Biological role and health benefits of antioxidant compounds in cereals

  • Vadim Polonskiy Department of Landscape Architecture, Botany and Agroecology, Krasnoyarsk State Agricultural University, pr. Mira, 90, Krasnoyarsk, 660049, Russian Federation; Siberian Federal University, Svobodnyj pr., 79, Krasnoyarsk, 660041, Russian Federation
  • Igor Loskutov Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Bol'shaya Morskaya ul., 42–44, Saint Petersburg, 190000, Russian Federation
  • Alena Sumina Department of Geography and Geoecology, N.V. Katanov Khakass State University, ul. Lenina, 90, Abakan, 655000, Russian Federation


Substances inhibiting or preventing oxidative damage in the target molecule are called antioxidants. It has been shown that antioxidants are substances that contribute to the prevention of a number of serious human diseases, and antioxidant activity is one of the important parameters for the quality of food products and ingredients. Phenolic compounds are of greatest importance for this review. It is now established that whole grain cereals contain a large number of bound polyphenols. It is known that cereals have high nutritional value, contain unsaturated fatty acids, basic mineral elements, proteins and β-glucans, and are also characterized by the presence of various chemical substances with antioxidant properties. In recent years, work has begun in some Western countries to study the content of antioxidants in various grains. In Russia, only a small amount of work has been devoted to the study of these important chemical compounds in grain crops. It should be noted that, although these species are considered to be one of the main components of human nutrition, research in the field of determining their antioxidant activity has not been sufficiently carried out. In order to attract the attention of plant growers, plant breeders, plant physiologists, geneticists and biotechnologists, we offer a review of current literature.


grain, wheat, barley, oats, rye, corn, rice, antioxidants, flavonoids, phenolic acids, health, genotype, environmental condition, breeding


Download data is not yet available.


Adom, K. K. and Liu, R. H. 2002. Antioxidant activity of grains. Journal of Agricultural and Food Chemistry 50(21):6182–6187.

Akkoc, Y., Lyubenova, L., Grausgruber, H., Janovská, D., Yazici, A., Cakmak, I., and Gozuacik, D. 2019. Minor cereals exhibit superior antioxidant effects on human epithelial cells compared to common wheat cultivars. Journal of Cereal Science 85(1):143–152.

Alfieri, M. and Redaelli, R. 2015. Oat phenolic content and total antioxidant capacity during grain development. Journal of Cereal Science 65(9):39–42.

Andersson, A. A. M., Lampi, A. M., Nyström, L., Piironen, V., Li, L., Ward, J. L., Gebruers, K., Courtin, C. M., Delcour, J. A., Boros, D., Fraś, A., Dynkowska, W., Rakszegi, M., Bedő, Z., Shewry, P. R., and Aman, P. 2008. Phytochemical and dietary fiber components in barley varieties in the HEALTHGRAIN diversity screen. Journal of Agricultural and Food Chemistry 56(21):9767–9776.

Andreasen, M. F., Landbo, A.-K., Christensen, L. P., Hansen, Å., and Meyer, A. S. 2001. Antioxidant effects of phenolic rye (Secale cereale L.) extracts, monomeric hydroxycinnamates, and ferulic acid dehydrodimers on human low-density lipoproteins. Journal of Agricultural and Food Chemistry 49(8):4090–4096.

Anson, N. M., van den Berg, R., Havenaar, R., Bust, A., and Haenen, G. R. M. M. 2008. Ferulic acid from aleurone determines the antioxidant potency of wheat grain (Triticum aestivum L.). Journal of Agricultural and Food Chemistry 56(14):5589–5594.

Badea, A., Carter, A., Legge, W. G., Swallow, K., Johnston, S. P., and Izydorczyk, M. S. 2018. Tocols and oil content in whole grain, brewer's spent grain, and pearling fractions of malting, feed, and food barley genotypes. Cereal Chemistry 95(6):779–789.

Blandino, M., Locatelli, M., Sovrani, V., Coïsson, J. D., Rolle, L., Travaglia, F., Giacosa, S., Bordiga, M., Scarpino, V., Reyneri, A., and Arlorio, M. 2015. Progressive pearling of barley kernel: Chemical characterization of pearling fractions and effect of their inclusion on the nutritional and technological properties of wheat bread. Journal of Agricultural and Food Chemistry 63(25):5875–5884.

Branković, G., Dragičević, V., Dodig, D., Zorić, M., Knežević, D., Žilić, S., Denčić, S., and Šurlan, G. 2015. Genotype × environment interaction for antioxidants and phytic acid contents in bread and durum wheat as influenced by climate. Chilean Journal of Agricultural Research 75(2):139–146.

Bresciani, L., Scazzina, F., Leonardi, R., Dall'Aglio, E., Newell, M., Dall'Asta, M., Melegari, C., Ray, S., Brighenti, F., and Del Rio, D. 2016. Bioavailability and metabolism of phenolic compounds from wholegrain wheat and aleurone rich wheat bread. Molecular Nutrition and Food Research 60(11):2343–2354.

Broeck, H. C., Londono, D. M., Timmer, R., Smulders, M. J. M., Gilissen, L. J. W., and Meer, I. M. 2016. Profiling of nutritional and health-related compounds in oat varieties. Foods 5(2):2–11.

