Acetamidase gene as a new plasmid marker for CRISPR modification of industrial and laboratory Saccharomyces yeasts

Authors

  • Valery Urakov A. N. Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninskiy pr., 33, Moscow, 119071, Russian Federation https://orcid.org/0000-0002-0417-1822
  • Vitaly Kushnirov A. N. Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninskiy pr., 33, Moscow, 119071, Russian Federation https://orcid.org/0000-0003-0316-0766

DOI:

https://doi.org/10.21638/spbu03.2024.205

Abstract

Genetic manipulation of laboratory yeast strains relies on the use of auxotrophic markers. However, such markers are usually missing and undesirable in industrial yeasts. The standard option is then to use antibiotic resistance markers such as KanMX. However, the required antibiotic concentration can vary significantly depending on the growth medium and yeast strain, often resulting in a high proportion of false-positive colonies. An alternative selection procedure could be based on the ability of yeast cells to utilize an uncommon source of nitrogen. Many yeasts, including Saccharomyces, are unable to utilize acetamide. This ability can be conferred by a single acetamidase gene. The CRISPR/Cas9 technology has an advantage over previous methods of yeast modification in that it allows genomic modifications to be introduced without leaving a selectable marker in the genome. Driven by these two motives, we constructed a CRISPR/Cas9 plasmid with an acetamidase gene from the fungus Aspergillus nidulans, which allows the selection of yeast transformants on medium with acetamide as sole nitrogen source, and tested this plasmid with a triploid wine strain and a haploid laboratory strain.

Keywords:

wine yeast, selective marker, acetamidase gene, CAR1 gene, CRISPR/Cas9, acetamide, arginine, nitrogen source

Downloads

Download data is not yet available.
 

References

Chernoff, Y. O., Lindquist, S. L., Ono, B., Inge-Vechtomov, S. G., and Liebman, S. W. 1995. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [PSI+]. Science 268(5212):880–884. https://doi.org/10.1126/science.7754373

Chin, Y.-W., Shin, S. C., Han, S., Jang, H. W., and Kim, H. J. 2021. CRISPR/Cas9-mediated inactivation of arginase in a yeast strain isolated from Nuruk and its impact on the whole genome. Journal of Biotechnology 341(2021):163–167. https://doi.org/10.1016/j.jbiotec.2021.09.019

Colussi, P. A. and Taron, C. H. 2005. Kluyveromyces lactis LAC4 promoter variants that lack function in bacteria but retain full function in K. lactis. Applied and Environmental Microbiology 71(11):7092–7098. https://doi.org/10.1128/AEM.71.11.7092-7098.2005

Dergalev, A. A., Alexandrov, A. I., Ivannikov, R. I., Ter-Avanesyan, M. D., and Kushnirov, V. V. 2019. Yeast Sup35 prion structure: two types, four parts, many variants. International Journal of Molecular Sciences 20(11):2633. https://doi.org/10.3390/ijms20112633

Fairlie, W. D., Russell, P. K., Zhang, H. P., and Breit, S. N. 1999. Screening procedure for Pichia pastoris clones containing multiple copy gene inserts. BioTechniques 26(6):1042–1044. https://doi.org/10.2144/99266bm06

Gietz, R. D. and Sugino, A. 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74(2):527–534. https://doi.org/10.1016/0378-1119(88)90185-0

Gietz, R. D. and Woods, R. A. 2002. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods in Enzymology 350:87–96. https://doi.org/10.1016/s0076-6879(02)50957-5

Hamilton, M., Consiglio, A. L., MacEwen, K., Shaw, A. J., and Tsakraklides, V. 2020. Identification of a Yarrowia lipolytica acetamidase and its use as a yeast genetic marker. Microbial Cell Factories 19:22. https://doi.org/10.1186/s12934-020-1292-9

Jakočiunas, T., Bonde, I., Herrgard, M., Harrison, S. J., Kristensen, M., Pedersen, L. E., Jensen, M. K., and Keasling, J. D. 2015. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metabolic Engineering 28:213–222. https://doi.org/10.1016/j.ymben.2015.01.008

