The preparation of samples for studying neutrophils without their isolation

Authors

  • Natalia Fedorova Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Centre “Kurchatov Institute”, Orlova Roshcha, 1, Gatchina, 188300, Russian Federation https://orcid.org/0000-0002-2419-1935
  • Alexey Sokolov Institute of Experimental Medicine, ul. Akademika Pavlova, 12, Saint Petersburg, 197376, Russian Federation
  • Alexander Trashkov Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Centre “Kurchatov Institute”, Orlova Roshcha, 1, Gatchina, 188300, Russian Federation
  • Elena Varfolomeeva Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Centre “Kurchatov Institute”, Orlova Roshcha, 1, Gatchina, 188300, Russian Federation

DOI:

https://doi.org/10.21638/spbu03.2023.302

Abstract

Neutrophils are the primary cells of the innate immune system. They destroy pathogenic microorganisms carrying out the oxidative stress mechanism through phagocytosis and extracellular traps (NETs). There is no doubt about the need to study neutrophils’ functional activity, but there are some methodological problems with the nativity of conditions in such experiments. The aim of this work is to propose a method of preparing a sample of peripheral blood neutrophils for study by spectral-optical methods (such as confocal microscopy) providing an increased level of the nativity of the conditions.

Keywords:

neutrophils, reactive oxygen species, respiratory burst, confocal microscopy

Downloads

Download data is not yet available.
 

References

Andryukov, B. G., Bogdanova, V. D., and Lyapun, I. N. 2019. Phenotypic heterogeneity of neutrophils: new antimicrobic characteristics and diagnostic technologies. Russian Journal of Hematology and Transfusiology 64(2):211–221. https://doi.org/10.35754/0234-5730-2019-64-2-211-221 (In Russian)

Berton, G., Yan, S. R., Fumagalli, L., and Lowell, C. A. 1996. Neutrophil activation by adhesion. lnternational Journal of Clinical and Laboratory Research 26:160–177. https://doi.org/10.1007/BF02592978

Blanter, M., Cambier, S., De Bondt, M., Vanbrabant, L., Pörtner, N., Abouelasrar Salama, S., Metzemaekers, M., Marques, P. E., Struyf, S., Proost, P., and Gouwy, M. 2022. Method matters: effect of purification technology on neutrophil phenotype and function. Frontiers in Immunology 13:820058. https://doi.org/10.3389/fimmu.2022.820058

Davis, B. J. 1964. Disc electrophoresis. II. Method and application to human serum proteins. Annals of the New York Academy of Sciences 121:404–427. https://doi.org/10.1111/j.1749-6632.1964.tb14213.x

Fedorova, N. D., Sumbatyan, D. A., Stukova, M. A., Ivanov, A. V., Semenova, E. V., Filatov, M. V., and Varfolomeeva, E. Yu. 2021. Viral infections affect the functional activity of peripheral blood neutrophils. Russian Journal of Biological Physics and Chemisrty 6(1):115–123. (In Russian)

Filatov, M., Varfolomeeva, E., and Ivanov, E. 1995. Flow cytofluorometric detection of inflammatory processes by measuring respiratory burst reaction of peripheral blood neutrophils. Biochemical and Molecular Medicine 55:116–121. https://doi.org/10.1006/bmme.1995.1041

Gorudko, I. V., Grigorieva, D. V., Sokolov, A. V., Shamova, E. V., Kostevich, V. A., Kudryavtsev, I. V., Syromiatnikova, E. D., Vasilyev, V. B., Cherenkevich, S. N., and Panasenko, O. M. 2018. Neutrophil activation in response to monomeric myeloperoxidase. Biochemistry and Cell Biology 96:592–601. https://doi.org/10.1139/bcb-2017-0290

Lutsenko, V. E., Grigor’eva, D. V., Cherenkevich, S. N., Panasenko, O. M., Sokolov, A. V., and Gorudko, I. V. 2018. Fluorescent method for estiment neutrophils functional activity. Russian Journal of Biological Physics and Chemistry 3(3):612–618. (In Russian)

