Visualization and analysis of actin cytoskeleton organization in plants

  • Gregory Pozhvanov Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-5622-1318

Abstract

The plant cytoskeleton is a highly dynamic system that consists of two components: microfilaments and microtubules. Actin microfilaments are essential for polar growth, cytoplasmic streaming, directing polar growth, anchoring the nucleus, gravity sensing, signalling pathway integration and a number of other functions. Actin morphology and dynamics are orchestrated by a variety of small actin binding proteins, and some of them have become a source of actin interaction domains widely used as markers for microfilaments in fusions with fluorescent reporter proteins. However, older techniques are still employed for actin visualization. In this short review, we will focus on the diversity of fluorescent reporter fusions for F-actin and on approaches and existing free software for the analysis of cytoskeleton organization, mainly in Arabidopsis. Abbreviations: MF ― microfilament, MT ― microtubule, GFP ― green fluorescent protein, MFA ― Microfilament Analyzer.

Keywords:

cytoskeleton, actin, microfilament, plants, cell biology, visualization, microscopy, fluorescent protein, fluorescent dye

Downloads

Download data is not yet available.
 

References

Baluška, F., and Hasenstein, K. H. 1997. Root cytoskeleton: its role in perception of and response to gravity. Planta 203:S69–S78. https://doi.org/10.1007/PL00008117

Baluška, F., Jasik, J., Edelmann, H. G., Salajova, T., and Volkmann, D. 2001. Latrunculin B-induced plant dwarfism: plant cell elongation is F-actin-dependent. Developmental Biology 231(1):113–124. https://doi.org/10.1006/dbio.2000.0115

Bannigan, A. and Baskin, T. I., 2005. Directional cell expansion — turning toward actin. Current Opinion in Plant Biology 8(6):619–624. https://doi.org/10.1016/j.pbi.2005.09.002

Berken, A., Thomas, C., and Wittinghofer, A. 2005. A new family of RhoGEFs activates the Rop molecular switch in plants. Nature 436(7054):1176–1180. https://doi.org/10.1038/nature03883

Blancaflor, E. B. 2013. Regulation of plant gravity sensing and signaling by the actin cytoskeleton. American Journal of Botany 100(1):143–152. https://doi.org/10.3732/ajb.1200283

Blancaflor, E. B., Wang, Y. S., and Motes, C. M. 2006. Organization and function of the actin cytoskeleton in developing root cells. International Review of Cytology 252:219–264. https://doi.org/10.1016/S0074-7696(06)52004-2

Blanchoin, L., Boujemaa-Paterski, R., Henty, J. L., Khurana, P., and Staiger, C. J. 2010. Actin dynamics in plant cells: a team effort from multiple proteins orchestrates this very fast-paced game. Current Opinion in Plant Biology 13(6):714–723. https://doi.org/10.1016/j.pbi.2010.09.013

Boutté, Y., Crosnier, M. T., Carraro, N., Traas, J., and Satiat-Jeunemaitre, B. 2006. The plasma membrane recycling pathway and cell polarity in plants: studies on PIN proteins. Journal of Cell Science 119(7):1255–1265. https://doi.org/10.1242/jcs.02847

Cleary, A. L. 1995. F-actin redistributions at the division site in living Tradescantia stomatal complexes as revealed by microinjection of rhodamine-phalloidin. Protoplasma 185(3):152–165. https://doi.org/10.1007/BF01272855

Cooper, J. A. 1987. Effects of cytochalasin and phalloidin on actin. The Journal of Cell Biology 105(4):1473–1478.

Dancker, P., Löw, I., Hasselbach, W., and Wieland, T. 1975. Interaction of actin with phalloidin: Polymerization and stabilization of F-actin. Biochimica et Biophysica Acta (BBA)–Protein Structure 400(2):407–414. https://doi.org/10.1016/0005-2795(75)90196-8

Deeks, M. J., Cvrcková, F., Machesky, L. M., Mikitová, V., Ketelaar, T., Zársky, V., Davies, B., and Hussey, P. J. 2005. Arabidopsis group Ie formins localize to specific cell membrane domains, interact with actin-binding proteins and cause defects in cell expansion upon aberrant expression. New Phytologist 168(3):529–540. https://doi.org/10.1111/j.1469-8137.2005.01582.x

