Genetic individuality and interspecies altruism: modelling symbiogenesis using different types of symbiotic bacteria


In this minireview, we address the trade-off between biological altruism (group adaptation result-ing from the ability of an organism to improve the fitness of an associate at the expense of its own fitness) and symbiogenesis — the evolutionary pathway based on genetic integration of non-related species. We address symbiogenesis as a multi-stage process, which involves for-mation of superspecific hereditary systems — functionally integral symbiogenomes (under the facultative partners’ interactions) reorganized into the structurally integral hologenomes (in the obligatory symbioses). The best studied case of symbiogenesis is represented by the evolution of the eukaryotic cell based on transformation of symbiotic bacteria into cellular organelles. This evolution is associated with the deep reduction of microsymbionts’ genomes and with allocation of their genes into the hosts. As a result, microsymbionts lost their Genetic INdividuality (GIN), characterized by an ability to implement DNA- and RNA-based template syntheses required for genome maintenance and expression. Under facultative symbiotic dependence on hosts, the par-tial loss of GIN is due to a “symbiont → host” altruism which in the N2-fixing microbe–plant symbioses results in formation of non-reproducible bacterial forms (e.g., intracellular bacteroids in rhizobia or multiple heterocysts in Nostoc). If micro-symbionts lose their ability of autonomous existence (e.g., in the vertically transmitted intracellular symbionts), they are switched to the “forced altruism” in which the GIN reduction is required for the stable persistence of symbionts in hosts. Therefore, organellogenesis involves the sequential increase of the symbionts’ de-pendency on hosts: conditional → facultative → obligatory → absolute. It is associated with the reorganization of microbes into semi-autonomous cellular components, which may be completely devoid of their own genomes.


facultative and obligatory symbioses, symbiogenesis and organellogenesis, biological altruism, microbe-plant interactions, nodule bacteria (rhizobia), superspecific genetic systems (hologenomes, symbiogenomes), genetic individuality, horizontal and endosymbiotic gene transfer


Download data is not yet available.


Berrabah, F., Ratet, P., and Gourion, B. 2015. Multiple steps control immunity during the intracellular accommodation of rhizobia. Journal of Experimental Botany 66(7):1977–1985.

Darlington, P. J. 1978. Altruism: its characteristics and evolution. Proceedings of the National Academy of Sciences USA 75(1):385–389.

Darwin, C. 1872. The origin of species by means of natural selection (6th edn). London: John Murray.

de Bary, A. 1879. Die erscheinung der symbiose. Strassburg: Verlag Von K.J. Trübner.

Famintsyn, A. S. 1907. The role of symbiosis in the evolution of organisms. Zapiski Imperatorskoy Academii Nauk. Ser. 8. 20:1–14. (In Russian)

Frank, S. A. 1994. Genetics of mutualism: the evolution of altruism between species. Journal of Theoretical Biology 170(2):393–400.

Haldane, J. B. S. 1932. The causes of evolution. NY: Longmans, Green & Co.

Hamilton, W. D. J. 1964. The genetical evolution of social behavior. Journal of Theoretical Biology 7(1):1–16.

Djordjevic, M. A., Gabriel, D. W., and Rolfe, B. G. 1987. Rhizobium — the refined parasite of legumes. Annual Review of Phytopathology 25:145–168.

Kozo-Polyansky, B. M. 1924. New principle of biology. Overview of the symbiogenesis theory. Moscow, Russia: Puchina. (In Russian)

Lodeiro, A. R., Lopez-Garcia, S. L., Althabegoiti, M. J., Mongiardini, E. J., Perez-Jimenez, J., and Quelas J. I. 2004. Parasitic traits and plant defenses in the rhizobia-legume symbiosis. Recent research developments in plant pathology 3(1):125–166.

Margulis, L. 1993. Symbiosis in cell evolution (2nd edn). NY: Freeman.

Margulis, L. 1996. Archaeal-eubacterial mergers in the origin of Eukarya: phylogenetic classification of life. Proceedings of the National Academy of Sciences USA 93(3):1071–1076.