Cai, S., Han, Z., Huang, Y., Chen, Z.-H., Zhang, G., and Dai, F. 2015. Genetic diversity of individual phenolic acids in barley and their correlation with barley malt quality. Journal of Agricultural and Food Chemistry 63(31):7051–7057.

Cavallero, A., Gianinetti, A., Finocchiaro, F., Delogu, G., and Stanca, A. M. 2004. Tocols in hull-less and hulled barley genotypes grown in contrasting environments. Journal of Cereal Science 39(2):175–180.

Chen, J., Liu, C., Shi, B., Chai, Y., Han, N., Zhu, M., and Bian, H. 2017. Overexpression of HvHGGT enhances tocotrienol levels and antioxidant activity in barley. Journal of Agricultural and Food Chemistry 65(25):5181–5187.

Chen, C., Wang, L., Wang, R., Luo, X., Li, Y., Li, J., Li, Y., and Chen, Z. 2018. Phenolic contents, cellular antioxidant activity and antiproliferative capacity of different varieties of oats. Food Chemistry 239(1):260–267.

Chinma, C. E., Ramakrishnan, Y., Ilowefah, M., Hanis-Syazwani, M., and Muhammad, K. 2015. Properties of cereal brans: A review. Cereal Chemistry 92(1):1–7.

Das, A. K. and Singh, V. 2015. Antioxidative free and bound phenolic constituents in pericarp, germ and endosperm of Indian dent (Zea mays var. indentata) and flint (Zea mays var. indurata) maize. Journal of Functional Foods 13(2):363–374.

Do, T. D. T., Cozzolino, D., Muhlhausler, B., Box, A., and Able, A. J. 2015. Antioxidant capacity and vitamin E in barley: Effect of genotype and storage. Food Chemistry 187(15):65–74.

Du, B. and Xu, B. 2014. Oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) of β-glucans from different sources with various molecular weight. Bioactive Carbohydrates and Dietary Fibre 3(1):11–16.

Di Silvestro, R., Di Loreto, A., Bosi, S., Bregola, V., Marotti, I., Benedettelli, S., Segura-Carretero, A., and Dinelli, G. 2017. Environment and genotype effects on antioxidant properties of organically grown wheat varieties: a 3-year study. Journal of Science of Food Agriculture 97(2):641–649.

Dykes, L. and Rooney, L. W. 2007. Phenolic compounds in cereal grains and their health benefits. Cereal Foods World 32:105–111.

Edelmann, M., Kariluoto, S., Nyström, L., and Piironen, V. 2012. Folate in oats and its milling fractions. Food Chemistry 135(3):1938–1947.

Edelmann, M., Kariluoto, S., Nyström, L., and Piironen, V. 2013. Folate in barley grain and fractions. Journal of Cereal Science 58(1):37–44.

Emmons, C. L., Peterson, D. M., and Paul, G. L. 1999. Antioxidant capacity of oat (Avena sativa L.) extracts. 2. In vitro antioxidant activity and contents of phenolic and tocol antioxidants. Journal of Agricultural and Food Chemistry 47(12):4894–4898.

Fardet, A. 2010. New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre? Nutrition Research Review 23:65–134.

Fardet, A., Rock, E., and Rémésy, C. 2008. Is the in vitro antioxidant potential of whole-grain cereals and cereal products well reflected in vivo? Journal of Cereal Science 48(2):258–276.

Gangopadhyay, N., Harrison, S. M., Brunton, N. P., Hidalgo-Ruiz, J. L., Gallagher, E., and Rai, D. K. 2018. Brans of the roller-milled barley fractions rich in polyphenols and health-promoting lipophilic molecules. Journal of Cereal Science 83(9):213–221.

Gao, C., Gao, Z., Greenway, F. L., Burton, J. H., Johnson, W. D., Keenan, M. J., Enright, F. M., Martin, R. J., Chu, Y. F., and Zheng, J. 2015. Oat consumption reduced intestinal fat deposition and improved health span in Caenorhabditis elegans model. Nutrition Research 35(6):834–843.

Gawlik-Dziki, U., Świeca, M., and Dziki, D. 2012. Comparison of phenolic acids profile and antioxidant potential of six varieties of spelt (Triticum spelta L.). Journal of Agricultural and Food Chemistry 60(18):4603–4612.

Giordano, D., Beta, T., Gagliardi, F., and Blandino, M. 2018. Influence of agricultural management on phytochemicals of colored corn genotypes (Zea mays L.). Part 2: Sowing time. Journal of Agricultural and Food Chemistry 66(17):4309–4318.

Glagoleva, A. Y., Shmakov, N. V., Shoeva, O. Y., Vasiliev, G. V., Shatskaya, N. V., Börner, A., Afonnikov, D. A., and Khlestkina, E. K. 2017. Metabolic pathways and genes identified by RNA-seq analysis of barley near-isogenic lines differing by allelic state of the Black lemma and pericarp (Blp) gene. BMC Plant Biology 7(Suppl. 1):182.