Dhonukshe, P., Grigoriev, I., Fischer, R., Tominaga, M., Robinson, D. G., Hašek, J., Paciorek, T., Petrášek, J., Seifertová, D., Tejos, R., and Meisel, L. A. 2008. Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes. Proceedings of the National Academy of Sciences, USA 105(11):4489–4494. https://doi.org/10.1073/pnas.0711414105

Du, J., Fan, Y. L., Chen, T. L., and Feng, X. Q. 2015. Lifeact and Utr230 induce distinct actin assemblies in cell nuclei. Cytoskeleton 72(11):570–575. https://doi.org/10.1002/cm.21262

Dyachok, J., Paez-Garcia, A., Yoo, C. M., Palanichelvam, K., and Blancaflor, E. B. 2016. Fluorescence imaging of the cytoskeleton in plant roots; pp.139–153 in: Cytoskeleton Methods and Protocols: Methods and Protocols. https://doi.org/10.1007/978-1-4939-3124-8_7

Dyachok, J., Sparks, J. A., Liao, F., Wang, Y. S., and Blancaflor, E. B. 2014. Fluorescent protein-based reporters of the actin cytoskeleton in living plant cells: Fluorophore variant, actin binding domain, and promoter considerations. Cytoskeleton 71(5):311–327. https://doi.org/10.1002/cm.21174

Egelman E. H. 1985. The structure of F-actin. Journal of Muscle Research and Cell Motility 6:129–151. https://doi.org/10.1007/BF00713056

Era, A., Tominaga, M., Ebine, K., Awai, C., Saito, C., Ishizaki, K., Yamato, K. T., Kohchi, T., Nakano, A. and Ueda, T., 2009. Application of Lifeact reveals F-actin dynamics in Arabidopsis thaliana and the liverwort, Marchantia polymorpha. Plant and Cell Physiology 50(6):1041–1048. https://doi.org/10.1093/pcp/pcp055

Geldner, N., Richter, S., Vieten, A., Marquardt, S., Torres-Ruiz, R. A., Mayer, U., and Jürgens, G. 2004. Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis. Development 131(2):389–400. https://doi.org/10.1242/dev.00926

Van Gestel, K., Le, J., and Verbelen, J. P. 2001. A comparison of F-actin labeling methods for light microscopy in different plant specimens: multiple techniques supplement each other. Micron 32(6):571–578. https://doi.org/10.1016/S0968-4328(00)00054-8

Grebe, M., Xu, J., Möbius, W., Ueda, T., Nakano, A., Geuze, H. J., Rook, M. B., and Scheres, B. 2003. Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes. Current Biology 13(16):1378–1387. https://doi.org/10.1016/S0960-9822(03)00538-4

Gutierrez, R., Lindeboom, J. J., Paredez, A. R., Emons, A. M. C., and Ehrhardt, D. W. 2009. Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nature Cell Biology 11(7):797–806. https://doi.org/10.1038/ncb1886

Havelková, L., Nanda, G., Martinek, J., Bellinvia, E., Sikorová, L., Šlajcherová, K., Seifertová, D., Fischer, L., Fišerová, J., Petrášek, J., and Schwarzerová, K. 2015. Arp2/3 complex subunit ARPC2 binds to microtubules. Plant Science 241:96–108. https://doi.org/10.1016/j.plantsci.2015.10.001

Higaki, T., Sano, T., and Hasezawa, S. 2007. Actin microfilament dynamics and actin side-binding proteins in plants. Current Opinion in Plant Biology 10(6):549–556. https://doi.org/10.1016/j.pbi.2007.08.012

Holmes, K. C., Popp, D., Gebhard, W., and Kabsch, W. 1990. Atomic model of the actin filament. Nature 347:44–49. https://doi.org/10.1038/347044a0

Van der Honing, H. S. 2011. Actin-mediated cytoplasmic organization of plant cells. Wageningen University. 126 pp.

