Constant darkness conditions modulate the effects of melatonin and luzindole on the antioxidant enzyme activities and levels of retinol and α-tocopherol in rats

  • Svetlana Kalinina Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), Pushkinskaya Str., 11, Petrozavodsk, Karelia, 185610, Russian Federation https://orcid.org/0000-0003-1906-092X
  • Viktor Ilyukha Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), Pushkinskaya Str., 11, Petrozavodsk, Karelia, 185610, Russian Federation https://orcid.org/0000-0002-7085-4154
  • Evgeniy Khizhkin Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), Pushkinskaya Str., 11, Petrozavodsk, Karelia, 185610, Russian Federation https://orcid.org/0000-0001-7831-8025
  • Irina Baishnikova Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), Pushkinskaya Str., 11, Petrozavodsk, Karelia, 185610, Russian Federation https://orcid.org/0000-0001-5064-3731
  • Ekaterina Antonova Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), Pushkinskaya Str., 11, Petrozavodsk, Karelia, 185610, Russian Federation https://orcid.org/0000-0002-4740-2141
  • Artem Morozov Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), Pushkinskaya Str., 11, Petrozavodsk, Karelia, 185610, Russian Federation https://orcid.org/0000-0001-7840-939X

Abstract

This study was conducted to evaluate the effects of both exogenous melatonin and melatonin receptor antagonist luzindole on the activities of antioxidant enzymes (AOE) (superoxide dismutase, SOD; catalase, CAT) and the level of low-molecular antioxidant vitamins (retinol, α-tocopherol) in male Wistar rats kept in normal light conditions (LD 12:12) or constant darkness (DD). In LD, while melatonin had no influence on the studied antioxidants, luzindole caused an increase in retinol and a decrease in α-tocopherol contents in the liver compared to the control. In DD, with no influence on AOE activities, both drugs exerted similar effects on the liver retinol and kidney α-tocopherol contents, increasing them in comparison with control. Exposing the animals to DD induced an increase in kidney SOD activity and in liver retinol content. Moreover, DD-mel rats had higher SOD activity in the liver and kidney and a higher retinol level in the liver compared to LD-mel ones; DD-luz rats had a higher liver retinol content compared to LD-luz ones. Liver retinol level seems to be the most sensitive to influence of DD, melatonin and luzindole; the data are probably connected with the involvement of vitamin A in the regulation of circadian rhythms.

Keywords:

constant darkness, melatonin, luzindole, antioxidant enzymes, retinol, α-tocopherol

Downloads

Download data is not yet available.
 

References

Albarrán, M. T., López-Burillo, S., Pablos, M. I., Reiter, R. J., and Agapito, M. T. 2001. Endogenous rhythms of melatonin, total antioxidant status and superoxide dismutase activity in several tissues of chick and their inhibition by light. Journal of Pineal Research 30:227–233. https://doi.org/10.1034/j.1600-079X.2001.300406.x

Antolín, I., Rodríguez, C., Saínz, R. M., Mayo, J. C., Uría, H., Kotler, M. L., Rodríguez-Colunga, M. J., Tolivia, D., and Menéndez-Peláez, A. 1996. Neurohormone melatonin prevents cell damage: effect on gene expression for antioxidant enzymes. The FASEB Journal 10(8):882–890. https://doi.org/10.1096/fasebj.10.8.8666165

Ashton, A., Stoney, P. N., Ransom, J., and McCaffery, P. 2018. Rhythmic diurnal synthesis and signaling of retinoic acid in the rat pineal gland and its action to rapidly downregulate ERK phosphorylation. Molecular Neurobiology 55(11):8219–8235. https://doi.org/10.1007/s12035-018-0964-5

Barberino, R. S., Menezes, V. G., Ribeiro, A. E., Palheta Jr, R. C., Jiang, X., Smitz, J. E., and Matos, M. H. T. 2017. Melatonin protects against cisplatin-induced ovarian damage in mice via the MT1 receptor and antioxidant activity. Biology of Reproduction 96(6):1244–1255. https://doi.org/10.1093/biolre/iox053

