmium-tolerant mutant and rhizobium leguminosarum strains, expressing pea metallothionein genes PsMT1 and PsMT2, for cadmium phytoremediation. Frontiers in Microbiology 11:15. https://doi.org/10.3389/fmicb.2020.00015

Udvardi, M. and Poole, P. S. 2013. Transport and metabolism in legume-rhizobia symbioses. Annual Review of Plant Biology 64:781–805. https://doi.org/10.1146/annurev-arplant-050312-120235

Vasse, J., De Billy, F., Camut, S., and Truchet, G. 1990. Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. Journal of Bacteriology 172:4295–4306. https://doi.org/10.1128/jb.172.8.4295-4306.1990

Véry, A. A., Nieves-Cordones, M., Daly, M., Khan, I., Fizames, C., and Sentenac, H. 2014. Molecular biology of K+ transport across the plant cell membrane: what do we learn from comparison between plant species? Journal of Plant Physiology 171:748–769. https://doi.org/10.1016/j.jplph.2014.01.011

Villette, J., Cuellar, T., Verdeil, J. L., Delrot, S., and Gaillard, I. 2020. Grapevine potassium nutrition and fruit quality in the context of climate change. Frontiers in Plant Science 11:123. https://doi.org/10.3389/fpls.2020.00123

Walker, S. A., Viprey, V., and Downie, J. A. 2000. Dissection of nodulation signaling using pea mutants defective for calcium spiking induced by Nod factors and chitin oligomers. Proceedings of the National Academy of Sciences USA 97:13413–13418. https://doi.org/10.1073/pnas.230440097

Wang, Y. and Wu, W. H. 2015. Genetic approaches for improvement of the crop potassium acquisition and utilization efficiency. Current Opinion in Plant Biology 25:46–52. https://doi.org/10.1016/j.pbi.2015.04.007

Wang, Y. and Wu, W. H. 2013. Potassium transport and signaling in higher plants. Annual Review of Plant Biology 64:451–476. https://doi.org/10.1146/annurev-arplant-050312-120153

Wu, X., Ebine, K., Ueda, T., and Qiu, Q. S. 2016. AtNHX5 and AtNHX6 are required for the subcellular localization of the SNARE complex that mediates the trafficking of seed storage proteins in Arabidopsis. PLoS One 11:e0151658. https://doi.org/10.1371/journal.pone.0151658

Zahran, H. H. 1999. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiology and Molecular Biology Reviews 63:968–989. https://doi.org/10.1128/MMBR.63.4.968-989.1999

Downloads

Published

2021-03-31

How to Cite

Trifonova, N., Koroleva, M., & Fedorova, E. (2021). Some aspects of metal ion transport and <em>in silico</em> gene expression analysis of potassium/sodium ion transporters, channels and exchangers in root nodules. Biological Communications, 66(1), 55–65. https://doi.org/10.21638/spbu03.2021.107

Issue

Section

Review communications

Categories