Van der Honing, H. S., van Bezouwen, L. S., Emons, A. M. C., and Ketelaar, T. 2011. High expression of Lifeact in Arabidopsis thaliana reduces dynamic reorganization of actin filaments but does not affect plant development. Cytoskeleton 68(10):578–587. https://doi.org/10.1002/cm.20534

Hörmanseder K., Obermeyer G. and Foissner I. 2005. Disturbance of endomembrane trafficking by brefeldin A and calyculin A reorganizes the actin cytoskeleton of Lilium longiflorum pollen tubes. Protoplasma 227:25–36. https://doi.org/10.1007/s00709-005-0132-4

Humbert C., Aimé S., Alabouvette C., Steinberg C., and Olivain C. 2015. Remodelling of actin cytoskeleton in tomato cells in response to inoculation with a biocontrol strain of Fusarium oxysporum in comparison to a pathogenic strain. Plant Pathology 64(6):1366–1374. https://doi.org/10.1111/ppa.12375

Hussey, P. J., Ketelaar, T., and Deeks, M. J. 2006. Control of the actin cytoskeleton in plant cell growth. Annual Reviews in Plant Biology 57:109–125. https://doi.org/10.1146/annurev.arplant.57.032905.105206

Jacques, E., Buytaert, J., Wells, D. M., Lewandowski, M., Bennett, M. J., Dirckx, J., Verbelen, J. P., and Vissenberg, K. 2013. MicroFilament Analyzer, an image analysis tool for quantifying fibrillar orientation, reveals changes in microtubule organization during gravitropism. The Plant Journal 74(6):1045–1058. https://doi.org/10.1111/tpj.12174

Janda, M., Matoušková, J., Burketová, L., and Valentová, O. 2014. Interconnection between actin cytoskeleton and plant defense signaling. Plant Signaling and Behavior 9(11):e976486. https://doi.org/10.4161/15592324.2014.976486

Johnson, I. D. 2010. The Molecular Probes handbook. A guide to fluorescent probes and labeling technologies, 11th Ed. Life Technologies Corporation, 1276 pp. ISBN: 0982927916

Kakimoto, T. and Shibaoka, H. 1987. A new method for preservation of actin filaments in higher plant cells. Plant and Cell Physiology 28(8):1581–1585. https://doi.org/10.1093/oxfordjournals.pcp.a077453

Kawashima, T., Maruyama, D., Shagirov, M., Li, J., Hamamura, Y., Yelagandula, R., Toyama, Y., and Berger, F. 2014. Dynamic F-actin movement is essential for fertilization in Arabidopsis thaliana. Elife 3:e04501. https://doi.org/10.7554/eLife.04501

Ketelaar, T. and Emons, A. M. C. 2001. The cytoskeleton in plant cell growth: lessons from root hairs. New Phytologist 152(3):409–418. https://doi.org/10.1046/j.0028-646X.2001.00278.x

Ketelaar, T., Allwood, E. G., Anthony, R., Voigt, B., Menzel, D., and Hussey, P. J. 2004. The actin-interacting protein AIP1 is essential for actin organization and plant development. Current Biology 14(2):145–149. https://doi.org/10.1016/j.cub.2004.01.004

Ketelaar, T., Anthony, R. G., and Hussey, P. J. 2004. Green fluorescent protein-mTalin causes defects in actin organization and cell expansion in Arabidopsis and inhibits actin depolymerizing factor’s actin depolymerizing activity in vitro. Plant Physiology 136(4):3990–3998. https://doi.org/10.1104/pp.104.050799

Ketelaar, T., Faivre-Moskalenko, C., Esseling, J. J., de Ruijter, N. C., Grierson, C. S., Dogterom, M., and Emons, A. M. C. 2002. Positioning of nuclei in Arabidopsis root hairs an actin-regulated process of tip growth. The Plant Cell 14(11):2941–2955. https://doi.org/10.1105/tpc.005892

Khokhlova, L. P., and Makarova, M. V. 2006. Reorganizatsya tsitoskeleta pri dejstvii na rasteniya nizkih temperatur. [Reorganization of cytoskeleton under low temperature action in plants.] Uchenye zapiski Kazanskogo gosudarstvennogo universiteta 148(3):65–88.