Barp, J., Araújo, A. S. D. R., Fernandes, T. R. G., Rigatto, K. V., Llesuy, S., Belló-Klein, A., and Singal, P. 2002. Myocardial antioxidant and oxidative stress changes due to sex hormones. Brazilian Journal of Medical and Biological Research 35(9):1075–1081. https://doi.org/10.1590/S0100-879X2002000900008

Bears, R. F. and Sizes, I. N. 1952. A spectral method for measuring the breakdown of hydrogen peroxide by catalase. Journal of Biological Chemistry 195(1):133–140.

Behan, W. M. H., McDonald, M., Darlington, L. G., and Stone T. W. 1999. Oxidative stress as a mechanism for quinolinic acid-induced hippocampal damage: protection by melatonin and deprenyl. British Journal of Pharmacology 128(8):1754–1760. https://doi.org/10.1038/sj.bjp.0702940

Benot, S., Molinero, P., Soutto, M., Goberna, R., and Guerrero, J. M. 1998. Circadian variations in the rat serum total antioxidant status: correlation with melatonin levels. Journal of Pineal Research 25:1–4. https://doi.org/10.1111/j.1600-079X.1998.tb00378.x

Bolzan, A., Brown, O., Goya, R., and Bianchi, M. 1995. Hormonal modulation of antioxidant enzyme activities in young and old rats. Experimental Gerontology 30:169–175. https://doi.org/10.1016/0531-5565(94)00053-0

Cemek, M., Büyükokuroğlu, M. E., Hazman, Ö., Konuk, M., Bulut, S., and Birdane, Y. O. 2011. The roles of melatonin and vitamin E plus selenium in prevention of oxidative stress induced by naloxone-precipitated withdrawal in heroin-addicted rats. Biological Trace Element Research 142(1):55–66. https://doi.org/10.1007/s12011-010-8744-8

Delibas, N., Tuzmen, N., Yonden, Z., and Altuntas, I. 2002. Effect of functional pinealectomy on hippocampal lipid peroxidation, antioxidant enzymes and N-methyl-D-aspartate receptor subunits 2A and 2B in young and old rats. Neuroendocrinology Letters 23(4):345–350.

Dubocovich, M. L., Mogilnicka, E., and Areso, P. M. 1990. Antidepressant-like activity of the melatonin receptor antagonist, luzindole (N-0774), in the mouse behavioral despair test. European Journal of Pharmacology 182(2):313–325. https://doi.org/10.1016/0014-2999(90)90290-M

Dubocovich, M. L., Rivera-Bermudez, M. A., Gerdin, M. J., and Masana, M. I. 2003. Molecular pharmacology, regulation and function of mammalian melatonin receptors. Frontiers in Bioscience 8:d1093–108. https://doi.org/10.2741/1089

Dubocovich, M. L., Yun, K., Al-Ghoul, W. M., Benloucif, S., and Masana, M. I. 1998. Selective MT2 melatonin receptor antagonists block melatonin-mediated phase advances of circadian rhythms. The FASEB Journal 12:1211–1220. https://doi.org/10.1096/fasebj.12.12.1211

Espinosa-Diez, C., Miguel, V., Mennerich, D., Kietzmann, T., Sánchez-Pérez, P., Cadenas, S., and Lamas S. 2015. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biology 6:183–197. https://doi.org/10.1016/j.redox.2015.07.008

Fang, Y., Zhang, J., Li, Y., Guo, X., Li, J., Zhong, R., and Zhang, X. 2019. Melatonin-induced demethylation of antioxidant genes increases antioxidant capacity through RORα in cumulus cells of prepubertal lambs. Free Radical Biology and Medicine 131:173–183. https://doi.org/10.1016/j.freeradbiomed.2018.11.027

Feingold, I. B., Longhurst, P. A., and Colby, H. D. 1993. Regulation of adrenal and hepatic α-tocopherol content by androgens and estrogens. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1176(1–2):192–196. https://doi.org/10.1016/0167-4889(93)90196-V

