Extremely low-frequency magnetic fields affect the movement of magnetotactic cocci

Authors

  • Roger Duarte de Melo Brazilian Center for Physics Research, Botafogo, 150, Rio de Janeiro, 22290-180, Brazil https://orcid.org/0009-0006-7743-2081
  • Natalia Belova Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, ul. Institutskaya, 3, Pushchino, Moscow Oblast, 142290, Russian Federation https://orcid.org/0009-0002-1751-0616
  • Daniel Acosta-Avalos Brazilian Center for Physics Research, Botafogo, 150, Rio de Janeiro, 22290-180, Brazil https://orcid.org/0000-0002-5784-754X

DOI:

https://doi.org/10.21638/spbu03.2024.202

Abstract

Magnetotactic bacteria are microorganisms that swim following the geomagnetic field lines, because of an intracellular magnetic moment that aligns their body to the magnetic field lines. For that reason, these bacteria are appropriate for the study of microorganisms’ motion. The present paper studies the swimming trajectories of uncultured magnetotactic cocci under the effect of combined constant (DC) and alternating (AC) magnetic fields oscillating at frequencies that formally correspond to the cyclotron frequency for Ca2+, K+, Fe2+ and Fe3+ ions. The swimming trajectories were observed to be cylindrical helixes and their helix radiuses, frequencies, axial velocities and orientation angles of the trajectories relative to the constant magnetic field were determined. The orientation angles were used to calculate the magnetic to thermal energy ratio, which helps the study of the disorientating effect of the flagellar motion. Our results show that combined magnetic fields tuned to the resonance of Ca2+ ions affect all the trajectory parameters. Frequencies associated to Ca2+ and K+ do not affect the bacterial swimming direction relative to the magnetic field direction. On the other hand, frequencies associated to Fe2+ and Fe3+ do change the bacterial swimming direction relative to the magnetic field direction, which means that those frequencies affect the flagellar function. These results show indirect evidence of the action of calcium binding proteins in the motility of magnetotactic cocci.

Keywords:

magnetotaxis, magnetotactic cocci, ion parametric resonance model, ion cyclotron resonance model, calcium-binding proteins, sheath-associated protein

Downloads

Download data is not yet available.
 

References

Abreu, F. and Acosta-Avalos, D. 2018. Biology and physics of magnetotactic bacteria; pp. 1–19 in Blumenberg, M., Shaaban, M., Elgaml, A. (eds), Microorganisms. 1st ed. IntechOpen, London.

Acosta-Avalos, D., Figueiredo, A. C., Conceição, C. P., da Silva, J. J. P., Aguiar, K. J. M. S. P., Medeiros, M. L., Nascimento, N., de Melo, R. D., Sousa, S. M. M., Lins de Barros, H., Alves, O. C., and Abreu, F. 2019. U-turn trajectories of magnetotactic cocci allow the study of the correlation between their magnetic moment, volume and velocity. European Biophysics Journal 48:513–521. https://doi.org/10.1007/s00249-019-01375-2

Belova, N. A. and Panchelyuga, V. A. 2010. Lednev’s model: theory and experiment. Biophysics 55:661–674. https://doi.org/10.1134/S0006350910040263

Blakemore, R. P. and Frankel, R. B. 1981. Magnetic navigation in bacteria. Scientific American 245(6):58–65. https://doi.org/10.1038/scientificamerican1281-58

Carvalho, A. L., Abreu, F., and Acosta-Avalos, D. 2021. Multicellularity makes the difference: multicellular magnetotactic prokaryotes have dynamics motion parameters dependent on the magnetic field intensity. European Physics Journal Plus 136:203. https://doi.org/10.1140/epjp/s13360-021-01187-4

Crenshaw, H. C. 1996. A new look at locomotion in microorganisms: rotating and translating. American Zoologist 36(6):608–618. https://doi.org/10.1093/icb/36.6.608

De Melo, R. D., Leão, P., Abreu, F., and Acosta-Avalos, D. 2020. The swimming orientation of multicellular magnetotactic prokaryotes and uncultured magnetotacticcocci in magnetic fields similar to the geomagnetic field reveals differences in magnetotaxis between them. Antonie van Leeuwenhoek 113:197–209. https://doi.org/10.1007/s10482-019-01330-3