Goncharenko, A. A. and Timoshenko, A. S. 2014. Evaluation of rye cultivar on antioxidant activity of grains. Russian Agricultural Science 4:3–7. (In Russian)

Gong, L. X., Jin, C., Wu, L. J., Wu, X. Q., and Zhang, Y. 2012. Tibetan hull-less Barley (Hordeum vulgare L.) as a potential source of antioxidants. Cereal Chemistry 89(6):290–295.

Gordeeva, E. I., Shoeva, O. Yu., Yudina, R. S., Kukoeva, T. V., and Khlestkina, E. K. 2018. Effect of seed pre-sowing gamma-irradiation treatment in bread wheat lines differing by anthocyanin pigmentation. Cereal Research Communications 46(1):41–53.

Gordeeva, E. I., Glagoleva, A. Yu., Kukoeva, T. V., Khlestkina, E. K., and Shoeva, O. Yu. 2019. Purple-grained barley (Hordeum vulgare L.): marker-assisted development of NILs for investigating peculiarities of the anthocyanin biosynthesis regulatory network. BMC Plant Biology 19(Suppl 1):52.

Gotti, R., Amadesi, E., Fiori, J., Bosi, S., Bregola, V., Marotti, I., and Dinelli, G. 2018. Differentiation of modern and ancient varieties of common wheat by quantitative capillary electrophoretic profile of phenolic acids. Journal of Chromatography 1532(1):208–215.

Graziano, S., Marando, S., Prandi, B., Boukid, F., Marmiroli, N., Francia, E., Pecchioni, N., Sforza, S., Visioli, G., and Gullì, M. 2019. Technological quality and nutritional value of two durum wheat varieties depend on both genetic and environmental factors. Journal of Agricultural and Food Chemistry 67(8):2384–2395.

Guo, W. and Beta, T. 2013. Phenolic acid composition and antioxidant potential of insoluble and soluble dietary fibre extracts derived from select whole-grain cereals. Food Research International 51(2):518–525.

Gupta, C. and Prakash, D. 2015. Nutraceuticals for geriatrics. Journal of Traditional and Complementary Medicine 5:5–14.

Hajji, T., Mansouri, S., Vecino-Bello, X., Cruz-Freire, J. M., Rezgui, S., and Frchichi, A. 2018. Identification and characterization of phenolic compounds extracted from barley husks by LC-MS and antioxidant activity in vitro. Journal of Cereal Science 81(5):83–90.

Halliwell, B. 2007. Biochemistry of oxidative stress. Biochemical Society Transactions 35(5):1147–1150.

Hejtmánková, K., Lachman, J., Hejtmánková, A., Pivec, V., and Janovská, D. 2010. Tocols of selected spring wheat (Triticum aestivum L.), einkorn wheat (Triticum monococcum L.) and wild emmer (Triticum dicoccum Schuebl. [Schrank]) varieties. Food Chemistry 123(4):1267–1274.

Heimler, D., Vignolini, P., Isolani, L., Arfaioli, P., Ghiselli, L., and Romani, A. 2010. Polyphenol content of modern and old varieties of Triticum aestivum L. and T. durum Desf. grains in two years of production. Journal of Agricultural and Food Chemistry 58(12):7329–7334.

Helnas, A., Kyrø, C., Andersen, I., Lacoppidan, S., Overvad, K., Christensen, J., Tjønneland, A., and Olsen, A. 2016. Intake of whole grains is associated with lower risk of myocardial infarction: the Danish Diet, Cancer and Health Cohort. American Journal of Clinical Nutrition 103:999–1007.

Hidalgo, A. and Brandolini, A. 2017. Nitrogen fertilisation effects on technological parameters and carotenoid, tocol and phenolic acid content of einkorn (Triticum monococcum L. subsp. monococcum): A two-year evaluation. Journal of Cereal Science 73:18–24.

Hidalgo, A., Brandolini, A., and Ratti, S. Influence of genetic and environmental factors on selected nutritional traits of Triticum monococcum. Journal of Agricultural and Food Chemistry 57(14):6342–6348.

Hithamani, G. and Srinivasan, K. 2014. Bioaccessibility of polyphenols from wheat (Triticum aestivum), sorghum (Sorghum bicolor), green gram (Vigna radiata), and chickpea (Cicer arietinum) as influenced by domestic food processing. Journal of Agricultural and Food Chemistry 62(46):11170–11179.

Holtekjølen, A. K., Kinitz, C., and Knutsen, S. H. 2006. Flavanol and bound phenolic acid contents in different barley varieties. Journal of Agricultural and Food Chemistry 54(6):2253–2260.

Hosseinian, F. S. and Mazza, G. 2009. Triticale bran and straw: Potential new sources of phenolic acids, proanthocyanidins, and lignans. Journal of Functional Foods 1(1):57–64.

Hurtado-Fernández, E., Gómez-Romero, M., Carrasco-Pancorbo, A., and Fernández-Gutiérrez, A. 2010. Application and potential of capillary electroseparation methods to determine antioxidant phenolic compounds from plant food material. Journal of Pharmaceutical and Biomedical Analysis 53(5):1130–1160.