Fernández, V., Tapia, G., Varela, P., Castillo, I., Mora, C., Moya, F., Orellana, M., and Videla, L. A. 2005. Redox up-regulated expression of rat liver manganese superoxide dismutase and Bcl-2 by thyroid hormone is associated with inhibitor of κB-α phosphorylation and nuclear factor-κB activation. Journal of Endocrinology 186(3):539–547. https://doi.org/10.1677/joe.1.06261

Gauer, F., Masson-Pevet, M., Stehle, J., and Pevet P. 1994. Daily variations in melatonin receptor density of rat pars tuberalis and suprachiasmatic nuclei are distinctly regulated. Brain Research 641(1):92–98. https://doi.org/10.1016/0006-8993(94)91819-8

Kotler, M., Rodríguez, C., Sáinz, R. M., Antolín, I., and Menéndez-Peláez, A. 1998. Melatonin increases gene expression for antioxidant enzymes in rat brain cortex. Journal of Pineal Research 24(2):83–89. https://doi.org/10.1111/j.1600-079X.1998.tb00371.x

Liu, F. and Ng, T. B. 2000. Effect of pineal indoles on activities of the antioxidant defense enzymes superoxide dismutase, catalase and glutathione reductase, and levels of reduced and oxidized glutathione in rat tissues. Biochemistry and Cell Biology 78:447–453. https://doi.org/10.1139/o00-018

Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randan, R. J. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193(1):265–275.

Mathes, A. M., Wolf, B., and Rensing, H. 2008. Melatonin receptor antagonist luzindole is a powerful radical scavenger in vitro. Journal of Pineal Research 45:337–338. https://doi.org/10.1111/j.1600-079X.2008.00583.x

Mayo, J. C., Sainz, R. M., Antolín, I., Herrera, F., Martin, V., and Rodriguez, C. 2002. Melatonin regulation of antioxidant enzyme gene expression. Cellular and Molecular Life Sciences (CMLS) 59(10):1706–1713. https://doi.org/10.1007/PL00012498

Milczarek, R., Hallmann, A., Sokołowska, E., Kaletha, K., and Klimek, J. 2010. Melatonin enhances antioxidant action of α-tocopherol and ascorbate against NADPH- and iron-dependent lipid peroxidation in human placental mitochondria. Journal of Pineal Research 49(2):149–155. https://doi.org/10.1111/j.1600-079X.2010.00779.x

Misra, H. P. and Fridovich, F. 1972. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. Journal of Biological Chemistry 247(10):3170–3175.

Nierenberg, D. W., and Stukel, T. 1987. Diurnal variation in plasma levels of retinol, tocopherol, and β-carotene. The American Journal of the Medical Sciences 294(3):187–190. https://doi.org/10.1097/00000441-198709000-00010

Okamura, H., Miyake, S., Sumi, Y., Yamaguchi, S., Yasui, A., Muijtjens, M., Hoeijmakers, J. H., and van der Horst, G. T. 1999. Photic induction of mPer1 and mPer2 in cry-deficient mice lacking a biological clock. Science 286(5449):2531–2534. https://doi.org/10.1126/science.286.5449.2531

Olivares, A., Rey, A. I., Daza, A., and Lopez-Bote, C. J. 2009. High dietary vitamin A interferes with tissue α-tocopherol concentrations in fattening pigs: a study that examines administration and withdrawal times. Animal 3(9):1264–1270. https://doi.org/10.1017/S175173110900487X

Owusu, S. A. and Ross, A. C. 2016. Retinoid homeostatic gene expression in liver, lung and kidney: ontogeny and response to vitamin A – retinoic acid (VARA) supplementation from birth to adult age. PLoS ONE 11(1):e0145924. https://doi.org/10.1371/journal.pone.0145924

Oxenkrug, G. F. and Requintina, P. J. 2005. N-acetyldopamine inhibits rat brain lipid peroxidation induced by lipopolysaccharide. Annals of the New York Academy of Sciences 1053(1):394–399. https://doi.org/10.1111/j.1749-6632.2005.tb00047.x