Klahre, U., Friederich, E., Kost, B., Louvard, D., and Chua, N. H. 2000. Villin-like actin-binding proteins are expressed ubiquitously in Arabidopsis. Plant Physiology 122(1):35–48. https://doi.org/10.1104/pp.122.1.35

Kleine-Vehn, J., Łangowski, Ł., Wiśniewska, J., Dhonukshe, P., Brewer, P. B., and Friml, J. 2008. Cellular and molecular requirements for polar PIN targeting and transcytosis in plants. Molecular Plant 1(6):1056–1066. https://doi.org/10.1093/mp/ssn062

Klyachko, N. L. 2004. Actin cytoskeleton and the shape of the plant cell (a review). Russian Journal of Plant Physiology 51(6):827–833. https://doi.org/10.1023/B:RUPP.0000047833.43849.ab

Kost, B., Spielhofer, P., and Chua, N. H. 1998. A GFP–mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. The Plant Journal 16(3):393–401. https://doi.org/10.1046/j.1365-313x.1998.00304.x

Li, H., Shen, J. J., Zheng, Z. L., Lin, Y., and Yang, Z. 2001. The Rop GTPase switch controls multiple developmental processes in Arabidopsis. Plant Physiology 126(2):670–684. https://doi.org/10.1104/pp.126.2.670

Li, L., Xu, J., Xu, Z. H., and Xue, H. W. 2005. Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis. The Plant Cell 17(10):2738–2753. https://doi.org/10.1105/tpc.105.034397

Lovy-Wheeler, A., Wilsen, K. L., Baskin, T. I., and Hepler, P. K. 2005. Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. Planta 221(1):95–104. https://doi.org/10.1007/s00425-004-1423-2

Lukinavičius, G., Reymond, L., D’este, E., Masharina, A., Göttfert, F., Ta, H., Güther, A., Fournier, M., Rizzo, S., Waldmann, H., and Blaukopf, C. 2014. Fluorogenic probes for live-cell imaging of the cytoskeleton. Nature Methods 11(7):731–733. https://doi.org/10.1038/Nmeth.2972

Lukinavičius, G., Umezawa, K., Olivier, N., Honigmann, A., Yang, G., Plass, T., Mueller, V., Reymond, L., Corrêa Jr, I. R., Luo, Z. G., and Schultz, C. 2013. A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nature Chemistry 5(2):132–139. https://doi.org/10.1038/nchem.1546

Mathur, J. 2004. Cell shape development in plants. Trends in Plant Science 9(12):583–590. https://doi.org/10.1016/j.tplants.2004.10.006

Mathur, J. 2005. The ARP2/3 complex: giving plant cells a leading edge. BioEssays 27(4): 377–387. https://doi.org/10.1002/bies.20206

Mathur, J., Mathur, N., Kernebeck, B. and Hülskamp, M. 2003. Mutations in actin-related proteins 2 and 3 affect cell shape development in Arabidopsis. The Plant Cell 15(7):1632–1645. https://doi.org/10.1105/tpc.011676

Matoušková, J., Janda, M., Fišer, R., Šašek, V., Kocourková, D., Burketová, L., Dušková, J., Martinec, J., and Valentová, O. 2014. Changes in actin dynamics are involved in salicylic acid signaling pathway. Plant Science 223:36–44. https://doi.org/10.1016/j.plantsci.2014.03.002

Meagher, R. B., and Fechheimer, M. 2003. The Arabidopsis cytoskeletal genome; pp. e0096 in: The Arabidopsis Book. https://doi.org/10.1199/tab.0096

Medvedev, S. S. 2012. Mechanisms and physiological role of polarity in plants. Russian Journal of Plant Physiology 59(4):502–514. https://doi.org/10.1134/S1021443712040085

Menzel, D. 1993. Chasing coiled coils: intermediate filaments in plants. Plant Biology 106(4):294–300. https://doi.org/10.1111/j.1438-8677.1993.tb00751.x

Morita, M. T. 2010. Directional gravity sensing in gravitropism. Annual Review of Plant Biology 61:705–720. https://doi.org/10.1146/annurev.arplant.043008.092042

Nagawa, S., Xu, T., Lin, D., Dhonukshe, P., Zhang, X., Friml, J., Scheres, B., Fu, Y., and Yang, Z. 2012. ROP GTPase-dependent actin microfilaments promote PIN1 polarization by localized inhibition of clathrin-dependent endocytosis. PLoS Biology 10(4):e1001299. https://doi.org/10.1371/journal.pbio.1001299