Maynard Smith, J. 1964. Group selection and kin selection. Nature 201(4924):1145–1147.

Maynard Smith, J. 1989. Generating novelty by symbiosis. Nature 341(6240):284–285.

Meeks, J. C. and Elhai, J. 2002. Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiology and Molecular Biology Reviews 66(1):94–121.

Mereschkowsky, C. 1910. Theorie der zwei Plasmaarten als Grundlage der Symbiogenesis, einer neuen Lehre von der Entstehung der Organismen. Biologisches Centralblatt 30:278–288.

Oparin, A. I. 1957. The origin of life on the earth (3rd edn). NY: Academic Press.

Provorov, N. A., Andronov, E. E., and Onishchuk, O. P. 2017. Forms of natural selection controlling the genomic evolution in nodule bacteria. Russian Journal of Genetics 53(4):411–419.

Provorov, N. A. and Tikhonovich, I. A. 2016. Genetic bases of evolution in bacterial symbionts of plants. St.-Petersburg, Russia: Inform-Navigator. (In Russian)

Provorov, N. A. and Vorobyov, N. I. 2015. Evolution of host-beneficial traits in nitrogen-fixing bacteria: modeling and construction of systems for interspecies altruism. Applied Biochemistry and Microbiology 51(4):363–370.

Provorov, N. A., Onishchuk, O. P., Yurgel, S. N., Kurchak, O. N., Chizhevaskaya, E. P., Vorobyov, N. I., Zatovskaya, T. V., and Simarov, B. V. 2014. Construction of highly-effective symbiotic bacteria: evolutionary models and genetic approaches. Russian Journal of Genetics 50(11):1273–1285.

Provorov, N. A., Tikhonovich, I. A., and Vorobyov, N. I. 2016. Symbiogenesis as a model for reconstructing the early stages of genome evolution. Russian Journal of Genetics 52(2):117–124.

Provorov, N. A., Tikhonovich, I. A., and Vorobyov, N. I. 2018. Symbiosis and symbiogenesis. St.-Petersburg, Russia: Inform-Navigator. (In Russian)

Smith, D. R. and Keeling, P. J. 2015. Mitochondrial and plastid genome architecture: reoccurring themes, but significant differences at the extremes. Proceedings of the National Academy of Sciences USA 112(33):10177–10184.

Spaink, H. P. 1995. The molecular basis of infection and nodulation by rhizobia: the ins and outs of sympathogenesis. Annual Review of Phytopathology 33:345–368.

Theis, K. R., Dheilly, N. M., Klassen, J. L., Brucker, R. M., Baines, J. F., Bosch, T. C. G., Cryan, J. F., Gilbert, S. F., Goodnight, C. J., Lloyd, E. A., Sapp, J., Vandenkoornhuyse, P., Zilber-Rosenberg, I., Rosenberg, E., and Bordenstein, S. R. 2016. Getting the hologenome concept right: a co-evolutionary framework for hosts and their microbiomes. mSystems 1(2):e00028-16.

Tikhonovich, I. A. and Provorov, N. A. 2012. Development of symbiogenetic approaches for studying variation and heredity of superspecies systems. Russian Journal of Genetics 48(4):357–368.

Tikhonovich, I. A., Andronov, E. E., Borisov, A. Yu., Dolgikh, E. A., Zhernakov, A. I., Provorov, N. A., Rumyantseva, M. L., and Simarov, B. V. 2015. The principle of genome complementarity in the enhancement of plant adaptive capacities. Russian Journal of Genetics 51(9):831–846.

Wang, D., Yang, S., Tang, F., and Zhu, H. 2012. Symbiosis specificity in the legume — rhizobial mutualism. Cellular Microbiology 14(3):334–342.

Zilber-Rosenberg, I. and Rosenberg, E. 2008. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiology Reviews 32(3):723–735.

How to Cite
Provorov, N. (2021). Genetic individuality and interspecies altruism: modelling symbiogenesis using different types of symbiotic bacteria. Biological Communications, 66(1), 66–72.
Review communications