Pang, W., Li, C., Zhao, Y., Wang, S., Dong, W., Jiang, P., and Zhang, J. 2008. The environmental light influences the circulatory levels of retinoic acid and associates with hepatic lipid metabolism. Endocrinology 149(12):6336–6342. https://doi.org/10.1210/en.2008-0562

Requintina, P. J. and Oxenkrug, G. F. 2007. Effect of luzindole and other melatonin receptor antagonists on iron- and lipopolysaccharide-induced lipid peroxidation in vitro. Annals of the New York Academy of Sciences 1122(1):289–294. https://doi.org/10.1196/annals.1403.021

Sergina, S., Baishnikova, I., Ilyukha, V., Lis, M., Lapinski, S., Niedbala, P., and Barabasz, B. 2013. Comparison of the antioxidant system response to melatonin implant in raccoon dog (Nyctereutes procyonoides) and silver fox (Vulpes vulpes). Turkish Journal of Veterinary and Animal Sciences 37(6):641–646. https://doi.org/10.3906/vet-1302-48

Sherman, H., Gutman, R., Chapnik, N., Meylan, J., le Coutre, J., and Froy, O. 2012. All-trans retinoic acid modifies the expression of clock and disease marker genes. The Journal of Nutritional Biochemistry 23(3):209–217. https://doi.org/10.1016/j.jnutbio.2010.11.017

Sugawara, T., Sieving, P. A., Iuvone, P. M., and Bush, R. A. 1998. The melatonin antagonist luzindole protects retinal photoreceptors from light damage in the rat. Investigative Ophthalmology & Visual Science 39(12):2458–2465.

Tan, D. X., Manchester, L. C., Esteban-Zubero, E., Zhou, Z., and Reiter, R. J. 2015. Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. Molecules 20(10):18886–18906. https://doi.org/10.3390/molecules201018886

Tapia-Osorio, A., Salgado-Delgado, R., Angeles-Castellanos, M., and Escobar, C. 2013. Disruption of circadian rhythms due to chronic constant light leads to depressive and anxiety-like behaviors in the rat. Behavioural Brain Research 252(1):1–9. https://doi.org/10.1016/j.bbr.2013.05.028

Toborek, M., Kopieczna-Grzebieniak, E., Drózdz, M., and Wieczorek, M. 1995. Increased lipid peroxidation as a mechanism of methionine-induced atherosclerosis in rabbits. Atherosclerosis 115(2):217–224. https://doi.org/10.1016/0021-9150(94)05516-L

Wang, X. D., Krinsky, N. I., and Russell, R. M. 1993. Retinoic acid regulates retinol metabolism via feedback inhibition of retinol oxidation and stimulation of retinol esterification in ferret liver. The Journal of Nutrition 123(7):1277–1285. https://doi.org/10.1093/jn/123.7.1277

Warner, B., Papas, F. T., Heile, K., Spitz, D., and Wispe, J. 1993. Expression of human Mn-SOD in Chinese hamster ovary cells confers protection from oxidant injury. American Journal of Physiology-Lung Cellular and Molecular Physiology 264:L598–L605. https://doi.org/10.1152/ajplung.1993.264.6.L598

Wolf, G. 2001. Retinoic acid homeostasis: retinoic acid regulates liver retinol esterification as well as its own catabolic oxidation in liver. Nutrition Reviews 59(12):391–394. https://doi.org/10.1111/j.1753-4887.2001.tb06968.x

Published
2019-10-30
How to Cite
Kalinina, S., Ilyukha, V., Khizhkin, E., Baishnikova, I., Antonova, E., & Morozov, A. (2019). Constant darkness conditions modulate the effects of melatonin and luzindole on the antioxidant enzyme activities and levels of retinol and α-tocopherol in rats. Biological Communications, 64(3), 211–218. https://doi.org/10.21638/spbu03.2019.305
Section
Full communication