Nakamura, M., Toyota, M., Tasaka, M., and Morita, M. T. 2011. An Arabidopsis E3 ligase, SHOOT GRAVITROPISM9, modulates the interaction between statoliths and F-actin in gravity sensing. The Plant Cell 23(5):1830–1848. https://doi.org/10.1105/tpc.110.079442

Nick, P., Han, M. J., and An, G. 2009. Auxin stimulates its own transport by shaping actin filaments. Plant Physiology 151(1):155–167. https://doi.org/10.1104/pp.109.140111

Paradez, A., Wright, A., and Ehrhardt, D. W. 2006. Microtubule cortical array organization and plant cell morphogenesis. Current Opinion in Plant Biology 9(6):571–578. https://doi.org/10.1016/j.pbi.2006.09.005

Parthasarathy, M. V., Perdue, T. D., Witztum, A., and Alvernaz, J. 1985. Actin network as a normal component of the cytoskeleton in many vascular plant cells. American Journal of Botany 72(8):1318–1323. https://doi.org/10.1002/j.1537-2197.1985.tb08386.x

Pozhvanov, G. A., Gobova, A. E., Bankin, M. P., Vissenberg, K., and Medvedev, S. S. 2016. Ethylene is involved in the actin cytoskeleton rearrangement during the root gravitropic response of Arabidopsis thaliana. Russian Journal of Plant Physiology 63(5):587–596. https://doi.org/10.1134/S1021443716050095

Pozhvanov, G. A., Suslov, D. V., and Medvedev, S. S. 2013. Actin cytoskeleton rearrangements during the gravitropic response of Arabidopsis roots. Cell and Tissue Biology 7(2):185–191. https://doi.org/10.1134/S1990519X13020120

Riedl, J., Crevenna, A. H., Kessenbrock, K., Yu, J. H., Neukirchen, D., Bista, M., Bradke, F., Jenne, D., Holak, T. A., Werb, Z., and Sixt, M. 2008. Lifeact: a versatile marker to visualize F-actin. Nature Methods 5(7):605–607. https://doi.org/10.1038/nmeth.1220

Šamaj, J., Chaffey, N., Tirlapur, U., Jasik, J., Hlavacka, A., Cui, Z., Volkmann, D., Menzel, D., and Baluska, F. 2006. Actin and myosin VIII in plant cell-cell channels; pp. 119–134 in: Cell-Cell Channels. Springer: New York. https://doi.org/10.1007/978-0-387-46957-7_8

Šamaj, J., Peters, M., Volkmann, D., and Baluška, F. 2000. Effects of myosin ATPase inhibitor 2, 3-butanedione 2-monoxime on distributions of myosins, F-actin, microtubules, and cortical endoplasmic reticulum in maize root apices. Plant and Cell Physiology 41(5):571–582. https://doi.org/10.1093/pcp/41.5.571

Sampathkumar, A., Lindeboom, J. J., Debolt, S., Gutierrez, R., Ehrhardt, D. W., Ketelaar, T., and Persson, S. 2011. Live cell imaging reveals structural associations between the actin and microtubule cytoskeleton in Arabidopsis. The Plant Cell 23(6):2302–2313. https://doi.org/10.1105/tpc.111.087940

Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9(7):671–675. https://doi.org/10.1038/nmeth.2089

Sheahan, M. B., Staiger, C. J., Rose, R. J., and McCurdy, D. W. 2004. A green fluorescent protein fusion to actin-binding domain 2 of Arabidopsis fimbrin highlights new features of a dynamic actin cytoskeleton in live plant cells. Plant Physiology 136(4):3968–3978. https://doi.org/10.1104/pp.104.049411

Schenkel, M., Sinclair, A. M., Johnstone, D., Bewley, J. D., and Mathur, J. 2008. Visualizing the actin cytoskeleton in living plant cells using a photo-convertible mEos::FABD-mTn fluorescent fusion protein. Plant Methods 4:21. https://doi.org/10.1186/1746-4811-4-21

Shevchenko, G. V., Kalinina, Y. M., and Kordyum, E. L. 2007. Interrelation between microtubules and microfilaments in the elongation zone of Arabidopsis root under clinorotation. Advances in Space Research 39(7):1171–1175. https://doi.org/10.1016/j.asr.2007.02.072