Hussain, A., Larsson, H., Olsson, M. E., Kuktaite, R., Grausgruber, H., and Johansson, E. 2012. Is organically produced wheat a source of tocopherols and tocotrienols for health food? Food Chemistry 132(4):1789–1795.

Idehen, E., Tang, Y., and Sang, S. 2017. Bioactive phytochemicals in barley. Journal of Food and Drug Analysis 25:148–161.

Khlestkina, E. K., Usenko, N. I., Gordeeva, E. I., Stabrovskaya, O. I., Sharfunova, I. B., and Otmakhova Yu. S. 2017. Marker-controlled production of wheat forms with elevated levels of bioflavonoids: product evaluation to justify the importance of the direction. Vavilovskii zhurnal genetiki i selektsii 21(5):545–553. (In Russian)

Koenig, R. T., Dickman, J. R., Wise, M. L., and Ji, L. L. 2011. Avenanthramides are bioavailable and accumulate in hepatic, cardiac, and skeletal muscle tissue following oral gavage in rats. Journal of Agricultural and Food Chemistry 59(12):6438–6443.

Konarev, A. V. 1994. All-Russian Institute of Crop Science and it contribution to the development of agricultural science and breeding of the country. Agricultural Biology 3:13–75. (In Russian)

Konarev, A. V. and Khoreva, V. I. 2000. Biochemical research of plant genetic resources in VIR. VIR, S-Petersburg, Russia. (In Russian)

Konarev, A. V., Loskutov, I. G., Shelenga, T. V., Khoreva, V. I., and Konarev, Al. V. 2019. Plant genetic resources (PGR) ‒ an endless source of healthy food. Agragnaya Rossia 2:38–48. (In Russian)

Kouřimská, I. L., Sabolová, M., Horčička, P., Rys S., and Božik, M. 2018. Lipid content, fatty acid profile, and nutritional value of new oat cultivars. Journal of Cereal Science 84(11):44–48.

Lachman, J., Hejtmánková, K., and Kotíková, Z. 2013. Tocols and carotenoids of einkorn, emmer and spring wheat varieties: Selection for breeding and production. Journal of Cereal Science 57(2):207–214.

Lachman, J., Hejtmánková, A., Orsák, M., Popov, M., and Martinek, P. 2018. Tocotrienols and tocopherols in colored-grain wheat, tritordeum and barley. Food Chemistry 240(2):725–735.

Lee, C., Han, D., Kim, B., Baek, N., and Baik, B. K. 2013. Antioxidant and anti-hypertensive activity of anthocyanin-rich extracts from hulless pigmented barley cultivars. International Journal of Food Science and Technology 48(5):984–991.

Leonova, S., Gnutikov, A., Loskutov, I., Blinova, E., Gustafsson, K.-E., and Olsson, O. 2020. Diversity of avenanthramides content in wild and cultivated oat. Proceedings on Applied Botany, Genetics and Breeding. (In press).

Li, W., Friel, J., and Beta, T. 2010. An evaluation of the antioxidant properties and aroma quality of infant cereals. Food Chemistry 121(4):1095–1102.

Li, M., Koecher, K., Hansen, L., and Ferruzzi, M. G. 2017. Phenolics from whole grain oat products as modifiers of starch digestion and intestinal glucose transport. Journal of Agricultural and Food Chemistry 65(32):6831–6839.

Li, X. P., Li, M. Y., Ling, A. J., Hu, X. Z., Ma, Z., Liu, L., and Li, Y. X. 2017. Effects of genotype and environment on avenanthramides and antioxidant activity of oats grown in northwestern China. Journal of Cereal Science 73(1):130–137.

Lin, S., Guo, H., Duo, J., Gong, B., Lu, Y., Wang, L., Zhang, Q., Qin, W., and Wu, D. T. 2018. Phenolic profiles, β-glucan contents, and antioxidant capacities of colored Qingke (Tibetan hulless barley) cultivars. Journal of Cereal Science 81(5):69–75.

Liu, R. H. 2007. Whole grain phytochemicals and health. Journal of Cereal Science 46(3):207–219.

Liu, Y. 2010. Beta-glucan effects on pasting properties and potential health benefits of flours from different oat lines. Graduate Theses and Dissertations. Paper 11303. Ames, Iowa: Iowa State University.

Liu, H., Bruce, D. R., Sissons, M., Able, A. J., and Able, J. A. 2018. Genotype-dependent changes in the phenolic content of durum under water-deficit stress. Cereal Chemistry 95(1):59–78.

Liyana-Pathirana, C., Dexter, J., and Shahidi, F. 2006. Antioxidant properties of wheat as affected by pearling. Journal of Agricultural and Food Chemistry 54(17):6177–6184.

Lopez-Martinez, L. X., Oliart-Ros, R. M., Valerio-Alfaro, G., Lee, C. H., Parkin, K. L., and Garcia, H. S. 2009. Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize. LWT Food Science and Technology 42(6):1187–1192.

Loskutov, I. G. 1999. N.I. Vavilov and his Institute. A history of the world collection of plant genetic resources in Russia. FAO /IPGRI, Rome.