Esquivel, D. M. S. and Lins de Barros, H. G. P. 1986. Motion of magnetotactic microorganisms. Journal of Experimental Biology 121(1):153–163. https://doi.org/10.1242/jeb.121.1.153

Frankel, R. B. and Blakemore, R. P. 1980. Navigational compass in magnetic bacteria. Journal of Magnetism and Magnetic Materials 15–18(3):1562–1564. https://doi.org/10.1016/0304-8853(80)90409-6

Kalmijn, A. J. 1981. Biophysics of geomagnetic field detection. IEEE Transactions on Magnetics MAG-17(1):1113–1124. https://doi.org/10.1109/TMAG.1981.1061156

Krylov, V. V. and Osipova, E. A. 2023. Effects of weak low-frequency magnetic fields: frequency-amplitude efficiency windows and possible mechanisms. International Journal of Molecular Sciences 24(13):10989. https://doi.org/10.3390/ijms241310989

Khokhlova, G., Abashina, T., Belova, N., Panchelyuga, V., Petrov, A., Abreu, F., and Vainshtein, M. 2018. Effects of combined magnetic fields on bacteria Rhodospirillum rubrum VKM B-1621. Bioelectromagnetics 39(6):485–490. https://doi.org/10.1002/bem.22130

Lednev, V. V. 1991. Possible mechanism for the influence of weak magnetic fields on biological systems. Bioelectromagnetics 12(2):71–75. https://doi.org/10.1002/bem.2250120202

Lednev, V. V. 1996. Bioeffects of weak combined, constant and variable magnetic field. Biophysics 41:241–252.

Lefevre, C. T., Santini, C. L., Bernadac, A., Zhang, W. J., Li, Y., and Wu, L. F. 2010. Calcium ion-mediated assembly and function of glycosylated flagellar sheath of marine magnetotactic bacterium. Molecular Microbiology 78(5):1304–1312. https://doi.org/10.1111/j.1365-2958.2010.07404.x

Liboff, A. R. 2019. ION cyclotron resonance: geomagnetic strategy for living systems? Electromagnetic Biology and Medicine 38(2):143–148. https://doi.org/10.1080/15368378.2019.1608234

Liboff, A. R. 1985. Geomagnetic cyclotron resonance in living cells. Journal of Biological Physics 13:99–102. https://doi.org/10.1007/BF01878387

Lin, W., Zhang, W., Zhao, X., Roberts, A., Paterson, G., Bazylinski, D., and Pan, Y. 2018. Genomic expansion of magnetotactic bacteria reveals an early common origin of magnetotaxis with lineage-specific evolution. The ISME Journal 12(6): 1508–1519. https://doi.org/10.1038/s41396-018-0098-9

Lins, U., Freitas, F., Keim, C. N., Lins de Barros, H., Esquivel, D. M. S., and Farina, M. 2003. Simple homemade apparatus for harvesting uncultured magnetotactic microor-ganisms. Brazilian Journal of Microbiology 34(2):111–116. https://doi.org/10.1590/S1517-83822003000200004

Nogueira, F. S. and Lins de Barros, H. G. P. 1985. Study of the motion of magnetotactic bacteria. European Biophysics Journal 24:13–21. https://doi.org/10.1007/BF00216826

Palmer, S. J., Rycroft, M. J., and Cermack, M. 2006. Solar and geomagnetic activity, extremely low frequency magnetic and electric fields and human health at the Earth’s surface. Surveys in Geophysics 27:557–595. https://doi.org/10.1007/s10712-006-9010-7

Sandweiss, J. 1990. On the cyclotron resonance model of ion transport. Bioelectromagnetics 11(2):203–205. https://doi.org/10.1002/bem.2250110210

Smith, S. D., McLeod, B. R., Liboff, A. R., and Cooksey, K. 1987. Calcium cyclotron resonance and diatom motility. Bioelectromagnetics 8(3):215–227. https://doi.org/10.1002/bem.2250080302

Downloads

Published

2024-10-10

How to Cite

de Melo, R. D., Belova, N., & Acosta-Avalos, D. (2024). Extremely low-frequency magnetic fields affect the movement of magnetotactic cocci. Biological Communications, 69(2), 69–75. https://doi.org/10.21638/spbu03.2024.202

Issue

Section

Full communications

Categories