Kishkovskaia, S. A., Eldarov, M. A., Dumina, M. V., Tanashchuk, T. N., Ravin, N. V., and Mardanov, A. V. 2017. Flor yeast strains from culture collection: genetic diversity and physiological and biochemical properties. Applied Biochemistry and Microbiology 53:359–367. https://doi.org/10.1134/S0003683817030085

Looke, M., Kristjuhan, K., and Kristjuhan, A. 2011. Extraction of genomic DNA from yeasts for PCR-based applications. BioTechniques 50(5):325–328. https://doi.org/10.2144/000113672

Mans, R., van Rossum, H. M., Wijsman, M., Backx, A., Kuijpers, N. G. A., van den Broek, M., Daran-Lapujade, P., Pronk, J. T., van Maris, A. J. A., and Daran, J.-M. G. 2015. CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Research 15(2):fov004. https://doi.org/10.1093/femsyr/fov004

Mardanov, A. V, Beletsky, A. V, Eldarov, M. A., Tanashchuk, T. N., Kishkovskaya, S. A., and Ravin, N. V. 2018. Draft genome sequence of the wine yeast strain Saccharomyces cerevisiae I-328. Genome Announcements 6(5). https://doi.org/10.1128/genomeA.01520-17

Nevzglyadova, O. V., Mikhailova, E. V., and Soidla, T. R. 2022. Yeast red pigment, protein aggregates, and amyloidoses: a review. Cell and Tissue Research 388(4):211–223. https://doi.org/10.1007/s00441-022-03609-w

Ryan, O. W., Skerker, J. M., Maurer, M. J., Li, X., Tsai, J. C., Poddar, S., Lee, M. E., DeLoache, W., Dueber, J. E., Arkin, A. P., and Cate, J. H. D. 2014. Selection of chromosomal DNA libraries using a multiplex CRISPR system. Elife 3:e03703. https://doi.org/10.7554/eLife.03703

Shaw, W. 2018. Quick and easy CRISPR engineering in Saccharomyces cerevisiae. Benchling. Available at: https://benchling.com/pub/ellis-crispr-tools

Siewers, V. 2022. An overview on selection marker genes for transformation of Saccharomyces cerevisiae. Methods in Molecular Biology 2513:1–13. https://doi.org/10.1007/978-1-0716-2399-2_1

Solis-Escalante, D., Kuijpers, N. G. A., Bongaerts, N., Bolat, I., Bosman, L., Pronk, J. T., Daran, J.-M., and Daran-Lapujade, P. 2013. amdSYM, a new dominant recyclable marker cassette for Saccharomyces cerevisiae. FEMS Yeast Research 13(1):126–139. https://doi.org/10.1111/1567-1364.12024

Ter-Avanesyan, M. D., Kushnirov, V. V., Dagkesamanskaya, A. R., Didichenko, S. A., Chernoff, Y. O., Inge-Vechtomov, S. G., and Smirnov, V. N. 1993. Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Molecular Microbiology 7:683–692. https://doi.org/10.1111/j.1365-2958.1993.tb01159.x

Urakov, V. N., Mardanov, A. V., Alexandrov, A. I., Ruzhitskiy, A. O., Ravin, N. V., and Kushnirov, V. V. 2023. CAR1 as a new selective marker for genetic engineering of wine yeasts. Journal of Microbiological Methods 214:106840. https://doi.org/10.1016/j.mimet.2023.106840

Zhang, Yu., Wang, J., Wang, Z., Zhang, Yi., Shi, S., Nielsen, J., and Liu, Z. 2019. A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae. Nature Communications 10:1053. https://doi.org/10.1038/s41467-019-09005-3

Downloads

Published

2024-10-10

How to Cite

Urakov, V., & Kushnirov, V. (2024). Acetamidase gene as a new plasmid marker for CRISPR modification of industrial and laboratory <em>Saccharomyces</em> yeasts. Biological Communications, 69(2), 105–110. https://doi.org/10.21638/spbu03.2024.205

Issue

Section

Brief communications

Categories