Śniegowska-Świerk, K., Dubas, E., and Rapacz, M. 2015. Drought-induced changes in the actin cytoskeleton of barley (Hordeum vulgare L.) leaves. Acta Physiologiae Plantarum 37:73. https://doi.org/10.1007/s11738-015-1820-0

Staiger, C. J., Gibbon, B. C., Kovar, D. R., and Zonia, L. E. 1997. Profilin and actin-depolymerizing factor: modulators of actin organization in plants. Trends in Plant Science 2(7):275–281. https://doi.org/10.1016/S1360-1385(97)86350-9

Steinborn, K., Maulbetsch, C., Priester, B., Trautmann, S., Pacher, T., Geiges, B., Küttner, F., Lepiniec, L., Stierhof, Y. D., Schwarz, H., and Jürgens, G. 2002. The Arabidopsis PILZ group genes encode tubulin-folding cofactor orthologs required for cell division but not cell growth. Genes and Development 16(8):959–971. https://doi.org/10.1101/gad.221702

Traas, J. A., Doonan, J. H., Rawlins, D. J., Shaw, P. J., Watts, J., and Lloyd, C. W. 1987. An actin network is present in the cytoplasm throughout the cell cycle of carrot cells and associates with the dividing nucleus. The Journal of Cell Biology 105(1):387–395. https://doi.org/10.1083/jcb.105.1.387

Valster, A. H., Pierson, E. S., Valenta, R., Hepler, P. K., and Emons, A. M. C. 1997. Probing the plant actin cytoskeleton during cytokinesis and interphase by profilin microinjection. The Plant Cell 9(10):1815–1824. https://doi.org/10.1105/tpc.9.10.1815

Vernoud, V., Horton, A. C., Yang, Z., and Nielsen, E. 2003. Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiology 131(3):1191–1208. https://doi.org/10.1104/pp.013052

Voigt, B., Timmers, A. C., Šamaj, J., Müller, J., Baluška, F., and Menzel, D. 2005. GFP-FABD2 fusion construct allows in vivo visualization of the dynamic actin cytoskeleton in all cells of Arabidopsis seedlings. European Journal of Cell Biology 84(6):595–608. https://doi.org/10.1016/j.ejcb.2004.11.011

Wang, Y. S., Yoo, C. M., and Blancaflor, E. B. 2008. Improved imaging of actin filaments in transgenic Arabidopsis plants expressing a green fluorescent protein fusion to the C-and N-termini of the fimbrin actin-binding domain 2. New Phytologist 177(2):525–536. https://doi.org/10.1111/j.1469-8137.2007.02261.x

Wilsen, K. L., Lovy-Wheeler, A., Voigt, B., Menzel, D., Kunkel, J. G., and Hepler, P. K. 2006. Imaging the actin cytoskeleton in growing pollen tubes. Sexual Plant Reproduction 19(2):51–62. https://doi.org/10.1007/s00497-006-0021-9

Xu, J. and Scheres, B. 2005. Cell polarity: ROPing the ends together. Current Opinion in Plant Biology 8(6):613–618. https://doi.org/10.1016/j.pbi.2005.09.003

Yoo, C. M., Quan, L., Cannon, A. E., Wen, J., and Blancaflor, E. B. 2012. AGD1, a class 1 ARF-GAP, acts in common signaling pathways with phosphoinositide metabolism and the actin cytoskeleton in controlling Arabidopsis root hair polarity. The Plant Journal 69(6):1064–1076. https://doi.org/10.1111/j.1365-313X.2011.04856.x

Zhang, H. M., Colyvas, K., Patrick, J. W., and Offler, C. E. 2017. A Ca2+-dependent remodelled actin network directs vesicle trafficking to build wall ingrowth papillae in transfer cells. Journal of Experimental Botany 68(17):4749–4764. https://doi.org/10.1093/jxb/erx315
Published
2018-06-08
How to Cite
Pozhvanov, G. (2018). Visualization and analysis of actin cytoskeleton organization in plants. Biological Communications, 63(1), 59–69. https://doi.org/10.21638/spbu03.2018.107
Section
Review communications