Loskutov, I. G. 2007. Oat (Avena L.). Diversity, taxonomy, evolution and breeding value. SPb: GNTs RF VIR. (In Rissian)

Loskutov, I. G. 2009. The history of plant genetic resources in Russia. SPb, GNTs RF VIR. (In Rissian)

Loskutov, I. G. and Polonskiy, V. I. 2017. Content of β-glucans in oat grain as a perspective direction of breeding for health products and fodder. Agricultural biology 52(4):646–657. (In Rissian)

Loskutov, I. G. and Rines H. W. 2011. Avena L. Ed. C. Kole. Wild crop relatives: genomic and breeding resources. Cereals. Heidelberg, Berlin, New York: Springer-Verlag, 1:109–184.

Loskutov, I. G., Shelenga, T. V., Konarev, A. V., Shavarda, A. L., Blinova, E. V., and Dzyubenko, N. I. 2017. The metabolomic approach to the comparative analysis of wild and cultivated species of oats (Avena L.). Russian Journal of Genetics: Applied Research 7(5):501–508.

Loskutov, I. G., Shelenga, T. V., Konarev, A. V., Horeva, V. I., Shavarda, A. L., Blinova, E. V., and Gnutikov, A. A. 2019a. Biochemical aspects of interactions between fungi and plants: a case study of Fusarium in oats. Agricultural biology 54(3):575–588. (In Rissian)

Loskutov, I. G., Shelenga, T. V., Konarev, A. V., Vargach, Yu. I., Porokhovinova, E. A., Blinova, E. V., Gnutikov, A. A., and Rodionov, A. V. 2019a. Modern approach of structuring the variety diversity of the naked and covered forms of cultivated oats (Avena sativa L.). Ekologicheskaya genetika (In Russian, in press)

Luithui, Y., Nisha, R. B., and Meera, M. S. 2019. Cereal by-products as an important functional ingredient: effect of processing. Journal of Food Science and Technology 56(1):1–11.

Luthria, D. L., Yingjian, L., and MariaJohn, K. M. 2015. Bioactive phytochemicals in wheat: Extraction, analysis, processing, and functional properties. Journal of Functional Foods 18(10):910–925.

Madhujith, T., Izydorczyk, M., and Shahidi, F. 2006. Antioxidant properties of pearled barley fractions. Journal of Agricultural and Food Chemistry 54(9):3283–3289.

Mareček, V., Mikyška, A., Hampel, D., Čejka, P., Neuwirthová, J., Malachová, A., and Cerkal, R. 2017. ABTS and DPPH methods as a tool for studying antioxidant capacity of spring barley and malt. Journal of Cereal Science 73(1):40–45.

Martínez-Tomé, M., Murcia, M. A., Frega, N., Ruggieri, S., Jiménez, A. M., Roses, F., and Parras, P. 2004. Evaluation of antioxidant capacity of cereal brans. Journal of Agricultural and Food Chemistry 52(15):4690–4699.

Martinez-Villaluenga, C. and Penas, E. 2017. Health benefits of oat: current evidence and molecular mechanisms. Current Opinion in Food Science 14:26–31.

Martínez, M., Motilva, M. J., Hazas, M-C. L., Romero, M. P., Vaculova, K., and Ludwig, I. A. 2018. Phytochemical composition and β-glucan content of barley genotypes from two different geographic origins for human health food production. Food Chemistry 245:61–70.

Martinia, D., Taddei, F., Ciccoritti, R., Pasquini, M., Nicoletti, I., Corradini, D., and D’Egidio, M. G. 2015. Variation of total antioxidant activity and of phenolic acid, total phenolics and yellow coloured pigments in durum wheat (Triticum turgidum L. var. durum) as a function of genotype, crop year and growing area. Journal of Cereal Science 65:175–185.

Masisi, K., Diehl-Jones, W. L., Gordon, J., Chapman, D., Moghadasian, M. H., and Beta, T. 2015. Carotenoids of aleurone, germ, and endosperm fractions of barley, corn and wheat differentially inhibit oxidative stress. Journal of Agricultural and Food Chemistry 63(10):2715–2724.

Masisi, K., Beta, T., and Moghadasian, M. H. 2016. Antioxidant properties of diverse cereal grains: A review on in vitro and in vivo studies. Food Chemistry 196:90–97.

Mattila, P., Pihlava, J., and Hellström, J. 2005. Contents of phenolic acids, alkyl- and alkenylresorcinols, and avenanthramides in commercial grain products. Journal of Agricultural and Food Chemistry 53(21):8290–8295.

Mazewski, C., Liang, K., and de Mejia, E. G. 2017. Inhibitory potential of anthocyanin-rich purple and red corn extracts on human colorectal cancer cell proliferation in vitro. Journal of Functional Foods 34(7):254–265.

Menga, V., Fares, C., Troccoli, A., Cattivelli, L., and Baiano, A. 2010. Effects of genotype, location and baking on the phenolic content and some antioxidant properties of cereal species. International Journal of Food Science and Technology 45(1):7–16.

Mishra, L. K., Sarkar, D., Zwinger, S., and Shetty, K. 2017. Phenolic antioxidant-linked anti-hyperglycemic properties of rye cultivars grown under conventional and organic production systems. Journal of Cereal Science 76(7):108–115.