Mantovani, А., Cassatella, M. A., Costantini, C., and Jaillon, S. 2011. Neutrophils in activation and regulation of innate and adaptive immunity. Nature Reviews Immunology 11:519–531. https://doi.org/10.1038/nri3024

Mozzini, C. and Girelli, D. 2020. The role of neutrophil extracellular traps in Covid-19: only a hypothesis or a potential new field of research? Thrombosis Research 191:26–27. https://doi.org/10.1016/j.thromres.2020.04.031

Muraro, S. P., De Souza, G. F., Gallo, S. W., and De Silva, B. K. 2018. Respiratory syncytial virus induces the classical ROS-dependent NETosis through PAD-4 and necroptosis pathways activation. Scientific Reports 8:14166. https://doi.org/10.1038/s41598-018-32576-y

Nathan, C. 2006. Neutrophils and immunity: challenges and opportunities. Nature Reviews Immunology 6:173–182. https://doi.org/10.1038/nri1785

Nordenfelt, P. and Tapper, H. 2011. Phagosome dynamics during phagocytosis by neutrophils. Journal of Leukocyte Biology 90:271–284. https://doi.org/10.1189/jlb.0810457

Poh, X. Y., Loh, F. K., Friedland, J. S., and Ong, C. W. M. 2022. Neutrophil-mediated immunopathology and matrix metalloproteinases in central nervous system — tuberculosis. Frontiers in Immunology 12:788976. https://doi.org/10.3389/fimmu.2021.788976

Reut, V. E., Grigorieva, D. V., Gorudko, I. V., Sokolov, A. V., and Panasenko, O. M. 2020. Application of celestine blue B and gallocyanine for studying the effect of drugs on the production of reactive oxygen and halogen species by neutrophils. Journal of Applied Spectroscopy 87(4):693–700. https://doi.org/10.1007/s10812-020-01056-5

Soehnlein, O. 2009. Direct and alternative antimicrobial mechanisms of neutrophil-derived granule proteins. Journal of Molecular Medicine 87:1157–1164. https://doi.org/10.1007/s00109-009-0508-6

Tillack, K., Breiden, P., Martin, R., and Sospedra, M. 2012. T lymphocyte priming by neutrophil extracellular traps links innate and adaptive immune responses. Journal of Immunology 188:3150–3159. https://doi.org/10.4049/jimmunol.1103414

Varfolomeeva, E. Yu., Ivanov, E. I., Drobchenko, E. A., Semenova, E. V., and Filatov, M. V. 2010. Detection of inflammatory processes during various diseases by the method of flow cytofluorometry. Bulletin of Experimental Biology and Medicine 149:485–489. https://doi.org/10.1007/s10517-010-0976-2

Varfolomeeva, E. Y., Semenova, E. V., Sokolov, A. V., Aplin, K. D., Timofeeva, K. E., Vasilyev, V. B., and Filatov, M. V. 2016. Ceruloplasmin decreases respiratory burst reaction during pregnancy. Free Radic Research 50:909–919. https://doi.org/10.1080/10715762.2016.1197395

Yipp, B. G., Petri, B., Salina, D., Jenne, C. N., Scott, B. N. V., Zbytnuik, L. D., Pittman, K., Asaduzzaman, M., Wu, K., Meijndert, H. C., Malawista, S. E., de Boisfleury Chevance, A., Zhang, K., Conly, J., and Kubes, P. 2012. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nature Medicine 18:1386–1393. https://doi.org/10.1038/nm.2847

Downloads

Additional Files

Published

2023-11-30

How to Cite

Fedorova, N., Sokolov, A., Trashkov, A., & Varfolomeeva, E. (2023). The preparation of samples for studying neutrophils without their isolation. Biological Communications, 68(3), 145–150. https://doi.org/10.21638/spbu03.2023.302

Issue

Section

Full communications

Categories