Miyazawa, T., Nakagawa, K., and Sookwong, P. 2011. Health benefits of vitamin E in grains, cereals and green vegetables. Trends in Food Science and Technology 22(12):651–654.

Montilla, E. C., Hillebrand, S., Antezana, A., and Winterhalter, P. 2011. Soluble and bound phenolic compounds in different bolivian purple corn (Zea mays L.) cultivars. Journal of Agricultural and Food Chemistry 59(13):7068–7074.

Mpofu, A., Sapirstein, H. D., and Beta, T. 2006. Genotype and environmental variation in phenolic content, phenolic acid composition, and antioxidant activity of hard spring wheat. Journal of Agricultural and Food Chemistry 54(4):1265–1270.

Multari, S., Pihlava, J.-M., Ollennu-Chuasam, P., Hietaniemi, V., Yang, B., and Suomela, J.-P. 2018. Identification and quantification of avenanthramides and free and bound phenolic acids in eight cultivars of husked oat (Avena sativa L.) from Finland. Journal of Agricultural and Food Chemistry 66(11):2900–2908.

Ndolo, V. U., Beta, T., and Fulcher, R. G. 2013. Ferulic acid fluorescence intensity profiles and concentration measured by HPLC in pigmented and non-pigmented cereals. Food Research International 52(1):109–118.

Nicoletti, I., Martini, D., De Rossi, A., Taddei, F., D’Egidio, M. G., and Corradini, D. 2013. Identification and quantification of soluble free, soluble conjugated, and insoluble bound phenolic acids in durum wheat (Triticum turgidum L. var. durum) and derived products by RP-HPLC on a semimicro separation scale. Journal of Agricultural and Food Chemistry 61(48):11800–11807.

Patel, S. 2015. Cereal bran fortified-functional foods for obesity and diabetes management: Triumphs, hurdles and possibilities. Journal of Functional Foods 14(14):255–269.

Paznocht, L., Kotíková, Z., Lachman, J., Orsák, M., Eliášová, M., and Martinek, P. 2018. Free and esterified carotenoids in pigmented wheat, tritordeum and barley grains. Food Chemistry 240(2):670–678.

Peh, H. Y., Tan, W. S. D., Liao, W., and Wong, W. S. F. 2016. Vitamin E therapy beyond cancer: Tocopherol versus tocotrienol. Pharmacological Therapy 162(1):152–169.

Pihlava, J.-M., Hellström, J., Kurtelius, T., and Mattila, P. 2018. Flavonoids, anthocyanins, phenolamides, benzoxazinoids, lignans and alkylresorcinols in rye (Secale cereale) and some rye products. Journal of Cereal Science 79(1):183–192.

Poloni, D. M., Dangles, O., and Vinson, J. A. 2019. Binding of plant polyphenols to serum albumin and LDL: healthy implications for heart disease. Journal of Agriculture and Food Chemistry 67(33):9139–9147.

Polonskiy, V. I., Sumina, A. V., Pavlova, E. V., and Shaldaeva, T. M. 2016а. Variation of the total content of antioxidants in the grain of oats and barley grown in intermountain troughs. Uspekhi sovremennogo estestvoznaniya 8:114–119. (In Russian)

Polonskiy, V. I., Sumina, A. V., Shaldaeva, T. M., and Strupan, E. A. 2016б. Evaluation of the content of antioxidants in barley and oats in the grain based on its physical indicators. Vestnik Krasnoyaskogo GAU 8:59–64. (In Russian)

Pridal, A. A., Böttger, W., and Ross, A. B. 2018. Analysis of avenanthramides in oat products and estimation of avenanthramide intake in humans. Food Chemistry 253(7):93–100.

Ragaee, S., Abdel-Aal, E. S. M., and Noaman, M. 2006. Antioxidant activity and nutrient composition of selected cereals for food use. Food Chemistry 98(1):32–38.

Rosicka-Kaczmarek, J., Komisarczyk, A., and Nebesny, E. 2018. Heteropolysaccharide preparations from rye and wheat bran as sources of antioxidants. Journal of Cereal Science 81(5):37–43.

Ross, A. B., Shepherd, M. J., Schüpphaus, M., Sinclair, V., Alfaro, B., Kamal-Eldin, A., and Åman, P. 2003. Alkylresorcinols in cereals and cereal products. Journal of Agricultural and Food Chemistry 51(14):4111–4118.

Sedej, I., Sakač, M., Mandić, A., Mišan, A., Tumbas, V., and Hadnađev, M. 2011. Assessment of antioxidant activity and rheological properties of wheat and buckwheat milling fractions. Journal of Cereal Science 54(3):347–353.

Sen, C. K., Khanna, S., and Roy, S. 2007. Tocotrienols in health and disease: The other half of the natural vitamin E family. Molecular Aspects of Medicine 28(5–6):692–728.

Shahidi, F. and Ambigaipalan, P. 2015. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review. Journal of Functional Foods 18:820–897.

Shao, Y. and Bao, J. 2015. Polyphenols in whole rice grain: Genetic diversity and health benefits. Food Chemistry 180(8):86–97.

Shao, Y., Hu, Z., Yu, Y., Mou, R., Zhu, Z., and Beta, T. 2018. Phenolic acids, anthocyanins, proanthocyanidins, antioxidant activity, minerals and their correlations in non-pigmented, red, and black rice. Food Chemistry 239(1):733–741.

Shebis, Y., Iluz, D., Kinel-Tahan, Y., Dubinsky, Z., and Yehoshua, Y. 2013. Natural antioxidants: function and sources. Food and Nutrition Sciences 4:643–649.

Shewry, P. R. and Hey, S. 2015. Do “ancient” wheat species differ from modern bread wheat in their contents of bioactive components? Journal of Cereal Science 65:236–243.

Shewry, P. R., Piironen, V., Lampi, A. M., Nyström, L., Li, L., Rakszegi, M., Fraś, A., Boros, D., Gebruers, K., Courtin, C. M., Delcour, J. A., Andersson, A. A. M., Dimberg, L., Bedő, Z., and Ward, J. L. 2008. Phytochemical and fiber components in oat varieties in the HEALTHGRAIN diversity screen. Journal of Agricultural and Food Chemistry 56(21):9777–9784.

Shi, Y., O'Shea, J. M., and Chu, Y.-F. 2014. The bioavailability and metabolism of phenolics, a class of antioxidants found in grains. Cereal Foods World 59(2):52–58.

Shoeva, O. Y., Gordeeva, E. I., Arbuzova, V. S., and Khlestkina, E. K. 2017. Anthocyanins participate in protection of wheat seedlings from osmotic stress: a case study of near isogenic lines. Cereal Research Communications 45(1):47–56.

Shoeva, O. Yu. and Khlestkina, E. K. 2018. Anthocyanins participate in the protection of wheat seedlings against cadmium stress. Cereal Research Communications 46(2):242–252.

Shoeva, O. Yu., Strygina, K. V., and Khlestkina, E. K. 2018. Genes controlling systesis of flavinoids and melanins pigments in barley. Vavilovaskii zhurnal genetiki i selektsii 22(3):333–342. (In Russian)

Siebenhandl, S., Grausgruber, H., Pellegrini, N., Rio, D. D., Fogliano, V., Pernice, R., and Berghofer, E. 2007. Phytochemical profile of main antioxidants in different fractions of purple and blue wheat, and black barley. Journal of Agricultural and Food Chemistry 55(21):8541–8547.

Skulachev, M. V. and Skulachev, M. B. 2017. Proof of mammalian aging and perspectives of a biochemical approach in the fight against old age. Biokhimiya 82(12):1747–1770. (In Russian)

Sovrani, V., Blandino, M., Scarpino, V., Reyneri, A., Copsson, J. D., Travaglia, F., Locatelli, M., Bordiga, M., Montella, R., and Arlorio, M. 2012. Bioactive compound content, antioxidant activity, deoxynivalenol and heavy metal contamination of pearled wheat fractions. Food Chemistry 135:39–46.

Strygina, K. V., Börner, A., and Khlestkina, E. K. 2017. Identification and characterization of regulatory network components for anthocyanin synthesis in barley aleurone. BMC Plant Biology 17(Suppl 1):184.

Strygina, K. V. and Khlestkina, E. K. 2019. Myc-like transcriptional factors in wheat: Structural and functional organization of the subfamily I members. BMC Plant Biology 19(Suppl 1):50

Strygina, K. V. and Khlestkina, E. K. 2019. Structural and functional divergence of the Mpc1 genes in wheat and barley. BMC Evolutionary Biology 19(Suppl 1):45.

Suchecka, D., Harasym, J. P., Wilczak, J., Gajewska, M., Oczkowski, M., Gudej, S., Błaszczyk, K., Kamola, D., Filip, R., and Gromadzka-Ostrowska, J. 2015. Antioxidative and anti-inflammatory effects of high beta-glucan concentration purified aqueous extract from oat in experimental model of LPS-induced chronic enteritis. Journal of Functional Foods 14(4):244–254.

Thomas, M., Kim, S., Guo, W., Collins, F. W., Wise, M. L., and Meydani, M. 2018. High levels of avenanthramides in oat-based diet further suppress high fat diet-induced atherosclerosis in Ldlr–/– mice. Journal of Agricultural and Food Chemistry 66(2):498–504.

Trehan, S., Singh, N., and Kaur, A. 2018. Characteristics of white, yellow, purple corn accessions: phenolic profile, textural, rheological properties and muffin making potential. Journal of Food Science and Technology 55(6):2334–2343.

Tucakovic, L., Colson, N., and Singh, I. 2015. Relationship between common dietary polyphenols and obesity-induced inflammation. Food Public Health 5(3):84–91.

Tufan, A. N., Çelik, S. E., Özyürek, M., Güçlü, K., and Apak, R. 2013. Direct measurement of total antioxidant capacity of cereals: QUENCHER-CUPRAC method. Talanta 108(4):136–142.

Usenko, N. I., Khlestkina, E. К., Asavasanti, S., Gordeeva, E. I., Yudina, R. S., and Otmakhova, Y. S. 2018. Possibilities of enriching food products with anthocyanins by using new forms of cereals. Foods and Raw Materials 6(1):128–135.

Vargach, Yu. I., Mertvisheva, M. E., and Loskutov, I. G. 2016. Antioxidant activity of kernel and hulls of oat. Plodovodstvo i yagodovodstvo Rossii 47:57–61. (In Russian)

Wang, Y. and Frei, M. 2011. Stressed food — the impact of abiotic environmental stresses on crop quality. Agriculture Ecosystems and Environment 141:271–286.

Wu, W., Tang, Y., Yang, J., Idehen, E., and Sang, S. 2018. Avenanthramide aglycones and glucosides in oat bran: chemical profile, levels in commercial oat products, and cytotoxicity to human colon cancer cells. Journal of Agricultural and Food Chemistry 66(30):8005–8014.

Xu, F., Bao, J., Kim, T.-S., and Park, Y.-J. 2016. Genome-wide association mapping of polyphenol contents and antioxidant capacity in whole-grain rice. Journal of Agricultural and Food Chemistry 64(22):4695–4703.

Yao, Y., Sang, W., Zhou, M., and Ren, G. 2010. Antioxidant and α-glucosidase inhibitory activity of colored grains in China. Journal of Agricultural and Food Chemistry 58(2):770–774.

Yashin, A. Ya. 2008. Injection-flow system with amperometric detector for the selective determination of antioxidants in food and beverages. Rossiiskii khimicheskii zhurnal 52(2):130–135. (In Russian)

Yashin, A. Ya, Yashin, Ya. N., Fedina, P. A., and Chernousova, N. I. 2012. Determination of natural antioxidants in food grains and legumes. Analitika 2(1):32–36. (In Russian)

Yoshida, A., Sonoda, K., Nogata, Y., Nagamine, T., Sato, M., Oki, T., Hashimoto, S., and Ohta, H. 2010. Determination of free and bound phenolic acids, and evaluation of antioxidant activities and total polyphenolic contents in selected pearled barley. Food Science and Technology Research 16(3):215–224.

Zavala-Lopez, M., Lopez-Tavera, E., Figueroa-Cardenas, J. D., Serna-Saldívar, S. O., and García-Lara, S. 2018. Screening of major phenolics and antioxidant activities in teosinte populations and modern maize types. Journal of Cereal Science 79:276–285.

Zaupa, M., Scazzina, F., Dall’Asta, M., Calani, L., Del Rio, D., Bianchi, M. A., Melegari, C., De Albertis, P., Tribuzio, G., Pellegrini, N., and Brighenti, F. 2014. In vitro bioaccessibility of phenolics and vitamins from durum wheat aleurone fractions. Journal of Agricultural and Food Chemistry 62(7):1543–1549.

Zduńczyk, Z., Flis, M., Zieliński, H., Wróblewska, M., Antoszkiewicz, Z., and Juśkiewicz, J. 2006. In vitro antioxidant activities of barley, husked oat, naked oat, triticale, and buckwheat wastes and their influence on the growth and biomarkers of antioxidant status in rats. Journal of Agricultural and Food Chemistry 54(12):4168–4175.

Zhou, K., Laux, J. J., and Yu, L. 2004. Comparison of swiss red wheat grain and fractions for their antioxidant properties. Journal of Agricultural and Food Chemistry 52(5):1118–1123.

Zhu, Y., Li, T., Fu, X., Abbasi, A. M., Zheng, B., and Liu, R. H. 2015. Phenolics content, antioxidant and antiproliferative activities of dehulled highland barley (Hordeum vulgare L.). Journal of Functional Foods 19(12):439–450.

Ziegler, J. U., Schweiggert, R. M., Würschum, T., Longin, C. F. H., and Carle, R. 2016. Lipophilic antioxidants in wheat (Triticum spp.): A target for breeding new varieties for future functional cereal products. Journal of Functional Foods 20(1):594–605.

Zieliński, H., Ceglińska, A., and Michalska, A. 2007. Antioxidant contents and properties as quality indices of rye cultivars. Food Chemistry 104(3):980–988.

Zieliński, H. and Kozłowska, H. 2000. Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. Journal of Agricultural and Food Chemistry 48(6):2008–2016.

Žilić, S., Serpen, A., Akıllıoğlu, G., Gökmen, V., and Vančetović, J. 2012. Phenolic compounds, carotenoids, anthocyanins, and antioxidant capacity of colored maize (Zea mays L.) kernels. Journal of Agricultural and Food Chemistry 60(5):1224–1231.

Žilić, S., Šukalović, V. H. T., Dodig, D., Maksimović, V., Maksimović, M., and Basić, Z. 2011. Antioxidant activity of small grain cereals caused by phenolics and lipid soluble antioxidants. Journal of Cereal Science 54(3):417–424.

Žilić, S., Dodig, D., Vančetović, J., Grčić, N., Perić, V., Titan, P., and Maksimović, V. 2019. Composition of anthocyanins in colored grains and the relationship of their non-acylated and acylated derivatives. Polish Journal of Food Nutrition Science 69(2):137–146.

How to Cite
Polonskiy, V., Loskutov, I., & Sumina, A. (2020). Biological role and health benefits of antioxidant compounds in cereals. Biological Communications, 65(1), 53–67.
Review communications